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SYNOPSIS

This paper describes a methodology for determining stochastic design storm
patterns that preserve the joint probability of occurrence of total rainfall and
peak rainfall by means of Freund's bivariate probability demsity function. The
time distribution of the stochastic design storm is obtained from a conditional
probability storm pattern given the total rainfall and the peak rainfall. This
method takes into account not only the crosscorrelation coefficient between total
rainfall and peak rainfall intensity but also the autocorrelation coefficient of
heavy hourly sequences around the rainfall peaks causing flood peaks.

INTRODUCTION

According to the technical manual for river engineering and erosion control (a
revised draft), Ministry of Construction, Japan, published in 1977, a design storm
for flood-control and multi-purpose projects in river drainage areas in Japan is
defined to have three characteristics, the total rainfall, time and spatial
distributions. Considering the magnitude of drainage area, the rainfall and
regional characteristics, we usually assume the design storm duration to be 1 to 3
days. In essence, the magnitude of project has been evaluated by the return period
of the design total rainfall. Following the determination of the design total
rainfall, the time distribution-shape may be determined to be almost same as the
time distribution-shape of a historical heavy storm causing a large flood. This
method 1is called the enlargement method of historical storms, and is easy and
simple in application. However, this method often leads to overestimation of the
peak rainfall intensity, so that some modification of the time distribution should
be required.

As mentioned above, the current method for determination of a design storm
pattern in Japan has been hardly supported by the theory of probability.
Especially, the joint probability of occurrence of the design total rainfall and
hourly rainfall intensities around the peak intensity governing the maximum
discharge of flood has been hardly clarified, although it is very important for the
determination of the design storm pattern.

This paper formulates the joint occurrence probability of the total rainfall
and the peak rainfall intensity by means of the joint return period of two
hydrologic variates associated with a Poisson process (Hashino, (2)). A method for
determination of a design storm pattern is proposed using the conditional
probability storm pattern (Hashino, (3)) given the design total rainfall and the
peak rainfall intensity. Three probabilistic criteria of determination are
established.

CONDITIONAL PROBABILITY STORM PATTERN GIVEN THE PEAK INTENSITY
Freund (1) defined a bivariate exponential probability demsity function g(x,y)

of a bivariate (x,y) with four parameters. For a special case the variables x and
y have identical marginal distributions, so that Freund's probability density
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function g(x,y) becomes

aBexp{-Bx-(2a-B)y} (0sy=x)
g(x,y) = )

aBexp{-By-(2a-B)x} (0sxsy)

Consider a single storm pattern with a peak of rainfall intemnsity x_ as
shown in Fig. 1. Let x, be the rainfall intensity at a discrete time i beforf or
after the peak, measured to the left or right of the peak, respectively , and X1
be the rainfall intensity at the time(i-1) with a time interval At (see Fig. 1).
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Fig. 1 A single storm pattern with a peak

By the definition of a single storm with a peak, the rainfall intensity
decreases monotonously away from the peak; that is, x,<x, ,. By putting x=x, and

Y=X4 4 and considering X <Xy in Eq. 1, we can obtain tﬁzl following condi

1—exp{-(2a-8)xi}

(2a=g)
1—2{1-(a/B)exp{—(2u-B)xi_l}
6(x, |x;_p)= (2)
Bx, /(1+8x; ) (20=8)
The rainfall intensity Xy is transformed into a reduced variate zy as
z, = ( X - u, ) / o, (0<uz<xi) (3)
where u, = base intensity level ; and o_ = standard deviation of the exceedance
(x -uz). We can define the same probabglity density function as Eq. 1 for the
reauced bivariate(zi,z._l), and obtain the same conditional probability
distribution functidn G(z Izi—l) as Eq. 2. Considering that the variance of the
reduced variate z, equals to unity, and rewriting Eq. 2, in which x, and x are

replaced by z, and =z » with respect to z,, we have the following eauation
i i-1 i
(Hashino, (3)).

exp(—Azi)=2G-(l-k)exp(-kzi_1)+(1-G) (k=1/2,0<ksl)
(4)
2y = Gz, + (2/7/7)+6 (k=1/2)
where
k = a/B (5)

