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SYNOPSIS

Laboratory water channel experiments concerning the flow characteristics
about two closely spaced (L/D = 1.5) tandem cylinders when the downstream cylinder
undergoes forced oscillation are described. A hot-film probe was positioned on
the shoulder of the downstream cylinder to estimate the delay time between
cylinder motion and the switching of the high speed flow ("”Jjet"” flow) into the gap
between the two cylinders. From measurement of this kinematic jet switching time,
a delay time model for proximity galloping of tandem cylinders has been formu-
lated. Solution of the equation of motion for the downstream cylinder employing
this delay time model yielded results that were of the same order of magnitude as
the laboratory results of Zdravkovich (19), but differences in detail were
evident. Further refinement of the model and the numerical techniques are
required before the amplitudes and frequencies of vibration can be predicted
exactly. Experiments conducted after submission of the draft of the present paper
(Knisely and Kawagoe (7)), in which the dynamic flow-induced lift force acting on
the oscillating downstream cylinder was measured directly, indicate that the
kinematic delay time measurements of the present experiment were of the correct
order of magnitude, but did not accurately represent the behavior of delay time
with increasing reduced velocity. New calculations using the revised delay time
relationship are being undertaken and will be reported later.

INTRODUCTION

There are many different applications in which closely spaced tandem struc-—
tures with circular cross—section are exposed to a mean velocity or current. 1In
the area of hydraulics, pier supports (pilings), underwater cables, submerged
pipeline bundles and the risers on an offshore oil platform are a few examples.
Examples from wind engineering include closely spaced smokestacks, radio and
television towers, distillation columns, storage tanks for oil or water, electri-
cal power cables and closely spaced pipe racks., In the mechanical sciences, one
immediately thinks of heat exchangers as an example of this type of geometry.

It is important to recognize that all of these diverse geometries in their
often different environments are susceptible to flow-induced vibrations. In the
following, the symbols L and T will be used to denote the center-to-center spacing
in the Longitudinal (streamwise) and Transverse (cross—-stream) directions,
respectively; U signifies the freestream velocity; f, is the frequency of cylinder
vibration; t, is the period of vibration (t, = 1/fy) and D represents the cylinder
diameter. Tandem (implying small values of T/D) cylinder vibrations can be
excited by a variety of mechanisms, depending mainly on the L/D ratio.

Cooper and Wardlaw (4) reported that when the streamwise spacing L/D>5, the
downstream cylinder can undergo what is termed "wake galloping” or "wake flutter”.
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fhis type of vibration occurs when the reduced velocity, denoted by Ug = U/fyD,
axceeds a threshold value, known as the critical onset reduced velocity. The
7ibration of the downstream cylinder, characterized by elliptical orbits, is
iriven by the mean velocity gradients in the wake of the upstream cylinder.

A different type of oscillation can result when the streamwise cylinder
spacing exceeds about six diameters (L/D>6). If the downstream structure has an
sigenfrequency near the vortex shedding frequency of the upstream structure, the
impinging von Karman vortices from the upstream structure can cause a resonant
vibration of the downstream structure. This type of vibration is termed "resonant
souffeting” and has been examined by Wong (18). As with all vortex-induced
vibrations one must expect that resonant buffeting will occur only over a limited
reduced velocity range.

King and Johns (5) investigated what they called "in-line proximity interac—
tion” which can occur when the inter—cylinder spacing is less than six diameters
(L/D<6) and the mass damping parameter kg¢1.2. The mass damping parameter is
lefined as kg = 2mgd/pD2, where mg is the modal mass, & the logarithmic decrement
of free vibration and p the fluid density. (The modal mass used in the water
shannel experiments of King and Johns (5) is defined as the integral of total mass
(i.e., structural mass plus added mass) times the mode shape function evaluated
sver the entire cylinder length divided by the integral of the mode shape function
over the wetted length of the cylinder.) This type of tandem cylinder interaction
is usually limited to reduced velocities in the range 1.2¢Up<(5 and is charac-
terized by cylinder motion in the flow direction.

