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SYNOPSIS

A hybrid method comprising the Holly-Preissmann characteristics scheme for
advection and the Crank-Nicholson finite-difference scheme for diffusion is pre-
sented and analyzed. This method provides accurate solutions to the one-dimen-
sional Burger's equation. Application of the method to practical problems invol-
ving inertia-dominant flow reveals the need for additional development before the
method can be considered ready for generalized industrial use.

INTRODUCTION

Numerical simulation of inertia-dominated engineering flow problems such as
surges or bores in open channel flow, or shock propagation in a compressible
fluid, require careful treatment of the nonlinear inertia terms in the momemtum-
conservation equation. Considerable effort has been devoted to the development
of simple and accurate schemes to handle such highly nonlinear problems, and many
useful schemes have been obtained (see, for example Cunge et al (2); Roache (9);
Lohner et al (7); Hughes (4)). However, if accuracy, brevity of the algorithm,
and cost of computation are all taken into account, there is still room for im-
provement of existing methods and/or development of new alternative methods.

This paper explores use of a hybrid characteristics/finite-difference method
to solve the nonlinear advection-diffusion problem. The Holly-Preissmann char-
acteristics method (Holly and Preissmann (3)), based on a Hermite cubic interpo-
lation polynomial, has proven to be a powerful tool for simulation of linear
advection problems, and for linear advection-diffusion problems when combined
with a Crank-Nicholson finite-difference diffusion scheme (Toda (10)). The key
to this method is construction of an interpolating polynomial of higher order
between only two computational points using both the dependent variable and its
derivatives (which also become dependent variables at those points). The exten-
sion to nonlinear advection-diffusion is rather straightforward, the only diffi-
culty being determination of the location of the foot of the characteristic tra-
jectory in nonlinear advection by solving a cubic trajectory equation. The ques-
tion at hand is whether the method's success for linear problems extends to non-
linear omnes.

DESCRIPTION AND ANALYSIS OF METHOD
The model equation used herein is the one-dimensional Burger's equation:
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where u is the dependent variable (usually a velocity) and v is a diffusion coef-
ficient. The hybrid numerical method for approximate solution of Eq. 1 is based



on recognition of the left-hand side as a total derivative along a certain tra-
jectory, and on use of a finite-difference scheme for the diffusion of the right-
hand side. Equation 1 can thus be written
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where — denotes the total, or substantial, derivative. The.integration of Eq. 2

along Pﬁe trajectory Eq. 3 leads to
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where £ and n denote the foot and head of the trajectory, respectively (see Fig-
ure 1). Quantitites subscripted by n are unknowns attributed to the computation-
al point x; at the n+l time-step level. 6 is a weighting parameter for two-point
integration of the diffusion term of Burger's equation, 0 € 6 < 1],
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Fig. 1. Definition sketch for hybrid computational scheme.
The Holly-Preissmann method evaluates ug using a cubic interpolating poly-
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troduces u, as a new dependent variable, u, must also be transported. This tran-
sport equation is obtained by taking the derivative of Eq. 2:
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Again this can be rewritten, using the total derivative form,
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Integration of Eq. 8 along the trajectory of Eq. 3 yields
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If one recognizes u, =uy and Uy = Uy > uses the Crank-Nicholson diffusion

scheme for the second derivatives of u and u,, and introduces the following lin-

earization for (ux)z:
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Solution of the above system of equations requires determination of u and Uer
for each computational grid interval. The integration of Eq. 3 yields
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where ¢ is a weighting parameter for the trajectory integration, 0 < ¢ < 1.

If u_ is estimated as u, plus a purely explicit (6=0) finite-difference appro-
ximation of Eq. 11, Eq. f3 becomes:
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Equation 14, with u, given by Eq. 5, is a cubic equation in o. Determination of
the appropriate roof for a, enables computation of ue and uxg for use in Eqs. 11
and 12.

When written for N-2 interior computational points of a reach having N total
points, supplemented with two boundgsx condiﬁi?ns, Egqs. 11 and 12 form two sys—
tems of N equations in N unknowns u and u , 1 =1, 2, «¢eN to be solved at
each new time step level, ntl. As s. 11 agé 12 have three unknowns, each sys-—
tem of equations is solved implicitly using a tri-diagonal method with appro-
priate upstream and downstream boundary conditions.

DEMONSTRATION AND EVALUATION OF METHOD

The hybrid method with nonlinear trajectory evaluation described in the
previous section has been tested through application to three nonlinear cases
having exact solutions.