>
m

(2k-1)V3k2+1 /2k (6)
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with G denoting a given value of the conditional probability distribution function
G(zilzi-l)' The ratio kZa/B governs the autocorrelation coefficient of z, :

p = (1-k2)/(1+3k?) 7

It is clear from Eq. 7 that p=0 for k=1, p+l for k+0, and p+1/3 for k+». 1In
practice, an appropriate value of p in the range of 05p<l will be adopted, so that
the ratio k may be in the range of O<ksl. We call k the autocorrelation index.
For the purpose of stochastic formulation of design storm patterns, the conditional
probability G may be assumed to be time-invariant before and after the peak. Hence,
the values of G before and after the peak are denoted as G, and G_, respectively.
In summary if the autocorrelation index k, the conditional probability G and the
reduced variate z_ (S(x_-u_)/o_ ) of the peak intensity x_ are given, a sequence of
z; or a discrete Ryetog?apﬁ in®the time inteval At can bE calculated from Eq. 4.

It is inconvenient that the time distribution of z, calculated by Eq. 4 is
discrete. Thus, we transform Eq. 4 into an equivalent equation with respect to the
reduced rainfall intemsity z (S(x-u_)/oc_) at the continuous time t. Considering
the general solution of a first order ordimary linear differential equation: dZ/dt
= A + B*Z, we can obtain the equivalent equations for the continuous one-sided
pattern before or after the peak and the corresponding constraint conditions as
follows (Hashino, (3)).

(a) For O0<k<l, k#1/2 (0<p<l and p=3/7),

Z-8§ = (Zp-6)exp{Bt-B(At/24)}

Z = exp(-iz) ; Zp = exp(—Azp)
§ = (1-6)/{1-2G(1-k)} ; B = (1/4t)In{2G(1-k)} (8a)
A= (2k-1)V3k2+1 /(2k) ; -(1/A)1n5<z<zp (At/24<t)

0<Gs1/{2(1-k)}  (0<k<1/2) ; 0<G<l  (1/2<k<l)
(b) For k=1/2 (p=3/7),
z-§ = (zp-a)exp{B:-B(Atlza)}
6§ = 2/7 «G/{7(1-6G)} ; B = (1/At)+In G (At/24<t) (8b)
6<z<zp ; 0<G<1

(c) For k=1 (p=0),

z (t=At/24)
z = P (8¢)
~1n(1-G) (t>At/24)

-1n(1-c)<zp H 0<G<1

We call this continuous storm pattern given by Eq. 8 a conditional probability
storm pattern, and call three parameters k, G and z_ as the pattern parameters.
Figure 2 shows one-sided conditional probability storh patterns before or after the
peak for the case of G=0.5 and z_=10. It is clearly found from Fig. 2 that the
storm pattern becomes sharp with 1Rcreasing k; that is, with decreasing p. For the
case of specified values of k and z_, we can easily infer that the storm pattern
becomes sharp with decreasing G. SiBce the technical terms of the last peaked type
(LPT) and the central peaked type (CPT) patterns are often used in engineering
practice in Japan, both types of the conditional probability storms are defined.
The former is given by Eq. 8, while the latter is obtained by combining two
one-sided patterns (by Eq. 8) back to back with the same peak intensity zp and the
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same autocorrelation index k. Although the CPT patterns generally have different
values of the conditional probabilities Ga and Gb’ the special case of a
symmetrical pattern; that is, Ga=G may be easy to use.
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Fig. 2 One-sided conditional probability storm patterns before or
after the peak for the case of G=0.5 and zp=10

After all, the design storm pattern can be obtained by determining the pattern
parameters k, Ga and G, which satisfy the specified values of the peak rainfall
intensity x_, thé occurrence time of the peak, and the average rainfall intensity
within the cBncentration time of flood, etc., besides the design rainfall total y.

The examinations of goodness of fit for Freund's distribution against hourly
data of heavy storms at five observation stations: Tokushima, Anabuki, Kito in
Tokushima prefecture, Motoyama in Kochi prefecture, and Osaka, have 1led to
satisfactory results (Hashino, (3)).