"Cross—stream proximity interference galloping” or simply "interference
galloping” has been discussed by many authors, among them Zdravkovich (19),
Zdravkovich and Pridden (20), Ruscheweyh (14), Bokaian and Geoola (2, 3), Shira-
ishi et al (15) and most recently Matsumoto et al (10) and Knisely and Kawagoe
(7). This type of cross—stream vibration generally occurs when the spacing ratio
is less than three to four (L/D(3 to 4). Ruscheweyh (14) has shown that, although
both cylinders may vibrate, the amplitude of the downstream cylinder is consist-
ently larger than that of the upstream cylinder. Amplitudes of vibration are
typically of the order of one diameter and vibrations can occur over a wide range
of reduced velocities, nominally 15<URr<100 to 200, but both amplitude and reduced
velocity range depend, of course, on the Seruton number (mass damping parameter).
The remainder of the present paper will deal with this "interference galloping”
phenomenon.

Ruscheweyh (14) measured the cross-stream response of the downstream cylinder
of a tandem pair of finite length cylinders (H/D = 22) with a free end over the
Reynolds number range 2 x 103$Be$2 x 104 for various values of the Seruton number
and streamwise cylinder spacing at four different angles of attack between the
mean flow and the line of centers of the two cylinders. Ruscheweyh (14) also
developed an "interference galloping criterion” by employing a quasi-steady
analysis with an assuméd constant phase shift between the cylinder motion and the
quasi-steady lift force, which was assumed to be sinusoidal at the same frequency
as cylinder motion. His prediction for the onset velocity, that is, the velocity
where interference galloping begins, takes the following form:
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Here, URo is the reduced onset velocity; U, the dimensional onset velocity: f, the

frequency of cylinder vibration; D the cylinder diameter; M the generalized mass
per unit length; & the logarithmic decrement (of free vibration); p the density of
the flowing medium; R the intercylinder spacing along the line of centers; 0 is
the assumed phase lag of the 1lift relative to the cylinder displacement; and
acLlaﬁl is the slope of the lift coefficient curve evaluated at the angle B,

vwhere B is the angle between the line of centers and the direction of the oncoming
mean flow.

The similarities and differences between his model and the classical gallop-
ing model were noted by Ruscheweyh. His model depends upon the square root of the



Scruton number and requires a positive slope for acL/asl (since sin 0 is a

negative quantity). Classical galloping theory, on the other hand, predicts a
linear dependence of the onset velocity on the Secruton number and requires a
negative slope of the lift coefficient curve. The expression —aCL/aBI sin 00 is
termed the "interference galloping criterion.” B

Bokaian and Geoola (2, 3) measured the transverse amplitude response curves
for both the downstream cylinder (Bokaian and Geoola (2)) and the wupstream
cylinder (Bokaian and Geoola (3)). The conditions in their experiments were as
follows: spring mounted rigid body motion; 200<{Re{6000 (water flow); aspect ratio
H/D, 18.63<H/D<37.25. They reconfirmed the dependence of the onset velocity on
the Scruton number. Further, their data roughly agreed with Ruscheweyh’'s (14)
predicted square root dependence of the onset velocity on the separation distance.
It should be noted that both Ruscheweyh (14) and Bokaian and Geoola (2) found an
interaction between the mechanisms of interference galloping and classical vortex
shedding, just as has been reported for the galloping of rectangular cross-section
cylinders (see, for example, Wawzonek and Parkinson (17) and Bokaian and Geoola
(1).

Ruscheweyh (14) avoided specifying the phase lag O, by solving Eq. (1) for
the parameter ‘aCL/3B| sin 0 and employing an experimentally determined value for

URO. His model appears to give consistent results when used with his experimental

data, but in order to apply the model to other situations more information
concerning the value of © is needed. Does 6 depend on Ug, L/D and/or the ampli-
tude of vibration A/D? The purpose of the present study is to obtain a crude
estimate of 6, or, equivalently, of the delay time Tjs-

The incorporation of a phase lag, or delay time, into a quasi-steady analysis
is a method of accounting for the inertia of the oncoming flow and is a measure of
the time required for the flow to react to a change in the cylinder position.
This concept has appeared in the literature under the name "retardation effect”
(Simpson and Flower (16)), "phase lag due to fluid inertia” (Lever and Weaver (8))
and "flow redistribution time” (Lever and Weaver (9)). Price and Paidoussis (12,
13) employed the retardation time of Simpson and Flower to calculate the elastic
stability boundary of heat exchanger tube banks. They assumed a dimensionless
delay time, Tjg = UTjs/D, of order unity. To the authors’ knowledge, no measure-
ment of the delay time has been reported in the literature.