The first test case (N1) has the exact solution (Lohar and Jain (6)):
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with initial condition

X

u(x,1) =
1+ to—l/zexp(x2/4v)

(16)

where t, = exp (1/8 v), and boundary conditions are u(0,t) =u (,,t) = 0. The
tests were performed for v = 0.005 and 0.0005, and At = Ax = 0.01 (all comsistent
units). For boundary conditions in the restricted model domain, the analytical
value was imposed at the upstream (x = 0.0) and downstream (x = 1.2) limits.
Physically, this situation may be thought of as an idealized shock propagating
downstream subject to the above initial velocity distribution in a compressible
fluid of small viscosity. When v = 0.005, the numerical results are indistin-
guishable from the corresponding exact solutions for any 8 when ¢ = 0, as seen
in Figure 2(a). Quite similar results are obtained for ¢>0. For v = 0.0005, the
corresponding solution is quite sensitive to the two parameters O and ¢, both of
which have an effect on phase error. However, if the parameters are chosen in a
suitable, but ad %oc way, the computation simulates the corresponding exact solu-
tion quite well, as shown in Figure 2(b). It is interesting to note that if
Preissmann’s four-point finite-difference scheme (Cunge et al (2)) is applied to
this strongly nonlinear case, an unstable solution results, even for & = 1, when
v <0.0015.
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The second test case (N2) is a problem of an advancing shock front with
v = 0 (nonlinear pure-advection). The analytical solution is (Lax (5)):

1 for (x—=x )/t < 1/2
u(x,t) = { ° (17)
0 for (x-xo)/t > 1/2
with initial condition

u(x,0) = 1 for x-x°< 0

u(x,0) = 0 for x-xo> 0 (18)

This case may be thought of as an idealized discontinuous shock propagating in a
compressible "fluid. For the numerical solution, u, 1s initialized to zero at the
slope discontinuity. 1In this case, analysis of Eq. 14 reveals that At/Ax > 8/9

is required for the front to move at all; otherwise, in the grid interval con-
taining the advancing front, the unique real root o = 0 disallows any movement.
Also for At/Ax = 1, the solution for the cubic quation comprises three real
roots, @ = 0, 0.5, and 1. The corresponding exact solution is perfectly simu-
lated for a = 0.5, but the front moves at twice the correct speed for o« = 1. 1In
order to avoid these problems, a small diffusion coefficient v = 0,001 is intro-
duced; this has the effect of relaxing the troublesome constraint on &, and let-
ting the cubic equation have only one real root between 0 and 1, at the expense
of some artificial smoothing of the numerical solution.

Several numerical experiments have been conducted by changing At, 6, and ¢
for a fixed grid, Ax = 0.0l and x_= 28x, The corresponding results are rather
sensitive to the ratio At/Ax, 9, 8nd ¢, Numerical stability is strongly depen-
dent on the value of uAt/Ax (parameter analogous to the Courant number), and

6 and ¢ have more effect on phase error than in case Nl. Nontheless, by a suit-
able, but again ad hoc, choice of the two parameters, reasonable results can be
obtained. Two examples are shown in Figures 3(a) and 3(b), where it is seen that

16 T T T T T T T T T T T
14} ~
2L At=001 |
A A 2 Ax =001
,\ A} A
10 Wi 3} | ’ 3% v=0.001 -
! [
\ b “‘ HYBRID =10
o8| i \ | METHOD =00 -
u M 1 H - e e - - ——
o6 - ¥ i " LAX-WENDROFF METHOD |
20 fiy _40 ! 60 |i:
0al TIME [ii TIME il  TIME .l‘ EXACT SOLUTION
: STEPS |1 { STEPS 1.! STEPsgi .
o H i {
i T (T 7
oo . ! \ =. \\ ! \'\
-02 [] 1 1 1 1 1 1 [ | 1 f
) 10 20 30 40 50 60

COMPUTATIONAL GRID INTERVALS

Fig. 3a. Comparison of exact and numerical solutions,

nonlinear
pure-advection (case N2)



16 ! ! T T T ] T T T T T
14 . _
i b
12 " n i At=0.005 i
! i .'“: Ax=0.01
SR —A A »=0.001 _
10 “— ;\“l “’}‘ : \‘, TN
i ! HYBRID 8=10
08I 1 METHOD ¢=0.5 -
u S S
06 |- LAX-WENDROFF METHOD
TIME TIME !
o4l STEPS i STEPS |l STEPS ; EXACT SOLUTION -
! ‘ 5
o2} | | i
\ l E\
0o |- N | W
-0.2 | 1 1 | { | ! 1 1 1 1
10 20 30 40 50 60

COMPUTATIONAL GRID INTERVALS

Fig. 3b. Comparison of exact and numerical solutions, nonlinear
pure-advection (case N2)

amplitude error is well restrained in spite of some phase error being involved as
compared with a two-step Lax-Wendroff explicit method (Richtmyer and Morton s).
The application of the Preissmann four-point scheme to this case yields unstable
results for v # 0 and strong oscillations for v = 0.

The third case (N3) is another nonlinear pure-advection problem. The analy-
tical solution is (Lax (5)):

0 for x—xo<0
u(x,t) = { (x-xo)/t for 0<x-x <t (19)
for t>x—x°

with initial condition

u(x,0) =0 for =x~x <0
°
(20)
u(x,0) =1 for x—xo>0

In this case, reasonable results are obtained without introducing artificial
diffusion. Figure 4 shows the computed results for At = 8x = 0.0l and x, = O.
The Lax-Wendroff explicit method is also shown for comparison. The simulated
results show that the hybrid method gives almost the same accuracy as the Lax-—
Wendroff method, although some phase error is seen. The parameter ¢ is irrele-
vant, since the second term of the right-hand side of Eq. 14 is eliminated. It
was also determined that 6 has relatively little effect on the computed results

for this problem.