JOINT RETURN PERIOD OF TOTAL RAINFALL AND PEAK INTENSITY
According to the theory of compound Poisson process (North, (4)), the

probability distribution functions of annual maxima Npax and gma of the total
rainfall y of a storm and the peak rainfall intensity x are given Ey

A

|

P[nmax

Plg

max

3 exp[—{l—F(y)}Axy] (9

A

x] exp[-{l—F(x)}Axy] (10)

where Ax = annual rate of storm occurrence; and F(x), F(y) = marginal probability
distriblition functions of x and y, respectively. Considering a single point
(storm) process with two marks of y and x, we can easily obtain the joint
probability function of two annual maxima of y and x as (Hashino, (2))

< < = - -
P[Emax £x, 0  03 y] = exp[-1{1 F(x,y)}kxy] (11)
where F(x,y) = bivariate probability distribution function of x and y. As the

bivariate probability density function f(x,y) of the two variates x and y, we
employ the original Freund's bivariate exponential density function (Freund, (1)):

ajbgexp[=by¥-(a;+b-b3)X] (0sXsY) (12)
f(X,Y) =
bjazexp{~azX-(aj+b;-a3)Y] (05YSX) (13)

X: (x - ux)mlox , Y= (y- uy)nloy (14)
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where a;, b;, ajz, by = parameters; X, Y = transformed variables of original
variables x and y, respectively, by Eq. 1l4; u_, u_ = specified base levels; m, n =
exponents; and o_, o_ = standard deviations of ¥xceedances (x-u )m and (y-u )n,
respectively. x X y

In practice, we have to employ partial duration series of x and y simulta-
neously satisfying the conditions of x>u_and y>u_. In order to obtain good fits
of Freund's bivariate probability distriBution fufiction F(X,Y) and annual maximum
distributions (Eqs. 9 and 10), we have to establish appropriate values of u_  and
u_(>0) so that the sample size of x>u_ and y>u_ may be almost equal to the flumber
of observation years. The appropriate values of exponents m and n can be searched
in trial and error so that these exponents may give good fits of Freund's marginal
probability distribution functions F(X) and F(Y) to observed data. It is clear from
Eq. 14 that F(x), F(y) and F(x,y) equal to F(X), F(Y) and F(X,Y), respectively.

The joint exceedance probability P[f _ 2x,n___2y] of the annual maximum
bivariate (g x’ngax) can be expressed iR *terms “of the joint mno-exceedance
z:obability PTgmaxgx’nmaxsy] and the marginal probabilities P[Emaxsx] and P[nmaxSy]

P[{maXZX, nmaxay] = l-P[Emaxéx] - P[nmaxéy] + P[Emaxéx, nmaXSy] (15)

The - inverses of exceedance probabilities P[§ xzx], P[nIn 2y] and P[Emaxzx,nmaxzy]
are defined as the return periods Tx’ Ty and xy’ respec%fvely; that is,

Tx = 1/P[£maxéx] = 1/{1-P[Emax5x]} (16a)
Ty = 1/P[nmaxzy] = 1/{1-P[nmax5y]} (16b)
Txy = 1/P[gmaxax, nmany] (16c)

Therefore, the joint return period T__ of the total rainfall and the peak intemsity
of a storm can be estimated by subs%Xtuting Eqs. 9 to 11, in which F(x), F(y) and
F(x,y) are replaced by F(X), F(Y) and F(X,Y), respectively, into Eqs. 15 and lé6c.
The univariate return periods T_ and T_ can also be estimated by Eqs. 9 and 16a and
Eqs. 10 and 16b, respectively. y

Figure 3 shows the good fitting of Freund's marginal distributions F(X) and
F(Y) to the empirical distributions at Tokushima on semilogarithmic paper, where y
and x show the daily total rainfall (mm) and the hourly peak intensity (mm/hr),
respectively, of a heavy storm with over 100 mm/day.
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Fig. 3 Marginal distribution functions F(X) and F(Y) of
Freund's bivariate distribution
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In this case, we have u_ = 130 mm and u_=10 mm/hr. The estimates of the other
X

parameters :m, n; aj, bl,gz and by are shown in Fig. 3.