The mechanism which drives interference galloping is thought to be the
periodic switching of high speed flow into and out of the gap between the two
cylinders. When the two cylinders are aligned in the streamwise direction, there
is only recirculating flow in the gap between the two cylinders and their common
wake is symmetrical. 1In the aligned position the transverse displacement of the
downstream cylinder, n, is defined to be zero. As the downstream cylinder moves
away from the centerline, that is, lq|>0, it forces the wake to become unsymmetri-
cal. At some critical transverse location, for a given L/D, the downstream
cylinder presents a large enough flow obstruction to force the shear layer
emanating from the upstream cylinder to bend into the gap between the two cylin-
ders. The area of this gap is relatively small and the resultant gap flow has a
high velocity. The induced pressure field acts to restore the cylinder to its in-
line arrangement, but the kinetic energy of the cylinder reaches a maximum just as
it passes through the position corresponding to m = 0, and the cylinder'’s momentum
carries the cylinder to a displaced position on the opposite side where the
switching of high speed fluid, called " jet—switching’” by Naudascher (11), occurs
once again,

The physical significance of the phase shift in Ruscheweyh's (14) model, or,
equivalently, a time delay between cylinder displacement and the equivalent quasi-
steady loading, is presented in Fig. 1. In Fig. 1la the coordinate systems, (&,n)
and (x,y), and the equilibrium position of the cylinder are defined. The coor-
dinates (&,n) are fixed at the center of the upstream cylinder. The time mean
position of the downstream cylinder, called the equilibrium position, is given by
§ =L and n = T. The coordinates (x,y) have their origin at the equilibrium
position of the downstream cylinder. Hence the two coordinate systems are related
by x = §-L and y = n—-T. Note that for simplicity, the equilibrium position of the



downstream cylinder in Fig. 1la and in the subsequent experiments is at the
location just prior to the occurrence of "jet—-switching”. The n value correspond—
ing to this location will be termed the "critical transverse displacement” since a
slight displacement from this position would result in a significantly different
flow pattern. This position is also given by Beq, where Bgq = tan~1(T/L). It is
also assumed, again for simplicity, that the downstream cylinder undergoes
harmonic oscillations as shown in Fig. 1b. To explain the phenomenon of inter-
ference galloping it is sufficient to consider vibration about the critical
transverse displacement on one side of the wake only. Such an asymmetrical
cylinder configuration would correspond to the oncoming flow approaching the
cylinders at an angle of attack relative to the 1line of centers of the two
cylinders. The force on the downstream cylinder is dominated by the gap flow.
When the high speed "Jjet"” flow occurs there is a negative lift force exerted on
the downstream cylinder. When there is only recirculating flow, the net 1lift
force is approximately zero.

Throughout the remainder of this paper, reference will be made to "statie
1lift force” and "dynamic 1ift force.” The first term, "static 1ift force,” refers
to the 1ift force acting on the downstream cylinder when it is displaced statical-
ly relative to the upstream cylinder, i.e., the velocity of the downstreanm
cylinder remains zero for a long while before and during the measurement of the
1ift force. “Dynamic lift force” refers to the lift force acting on the cylinder
as it is dynamically displaced relative to the upstream cylinder, that is, as it
undergoes forced vibrations. The problem addressed in this paper is whether it is
appropriate to model the dynamic 1lift force acting on the cylinder at time t as
the static 1lift force acting on the cylinder if it were to be statically displaced
a distance corresponding to the dynamic cylinder displacement at time t-T js-