Another hybrid method for the full de St. Venant equations of unsteady open-—
channel flow was developed by treating the momentum—advection term with the com-
pact Holly-Preissmann characteristics approach, using Preissmann's finite-differ-
ence method for the remaining terms. In tests of the hybrid method for surge
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propagation, it was apparent that the method offered a slight improvement in
accuracy over a pure Preissmann-scheme approximation, for an appropriate choice
of parameters © and é. Full details are presented by Toda (10).

DISCUSSION

The hybrid method can simulate the corresponding exact solutions quite well
as long as the two parameters © and ¢ are suitably chosen. However, two concerns
have been identified for generalized practical use of this method. First, it has
been found difficult to obtain a general rule for choice of the two parameters,
as no exact analysis can be performed for the nonlinear situation and the optimum
choice differs for each of the three test cases. A second difficulty is in sel-
ecting a proper root from the trajectory equation. The value of o is obtained by
solving the cubic Eq. 14, with At set sufficiently small to ensure a { 1. In the
above three cases and the de St. Venant applications, examination of roots of Eq.
14 in each computational interval at each time step revealed that when two real
roots exist between 0 and 1, one of which is always 0 or very close to 0, adop-
tion of the finite root (i.e., the larger of the two) results in the physically
correct trajectory evaluation; selection of the near-zero root disallows any
movement of the shock front. Therefore, at least for the above three test cases,
no difficulties occurred in root selection. However, even though there is no
guarantee that only one real, non-trivial root always exists, no physical guid-
ance has been identified for choosing the proper one of multiple roots with
no a priori knowledge of the correct solution,



CONCLUSION

A hybrid method comprising the Holly-Preissmann and Crank-Nicholson schemes
can succeed in reproducing exact solutions of Burger's equation quite well with
suitable 6 and ¢ values. However, the method's potential to improve the accuracy
of inertia-dominant flow simulation over existing methods is questionable due to
the two concerns cited, namely the suitable choice of the two parameters, and the
selection of the proper root of the cubic trajectory equation. These concerns
should be resolved before extension of the method for use in practical problems.
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APPENDIX-NOTATION
The following symbols are used in this paper:

coefficients of cubic interpolating ploynomial for uj
coefficients of cubic trajectory equation;
computational point index (distance);
computational point index (time);
time;
computational time interval;
dependent variable of Burger's equation, or mean velocity;
spatial derivative of uj;
longitudinal space coordinate;
distance between two computational points in x—-direction;
(Xn-xg)/ﬁx, or root of cubic interpolating polynomial;
f characteristic trajectory;

3 ~ a3
¢ ~ €3

nowon

=
[
]

1l

nonon

head
weighting coefficient in two-point integration of diffusion
term in Burger's equation;

diffusion coefficient;

foot of characteristic trajectory;

weighting coefficient in two-point integration of trajectory.

e <
nou

APPENDIX-ROOT SELECTION FOR CUBIC TRAJECTORY EQUATION

The solution of the cubic trajectory Eq. 14 is obtained following the analy-

tical procedures described by Abramowitz and Stegan (l). Equation 14 can be
rewritten as
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Roots of Eq. 21 are obtained as follows:

If cq # 0 is assumed, let

1%, 1 %22 1,,%1,,% N 1 G2 3
q = ki (q) k) (q) y T = 3 {(?;)(3-3-) - 3((:_3)} <37 ('%') (22)

If q3 + 2> 0, there exist one real root and a pair of complex conjugate {oots;
if q° + r© = 0, all roots are real and at least two are equal; if q° + r“ ¢ 0,
all roots are real (irreducible case).

Let s = [r+(q3 + r2)1/2]l/3 and s, = [r-(q3 + r2)1/211/3, then the roots
are:
(] = (s + s ) - l (.ig.) (23)
1 1 2 3 c3
c
__1 _1 .72 j’3 _
G =g s+ -3 (E;° *o (s -8y (24)
1 _1 52, 3/3 _
03 = - 7 (Sl + 52) 3‘ ('g) ] sl 32) (25)

If q3 + r2 > 0, the unique real root is a), and if q3 + r? ¢ 0, all three roots
(al, %5 and a3) are real.

During testing of the hybrid method, it was found convenient to reduce the
order of the trajectory polynomial whenever the coefficients ¢3 and ¢y become
very small, Then the following three cases can be considered:

* If cg = c3 ® 0 (linear equation), or c3 # 0 (cubic equation) and q3 + 12>
0, there exists a unique real root.

* If ¢q =0 and c, # 0 (quadratic equation) and cz- 4¢ ¢,>0, there are two
3 2 1 o 2
real roots.

34 2¢ 0, there exist three real roots.

* If cq # 0 (cubic equation) and q
When multiple real roots exist, the root which falls between 0 and 1 (inclu-
sive) is chosen as the appropriate one. 1If there is more than one real root in
that region, the largest ome 1is chosen. The flowchart of Figure 5 shows the
algorithm for acquiring the appropriate root as described above.
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