Using these estimates of parameters in Eqs. 9 and 10, we have the theoretical
marginal distributions of maxima as shown in Fig. 4, which are in good agreement
with the observed annual maxima plotted by Gringorten's formula, especially in the
range of large return periods over about 3 years. Therefore, the suitability of
applying Freund's distribution to the total rainfall and the

peak intensity is
confirmed.
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Fig. 5 Conditional iso-probability curves and joint iso-return
period curves (Tokushima, Py =0 68)
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Figure 5 shows the conditional iso-probability curves of F(XIY) and the joint
iso-return period curves of T__, which are denoted by solid and dotted 1lines,
respectively. For reference, the’same partial duration data that is used in Fig. 3
is plotted in Fig. 5. The crosscorrelation coefficient p of x and y, (exactly,
that of X and Y) calculated by parameters a;, b), as andxgz is relatively high
(p__=0,68). Consequently, the slopes of the conditional iso-probability curves
becOme almost 45° , while the angles of the joint iso-return period curves are
almost 90° in the upper right-hand cornmers (X=Y). For comparison those curves with
the crosscorrelation coefficient p__=0.19 at the case of Osaka are shown in Fig. 6,
where the conditional iso-probabili%y curves have much smaller slopes than 45°, and
the joint iso-return period curves are almost circular. It is theoretically found
that a joint iso-return period curve on the X-Y plane has two lines at right angles
to each other in the upper right-hand corner in the case of Py =1 and has a
straight line at right angles to the straight line X=Y in the case 3£ Py =0.
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Fig. 6 Conditional iso-probability curves and joint iso-return
period curves (Osaka, pxy=0.19)

In the case of Osaka the fitting of theoretical distributions of annual maxima
(Eqs. 9 and 10) becomes unsatisfactory mainly due to the 1low crosscorrelation
coefficient of p__, even though we have obtained the good fitting of Freund's
marginal distributions F(X) and F(Y) to the empirical distributions of partial
duration data. In such a case, instead of Eqs. 9 to 1l and l6c we can use the
following equations for return periods Txy’ Tx and Ty.

- L ) . L . L.
Txy =T, Ty/{e (1,-1) (Ty 1)+1} 17)
e = exp[—{F(X)+F(Y)-F(X,Y)—l})\xy]-l (18)
1 = - - - ' = - - -
1/T, = l-exp( {1 Hx(x)}Ax], 1/1‘y l-exp[-{1 Hy(y)}Ay] (19)
where A_, A = annual rates of occurrence of univariates x and y; and H_(x), H_(y)

= univafiatd probability distribution functions of x and y, respectively, given’ by
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combined exponential distributions (Hashino, (2)). The univariate return periods
of x and y calculated by Eq. 19 are designated by T; and T', which are different
from T_ and T_ calculated from Eqs. 9 and 10. The function ¥ of x and y defined by
Eq. 18%1g rquired to satisfy the constraint condition of ¢ < 1/(T!-1), 1/(T'-1).
Thus, we have to consider T' and T' over 2 years, and select partiai duration Ydata
of x and/or y so that A ¥s near y equal to unity and Ax and X are sufficiently
larger than unity. ¥

STOCHASTIC CRITERIA FOR DETERMINATION OF DESIGN STORM PATTERN

As mentioned previously, the present design total rainfall y* is evaluated for
a specified value of the design return period T#. Therefore, we consider a
methodology for determining a design peak intexsity on the basis of three
stochastic criteria under the condition that T* and y* are given. To choose return
periods and probabilities regarding these crigeria, we may have the value F*l of
the conditional probability distribution function F(XIY), joint return perioﬁ Yrx s
univariate return periods T* and T*, and the ratio T§i SET* /T* of T; to THY
Since F; denotes a probabil&ty, not a return period, ¥’ def¥neY the cgrresponaing
return pl¥iod T;Iy to F;ly as

IIT;Iy = l_exP{-(l-F;|y)Axy} (20)

Now, we try to establish three stochastic criteria and preliminary conditions
of ranges as follows.