The static lift force is idealized as a step function as shown by the dashed
line in Fig. 1c and d. The switching of the "jet” into and out of the gap,
however, requires a finite amount of time due to the fluid inertia. The trans-
verse dynamic lift force acting on the downstream cylinder is assumed to be
similar to the idealized curve shown as the solid line in Fig. 1lc. The finite
time required for the jet to switch into and that required for it to switch out of
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Fig. 1: Proposed mechanism for sustaining the oscillation of two
closely spaced cylinders, after Naudascher (11) as depicted in
Knisely (6)



the gap are assumed to be approximately equal and are both denoted by Tjs. The
significance of this delay time is evident in the force-displacement diagram in
Fig. 1d. If the "jet switching” were instantaneous, the process would follow the
line marked "static data” and the net area under the force-displacement curve
would be exactly zero. The finite delay time results, however, in a closed loop
which is traversed in a clockwise direction indicating energy transfer from the
mean flow to the cylinder motion, thereby sustaining the cylinder vibration.

As previously mentioned, the experiments discussed in this paper were
undertaken to find a crude value for the delay time. After presentation of the
delay time measurements, a delay time model for cylinder interaction is formulated
and initial results are presented. These initial results suggested that further
refinement and better modelling of the delay time were required before the
vibration model could accurately predict interference galloping, so no further
calculations were carried out.

APPARATUS

Since the force on the downstream cylinder is dominated by the switching of
the "jet” into and out of the gap, and since the instrumentation required for
force measurement was unavailable, the experimental set-up shown in Fig. 2 was
adopted. The downstream cylinder was forced to oscillate by means of a scotch
yoke mechanism and the hot—film probe, mounted with the moving cylinder in a water
flow, recorded the switching of the "jet” into and out of the gap. The placement
of the hot-film probe was obviously crucial to the values obtained for delay time.
Different probe locations would produce different delay times. After very careful
observation using dye injection (see Photo 1 for a sample of the visualization),
the position shown in Fig. 2, 43° from the forward stagnation point (in uniform
flow), was chosen. The errors associated with this choice will be discussed in
the section of this paper entitled "Results”. Note that the hot-film probe was
used only in a qualitative manner, so errors introduced by heat transfer to the
nearby cylinder surface need not be accounted for.

Both cylinders were of diameter D = 5§ cm. The equilibrium position of the
downstream cylinder was approximately at the critical transverse displacement,
just prior to the occurrence of "jet switching” into the gap. The value of L was
1.5D and T was 0.28D, resulting in an angle of Bgq = 10.6° (see Fig. 1) between
their line of centers and the direction of the flow. The Reynolds number based on
D and the freestream velocity in front of the cylinder pair was 8.5 x 103 for all
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Fig.2: Experimental set-up for delay time measurement



experiments reported here. The frequency of forced vibration of the downstream
cylinder was continuously variable, permitting reduced velocities, Up = U/(fyD),
over the range 5<Ur<{50. The amplitude of vibration could be varied continuously
from 0 to 0.47D. The nominal water depth for the experiments was 20 cm, yielding
a cylinder aspect ratio of 4. The channel was 50 cm wide, resulting in 10%
blockage. No correction for blockage effects has been made. The corrections for
blockage and for the short aspect ratio are, for a single cylinder, counterbalanc-
ing since blockage tends to increase the drag force, while a short aspect ratio
tends to reduce it (Naudascher (11)). However, the small value of the aspect
ratio and the high blockage must be regarded as possible sources of error when
extrapolating to much larger aspect ratios in unbounded flow. All veloeity
measurements were made using a DISA 55M10 anemometer in conjunction with a DISA
55M25 linearizer and a conical hot film probe. The freestream streamwise velocity
fluctuations were about 1% and the flow was uniform to within about one percent
over the central 60% of the channel. Further details of the flow conditions can
be found in Knisely (6).