[1} : T; s T; (21)
2} ¢+ 0.5 s F* 0.9 2.5 < T% < 10.6 22
(2] Xy < ( %y ) (22)
1 s T* =T* /T*) £ 3 2
(3] Xlys T /T 23

The condition (1] is established in accordance with the current manual in Japan.
However, if we consider that the hourly rainfall intensities around the peak
rainfall are more important than the total rainfall, we can choose the alternative
condition: T* > T*, In the condition [2] we can set the lower bound of the
conditional p¥obabil¥ty at F%*| =1/2. Setting the upper bound at F*; = 0.9 depends
mainly on the relationship bglzeen the conditional return period T and the ratio
T;l , as shown later in Figs. 7 and 8. Substituting values 0.5 an §.9 for F*l in
Eq.y 20 where A__ is assumed to be nearly equal to unity, we have T*| = 2, and
10.6, respectivéiy. Since T* 2 T* is always valid, the lower *Bdund in the
condition [3] becomes unity. S§¥ting the upper bound at T*,; _ = 3 in the condition
[3] depends on the reason that this value 3 corresponds ne§l¥y to the value 0.9 of
F;I in the condition [2] at three sites except Osaka as shown later in Fig. 9.

In summary, using the three stochastic conditions [1], [2] and [3], we can
preliminarily narrow down to several suitable values of the design peak intensity
x* out of many values, and we further extend our consideration to determine a
design peak intensity x* out of the preliminary suitable values. Therefore, we
investigate the common region of x* given T* and y*, satisfying simultaneously the
three conditions [1], [2] and [3]. y

With respect to the relationship between the conditional return period T*; in
the condition [2] and the ratio T*I , in the condition [3]), we have the folfl&ing
approximate equation, assuming tha Xxy=l and Tx, Ty>>2 in Eqs. 9 to 11 and 15.

LTy |ys & (T/T)=(T=D)/T (24)

x|y> x|y
From Eq. 24 it is expected that Tx and T ly> show approximately one-to-one
correspondence for a given value o}yT . Fof antance, Figs. 7 and 8 show the
relationships between T | and T | _ at fokushima (p_ =0.68) and Osaka (p__=0.19),
respectively, for T*=56,y100, a§4y200. Although théfe are slight differdfices in
relation in the cise of a low value of p..=0.19 as shown in Fig. 8, the
relationship between T;|y> and T;Iy can be aggroximately represented by a curve
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independently of T*, so that T*I , and T*l can be regarded as having approximately
one-to-one correspgndence for & gpecifieé Yite with p..>0.2, independently of T* at
least in the range: 50 to 200 years. Furthermore, theyupper and lower bounds Uyand
L, respectively, of the common regions satisfying simultaneously the three
conditions [1), [2] and [3] are shown in Figs. 7 and 8. In the case of Tokushima
with Py =0.68 in Fig. 7, the upper and lower bounds U and L are governed by the
conditidts [1] and [2], respectively, while for the case of Osaka with p_ =0.19 in
Fig. 8, U and L are governed by the conditions [3] and [2], respectively.y Although
the upper bound U governed by the condition [1] varies with the value of T*, U and
L governed by the other conditions [2] and [3], of course, are independentyof T;.
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Fig. 9 Common region satisfying three conditions [1], [2] and [3] for T*=100
(0SA, KIT, MOT and TOK are abbreviations of Osaka, Kito, Motoya
and Tokushima, respectively.)