(a)

(g)

n/D=-0,184 n/D=0.333
y/D=-0.464 y/D=0.053
(b) (h)
n/D=0,187 n/D=0.383
y/D=-0.093 y/D=0.103
(c) (i)
n/D=0.216 7/D=0.433
y/D=-0,064 y/D=0,153
(d) (&)
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y/D=-0.014 y/D=0.224
(e) (k)
n/D=0.272 n/D=0,592
y/D=-0.008 y/D=0.312
() (1)
n/D=0,307 7/D=0.750
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Photo 1: Flow visualization for various static displacements (cylin—

der gelocity = 0) of the downstream cylinder.
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L/D = 1.5; Re = 8.5
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Dynamic measurements were obtained using a Hewlett Packard 5451C Fourier
Analyzer to phase average the velocity signal. The cylinder displacement signal,
obtained from a variable inductance displacement transducer, was used as a phase
reference. Normally 40 samples were used to determine the ensemble average. The
contribution of the probe’s own velocity to the output signal was checked and
found to be negligible above a reduced velocity of 7. Again, details can be found
in Knisely (6).

RESULTS
Flow Visualization

A better understanding of the mechanism of interference galloping can be
gained by examining the flow visualization photographs in Photo 1. The downstream
cylinder displacements shown in the photos are static displacements. The values
of n/D give the absolute displacement of the cylinder from the symmetrical
centerline of the flow, while the value y/D gives the displacement from the
position where B = 10.6°, which will be the equilibrium position of the cylinder
in subsequent dynamic tests. (Thus, y/D = #/D - T/D, where T/D = 0.28.) In Photo
la, the hot film probe, which is visible in all photos, is seen to be in the
boundary layer of the downstream cylinder, which is exposed to the oncoming
freestream since the shear layer from the upstream cylinder has been deflected
into the gap. Reference will be made to this photo in the subsequent explanation
of the small increase in velocity at extreme negative position of the cylinder.

For Photos 1b through 1le the dye filament emanating from the upstream
cylinder appears to impact on the downstream cylinder. Upon impact, the dye
filament splits, part of it proceeding downstream and part of it being deflected
into the gap between the two cylinders. In Photo le and especially in Photo 1f,
the dye filament diffuses much less into the gap, but rather maintains its
identity and ’adheres” to the cylinder surface in a manner similar to the well-
known Coanda effect. It is in this range of y/D that the velocity signal shows a
maximum value. The shear layer from the top side of the cylinder (in the photo)
is apparently smoothly deflected along the surface of the downstream cylinder,
producing a high local velocity and a low local static pressure. As the down-
stream cylinder is further displaced away from the centerline, the position of the
downstream cylinder appears to force a more abrupt deflection of the shear layer,
as shown in Photo 1g. With this more abrupt change in the shear layer deflection,
the boundary layer on the downstream cylinder could conceivably separate before
reaching the position of the hot film probe. This separation would account for
the observed decrease in the static velocity signal over the range 0.05<{y/D<0.15.
With further increases in y/D, the " jet-type"” flow enters the gap more prominent-
ly. The angle that this Jet makes with the horizontal mesh lines decreases
continuously as the magnitude of y/D increases. This changing flow angle will be
reflected in erroneous velocity measurements, since the sensitivity of the probe
is direction dependent. Concurrent recordings of the hot film output for the
statically displaced downstream cylinder are in complete agreement with these flow
visualization observations. Sketches of visualization for L/D = 3.0 can be found
in Shiraishi et al (15), showing similar behavior of the jet-type flow.

Ensemble Averaged Dynamic Data

A typical example of the ensemble averaged gap velocity and cylinder dis-
placement signals when the downstream cylinder underwent forced vibration is given
in Fig. 3. In this plot only, positive cylinder displacement is toward the bottom
of the page. From Fig. 3 one can clearly see the delay time between the cylinder
motion and the gap velocity. This delay time can be estimated by measuring
directly from the time traces, as shown in Fig. 3, or by autocorrelating the two
ensemble averaged time signals if one is content with a delay time averaged over
all frequency components in the fluctuating velocity signal. Since even with 40
samples there were random fluctuations in the velocity signal, the delay time was
defined to be the time from when the displacement crossed the zero level to when
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Fig. 3: Ensemble averaged dynamic gap velocity signal and cylinder
displacement. L/D =1.5, T/D = 0.28, Ug = 16.5, A/D = 0.47

the velocity signal reached the point defined by the intersection of the two lines
approximating the mean slopes of the velocity signal, as shown in Fig. 3.