Giving the same treatment to storm data at Kito and Motoyama as at Tokushima
and Osaka, a summary of the common region governmed by the three conditions for the
case of T* is shown in Fig. 9, where the relationships between the crosscorrelation
pxy and the ratio T;[y> are plotted using F§|y as a parameter. The outlines of the
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common region satisfying the three conditions [l], [2] and [3] are designated by
the broken lines in Fig. 9, and the numerals near the bounds show the governing
condition number. As mentioned before, the bounds except the inclined straight
~ (broken) 1line governed by the condition [1] in Fig. 9 are invariant independently
of T*¥, It is clearly seen in Fig. 9 that the values of the conditional probability
F* Yfrom 0.5 to 0.7 are in the common region, and the value F*| =0.8 is out of the
reé on at Motoyama and Tokushima with high correlation coeffic¥ddes p..=0.6 to 0.7.
According to the current manual of the Ministry of Construction 2 Japan, the
selected design storms are transformed into discharge hydrographs through an
appropriate runoff model, and some design hydrographs out of the design storms are
chosen on the basis of a criterion called the cover ratio, which is defined as the
ratio in peak discharge of design hydrographs to the hydrographs transformed from
the selected design storms. Furthermore, the technical manual recommends the cover
ratio to be over 507, and shows many examples of the cover ratio from 60 to 80Z in
practical projects of Class A rivers, for which the administrative duty belongs to
the Ministry of Construction in Japan. The concept of the cover ratio is almost
the same as the concept of the conditional probability F; > and they are only
different in variables; the former is used for peak dischalﬁes of floods, and the
latter for peak rainfall intensities of storms. Taking account of this matter, we
can establish a conditional probability within TF#*; =0.6 to 0.8, especially,
F;l =0.7, which gives a reasonable design peak intens¥ ; x* given y* and T*. Since
in'“'Fig. 9 F*_ | =0.7 corresponds to T¥* S=I* /T*=1.6 to 2.1, then the join¥ return
period T* be%l%es to be 1.6 to 2.1 tfizs ™ ¥
Tab 1 shows examples of y*, x*, T* dnd T* for the case of T*=100 years and
F*| =0.7. According to Table 1, at Tokﬁghima, Kito and Motoyama the design peak
inlznsities are x*=85, 100 and 100 mm/hr, respectively, and these values are almost
the same as the historical largest values: 87, 100 and 102 mm/hr, respectively.
The univariate return periods, furthermore, are T*=76, 35 and 76. Therefore, we
can conclude that F; =0.7 gives an appropriate dgsign peak intemsity x* given T*
at sites with pxy applgximately over 0.4. y

Table 1 Design magnitudes y*, x%*, T; and T§
against T; = 100 and F§|Y =%¥.7

(o (nu:f;hr) By | B

Tokushima| 430 85 165 76
Kito 802 | 100 207 35
Motoyama{ 577 100 198 76
Osaka 202 36 170 5

On the other hand, at Osaka with p__%0.2, the design peak intensity x* is
x*=36 mm/hr, which is much smaller than th® historical largest value 65 mm/hr. The
return period T#*=5 is also much smaller than those at the other sites mentioned
above. In principle, we have to investigate in detail whether or not such a design
peak intensity x* with the much smaller value of T* than that of T* should be
adopted in practical projects, which may have close connection Yith project
purposes, the spatial magnitude of the drainage area considered, and character-
istics of runoff, etc. In the case of Osaka mentioned above, however, we can
easily infer that evaluating the magnitude of project by the return period of the
total rainfall y, not of the peak intensity x, according to the current manual
becomes an essential problem. It is seen in Fig. 6 at Osaka with p_ %0.2 that the
joint return period T __ with the historical largest total rainfall f§=210 mm, x=30
mm/hr) 1s about 200’ years equal to the T _ with the historical largest peak
intensity (y=115 mm, x=65 mm/hr), so that the’peak intensity x apparently seems to
become small with the increment of the total rainfall y. From this reason, at

[
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sites with low crosscorrelation coefficients p__<0.4 we have to consider whether
the magnitude of project should be evaluated ﬁ; the total rainfall or the peak
rainfall intensity governing the peak discharge of flood.

(mm/hr) -
80 §  y*=430 t
1
x*=85 ' :
60 1 T*y=100 H
T*x=76 5 ;
40 1 T*xy=165 :E
I
1 F§|y=0.7 : ]
20 S '
________________ J'-l -‘--!.-'
0 L]
0 8 12 18 24

(hr)
Fig. 10 A design storm pattern (Tokushima)