The results of the measurement of delay time required for the " jet” to switeh
into the gap for five different amplitudes of vibration and a range of reduced
velocities is given in Fig. 4. Similar results were obtained for the time
required for the Jjet to switch out of the gap. The data in Fig. 4 are well
described by a linear correlation over the range of reduced velocities considered
in the experiments. The correlations with a linear least squares curve fit are
typically of the order of 90% or better. The worst fit and most scatter occurs
when the amplitude of forced vibration is in the range 0.19D to 0.30D. Flow
visualization results, discussed previously, revealed that in this amplitude
range, the "jet"” was formed by flow that first started around the outside of the
downstream cylinder, but was subsequently forced to reverse direction and flow
through the gap. The "jet flow” was attached to the downstream ecylinder as it
passed the forward stagnation point (in uniform flow), but conceivably separated
before it passed the hot film probe located at 43°, It is believed that for this
reason, the data for A/D = 0.19 and 0.30 are somewhat scattered. The dependence
of the delay time on the details of the flow introduces considerable error. The
delay time data presented here are only estimates and may vary as much as *20%.

The delay time is clearly a function of the amplitude as well as the reduced
velocity of the flow. Rigorously, the delay times presented in Fig. 4 are valid
only for a Reynolds number (based on D and the freestream velocity) of 8.5 x 103,

To arrive at a single correlation curve, the least squares curve fits to the
data (with correlations generally better than 90%) for the average delay times,
(Tswitching in + Tswitching out)/2, were re-plotted in many different forms, using
Lotus 123 software to quickly plot the various combinations of parameters. The
form that best correlated the data, and also made the most sense physically, is
shown in Fig. 5, where the least squares curve fits to the delay time data are
plotted as functions of the reduced velocity divided by the square root of the
nondimensional amplitude of vibration. The quantity UR(A/D)~0.5 can also be
written as (U/vD)(f3A)~0.5 and can be considered to represent the maximum non-
dimensional cylinder acceleration. Note that the systematic variation of delay
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Fig. 4: Delay time for "jet switching” into the gap as a function of
reduced velocity for A/D = 0.47, 0.40, 0.30, 0.21, 0,11 and 0.055

time with amplitude of vibration, found in Fig. 4, has disappeared in Fig. 5. The
curves for A/D = 0,055, 0.3 and 0.47 are almost identical. The deviation of the
other curves is most likely due to the details of the gap flow, that is, local
separations. The errors involved in measuring the switching time in the manner
employed here may be considerable, but the data do suggest that correlating the
delay time with the parameter UR(A/D)~0.5 may be fruitful. The following non-—
dimensional correlation has been assumed, based on the data in Fig. §:

T4s = Tys U/G = kp (U/D) (£§A/D) 05 (2)

where kp is a nondimensional coefficient and the variable G has been substituted
for D as the characteristic length. G is a measure of the approximate length of
the free shear layer emanating from the upstream cylinder and is given by:

G = DI(L/D)2 + (T/D)2 - T/D + 0.25}0°3 (3)

The value for the constant kp will later be determined by a trial and error
procedure so that the calculated results match the experimental laboratory results
at a single point, i.e. at Re = 1 x 105, The test of the model then is whether
the rest of the calculated data corresponds to the experimentally determined
trends.

Employing Eq. (3) and recalling that 4n2f%A is equal to the maximum cylinder
acceleration (for harmonic motion) one can arrive at the following correlation for
the dimensional delay time:
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Tjs = kp (G2/D)0-5 |5,/ (4n2)|-0.5 (4)

More refined experiments, conducted since the present analysis was undertaken and
reported in Knisely and Kawagoe (7), suggest a different functional dependence of
Tjs on L/D. Since these more refined results were unknown at the time of the
present analysis, however, the above correlation for Tp, Eq. (4), was employed in
the delay time model of tandem cylinder interference galloping. Additional
calculations using the more precise results will be undertaken later this year.

60 1T I [ T T T [ T T T T T T T T 7T T 111

50
40
30
20

10

0/0°L ‘IWIL AV130 TYNOISNIWIONON

0 100 200 300 400 500 600
Ugl(A/D)*?

Fig. 5: Delay time vs. nondimensional acceleration parameter

EQUATION OF MOTION

The equation of motion for the downstream cylinder can be written as that of
a simple forced oscillator, provided the cylinder vibrates as a rigid body, that
is, the mode shape is given by ¥ = 1, The forecing term on the right-hand side is
the net flow-induced force per unit length in the y-direction. The equation of
motion is

n§ + ey + ky = Fq(t) - Cp(0.5p¥2D) (5)

where it is assumed that the dynamic 1ift force, Fq(t), can be given by the equi-
valent static force evaluated at a delay time Tjs. Thus Fq(t) = F(£,n*), where F
is the force corresponding to a static displacement and n* = y(t - Tjs) -

Knowledge of the initial conditions and the static force distribution for
static displacements, that is F(&,n), coupled with the delay time model, Eq.(4),
permits the solution of the equation of motion, Eq. (5), at least in theory.

NUMERICAL SOLUTION

The delay time inherent in the evaluation of L(t) causes significant problems
if one attempts to solve Eq. (5). By assuming a starting cycle of undamped
harmonic motion, the flow-induced force at negative times can be estimated for the
start of the problem. The initial assumption is that the motion is nearly
periodic, as was observed in the 1laboratory studies of Zdravkovieh (19). The
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procedure is to neglect all damping and flow-induced forces and calculate one
period of vibration of the undamped system. After one period of vibration, the
cylinder is again at its original starting point with the same initial velocity
and the same initial displacement. Rigorously this solution procedure is not
valid, but as an engineering approximation for a process that is known to be
almost periodic it may yield reasonable results.

The static 1ift distributions presented by Zdravkovich and Pridden (20) for
Re = 6 x 104 were employed for the solution of the equation of motion. Analytical
expressions were developed that closely resembled the static 1lift coefficient
distribution, although these expressions did not match the empirical data exactly.

The second order problem was rewritten as two coupled first order equations
and these were integrated using the Euler method. There is much room for refine-
ment and optimization of the numerical techniques. The results presented here are
intended to demonstrate that the delay time formulation does indeed lead to
oscillatory behavior that follows the trends of the laboratory results of Zdrav-
kovich (19).

The solution program was written in BASIC and calculations were carried out
on a KAYPRO PC, an IBM compatible personal computer. The program solved the two
first order equations by first assuming no damping and calculating the first cycle
of cylinder motion. This first non-damped cycle was used to supply initial values
for the static force evaluated at the delay time. Then the two first order
equations were solved for time t using the static 1lift force corresponding to the
position at time t-Tjs and finding the new position at t+At by the Euler method.
The maximum acceleration was evaluated at each half cycle and was used in Eq. (4)
to evaluate the new value for delay time. The results are plotted as phase plane
trajectories.

The calculated test cases were intended to emulate the experiments of Zdrav-
kovich (19). 1In his paper, the exact mass, spring forces and damping are not
presented; only the natural frequency and the damping factor are available. By
making crude estimates concerning the density of the material he employed it was
possible to examine a number of cases that should come close to his conditions,
but no attempt was made to match the experimental data by adjusting the mass in
the calculations.
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Fig. 6: Demonstration of independence of limit ocycle from initial
conditions. Calculations for m = § kg, ¢ = 28 kg/s and k = 700
N/m

Unless otherwise noted, the results presented below are for an assumed mass
per unit length of 2.0 kg, with a damping coefficient of 11.3 kg/s and a spring
constant of 280 N/m. The delay time used in the calculations was determined from
Eq. (4) as long as Up was less than 80. For higher values of Ur, the delay time
was assumed to remain constant at the value corresponding to Ug = 80. The value
of kp used in the calculations was 0.215.