Figure 10 shows an example of the design storm pattern with T*=100 and
F*l =0.7 at Tokushima. The peak intensity x*=85 mm/hr is set to occur at’the hours
1370 20 from the beginning. That is, as the design storm we adopt a central
peaked type(CPT) pattern with different values of conditional probabilities G_ and
Gb‘ From fitting Freund's distribution (Eq. 1) to hourly data of heavy stormd, as
mentioned in previous section, we have obtained good estimates for the parameters:
k=a/B=0.597, u_=7.5 mm/hr and o_=15.0 mm/hr for Tokushima. Substituting values of
pattern parameters: Ga’ G, and %_ into Eq. 8 with At=1 hr, for a given value of Kk,
we can calculate hourly rainfall intensities before and after the peak. We
therefore seek the set of parameters: Ga’ Gb and z_ which minimizes the following
sum-of-squares function.

5(2,,6,,6,) = (r /y9)-11 + L xn)-11% + (G, fx, )11 25)

where x =calculated value of the peak rainfall intensity; y =calculated value of
the total rainfall, given by the sum of the calculated hourly rainfall intensities;
and x_, x_ =calculated hourly rainfall intensities at the beginning and the last
hours, respeéctively. The least squares estimates of z , G_ and G, obtained by
means of Powell's method are zp=8.4, Ga=0.306, and Gb=0.§ll for Tokushima.

CONCLUDING REMARKS

A method for evaluation of the joint occurrence probability of the peak
rainfall intensity of a single storm pattern given the total rainfall is proposed
using Freund's bivariate probability density function, and stochastic criteria for
determination of design storm patterns are demonstrated. This method takes account
of the autocorrelation coefficient of heavy hourly rainfall intensities around the
peak rainfall, as well as the crosscorrelation coefficient of the total rainfall
and peak rainfall intensity. Furthermore, we can apply this method to evaluate the
occurrence probabilities of the design storm patterns determined by means of the
enlargement method of historical storms according to the current manual, the
Ministry of Construction in Japan.
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APPENDIX - NOTATION

The following symbols are used in this paper:

ay, by, az, by

A, B

£(x,y), g(x,y)

F(*)

F(x,y)
G, G, G
a

G(x|y)
HX(X) ) Hy(y)

b

kZa/B

m, n

P[-]

P[A,B]

S(zp,Ga,Gb)

t, £, ¢t
a

At

T, T,

b

T

Xy

T', T'
x* Ty

T

xly
Tely> ey /Ty
u, u, u
x* Ty’ Tz
Xy, ¥

X, Y

parameters of Freund's bivariate probability density
function;

constants;

joint probability density functions of x and y;

Freund's marginal probability distribution function of
argument ;

joint probability distribution function of x and y;
conditional no-exceedance probabilities;

conditional probability distribution function of x given y;
univariate probability distribution functions of x and y,
respectively;

autocorrelation index;

exponents;

probability of argument;

joint probability of arguments A and B;

sum-of-squares function;

continuous times;

time intervalj;

univariate return periods of x and y, respectively;
joint return period of x and y;

return periods of x and y calculated from Eq. 19,
respectively;

conditional return period of x given y;

ratio of Tx to T ;

specified base levels;

peak rainfall intensity and total rainfall, respctively;
probability variables;

nondimensional probability variables;
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calculated values of peak rainfall intensity and total
rainfall, respectively;

calculated hourly rainfall intensities at the beginning
and the last hours, respectively;

rainfall intensities before and after the time
interval At (see Fig. 1);

peak rainfall intensity;

nondimensional (reduced) rainfall intensity at the
continuous time t3

transformed variables of z and zp in Eq. 8;
nondimensional rainfall intensities before and after the
time interval At, defined by Eq. 3 (see Fig. 1);
nondimensional peak rainfall intensity;

parameters of joint probability density function
8(xy ;s %)

= parameters of joint probability density function g(x,y);

function of G and k in Eq. 8;

function of F(X), F(Y), and F(X,Y) given by Eq. 18;
annual maximum exceedances of y and x, respectively;
function of k given by Eq. 6;

annual occurrence rates of x and y;

annual rate of storm occurrence;

autocorrelation coefficient;

crosscorrelation coefficient of x and y;

standard deviations of exceedances (x—ux)m and (y-uy)n,
respectively; and

standard deviation of exceedance (z—uz).