There is considerable concern that the method of solution will lead to
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results which are a function of the initial conditions. Fig. 6 shows the limit
cycle in the phase plane for two different initial conditions. In Fig. 6a the
limit cycle is approached from below while in Fig. 6b the same limit cycle is
approached from above. The results of calculations for variation with L/D and
Reynolds number, neglecting any variation in kp with Re, are compared with
Zdravkovich'’s (19) laboratory data in Fig. 7. While the calculated results do not
agree exactly in magnitude with the experimental results, the general trend with
increasing Reynolds number is similar, while the trend with increasing L/D is the
opposite of the experimental data. The lack of a sudden onset velocity in the
numerical results is troubling, but may be due to the assumed form of the static
1lift coefficient distribution. Further, Zdravkovich indicated it was necessary to
give the cylinder a significant initial displacement, whereas the numerical
results showed limit cycle behavior for even the smallest displacement. Based on
these preliminary findings, however, it would appear worthwh11$3to pursue this

T T [ T T T T I v rri =5

N - 12
B g — 11
B ° i f./f,
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i L/D:Z// .
— j;7// & 1409
- L/D=3 o | s 24 7
20 " 1/p=35 708
b iy
—_ 2 Exp. Data _-
1.0 i e _ 0.6
3 a L/D=3
[ 35 v L/D=35] | — 05

' I T S SRV T I
0.4 06 08 10 12 1.4 16 18 Z.OX'IO'S

Reynolds Number, Re
Fig. 7: Comparison of calculated results with experimental data from
Zdravkovich (19). Upper curve is frequency ratio and lower ocurve
reduced double amplitude

line of research. With necessary adjustments for variation in delay time and
static 1lift coefficients with Reynolds number and numerical refinement, the
proposed method may lead to an acceptable prediction of the proximity galloping of
tandem cylinders.

CONCLUSION

From measurements of the kinematic jet switching time, a delay time model for
interference galloping of tandem cylinders has been formulated. The preliminary
solution of the equation of motion for the downstream oylinder employing this
delay time model yielded results of the correct magnitude that agreed with the
general trend of the laboratory results of Zdravkoviech (19). Further refinement
of the model and the numerical techniques are required before the amplitudes and
frequencies of vibration can be predicted exactly.

To this end, recent measurements of the dynamic lift force as a function of
cylinder position and reduced velocity were reported by Knisely and Kawagoe (7).
Their results indicate that the kinematic delay time measurements of the present
experiment were of the correct order of magnitude, but did not accurately repres-
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ent the behavior of delay time with increasing reduced velocity. In the near
future, the more precise correlation for delay time from Knisely and Kawagoe (7)
will be incorporated into the mathematical model described here and new calcula-
tions performed.
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APPENDIX - NOTATION

The following symbols are used in this paper:

A = amplitude of forced vibration;

(]
1]

damping coefficient;

Cp = drag coefficient;

Ci, = static 1lift coefficient;

D = cylinder diameter;

fo = frequency of forced vibration;

F(&,nm) = gtatic lift force distribution;

Fq(t) = dynamic 1ift force;

G = approximate shear layer length;

H = length of cylinder;

k = spring constant;

kp = delay time constant in Eq. (2);

kg = mass damping parameter of King and Johns (5);

L = longitudinal (streamwise) center-to—center spacing between the
two cylinders;

m = mass per unit length;

me = equivalent modal mass of King and Johns (5);

M = generalized mass of Ruscheweyh (14);

R = (L2+72)1/2 = jntercylinder spacing along the line of centers;

Re = pUD/p = Reynolds number;

te = period of forced vibration;

T = transverse (cross—stream) center-to—center spacing between the
two cylinders;

Tjs = dimensional jet switching time:;

U = freestream velocity in front of the cylinder pair;

Uo = onset velocity for interference galloping;

Ug = U/fgD = reduced velocity;

URo = Uo/£oD = reduced onset velocity:

b4 = streamwise coordinate measured from the equilibrium position of
downstream cylinder; .

y = transverse coordinate measured from the equilibrium position of
downstream cylinder;

B = angle of attack between oncoming flow and the line of centers;

Beq = tan~1(T/L) = B corresponding to the equilibrium position of the downstream

cylinder;
8 = logarithmic decrement of free vibration:;



n* = n(t-Tjg)

tjs = TstIG
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transverse coordinate measured from the center of upstream

cylinder;

= transverse position of downstream cylinder for evaluation of

équivalent static 1ift force;

Ruscheweyh's (14) phase lag;

fluid viscosity;

streamwise coordinate measured from the center of upstream
cylinder;

fluid density;

nondimensional delay time; and

mode shape function.



