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SYNOPSIS

A rain storm is defined to be a sequence of rainfalls that are originated
from an individual synoptic—scale meteorological disturbance, such as a typhoon,
frontal wave, etc. Our basic postulation is that the occurrence of this distur-
bance is mutually independent and random, so is the occurrence of the rain
storm. A concept of the rain cluster is introduced as the most conceivable
substitute for the rain storm. Namely, the rain cluster is identified only by
the uni-modal structure contained in the hyetograph of the daily rainfalls.
Then, the number of occurrences, and the amount of rainfalls, of the rain
cluster can be taken as the new mutually independent random variables.
Consequently, well-known probability distributions in the statistics can
strictly be applied for the new variables, because these distributions are based
on the assumption that the variables in question should be mutually independent
and random. Thus, using the rain cluster is more adequate for rigorously
solving many an application problem than directly treating the daily rainfall
data which are, in essence, not mutually independent nor random. Other related
concepts, such as a no-rain run and a cluster interval, are also introduced. A
case study concerns with the daily rainfalls observed under AMeDAS from 1975 to
1986 at Hitoyoshi, Kyushu, Japan.

INTRODUCTION

The definition of a word "independent" used in the statistics (1) is as
follows. Two events A and B are independent if

P{AaB}=P{A}eP{B} (1)

where P{A} and P{B} are probabilities of the event A and event B respectively
and P {AB } is the probability of the event "both A and B occur jointly."
Furthermore, in this study, we classify the state of independency into two sub-
states, an absolute independency and a relative independency. The absolute
independency is illustrated by such an event that, even without resorting to the
formal statistical test for independence utilizing the equation (1), one can
intuitively have the correct feeling of its independency. For example, suppose
a balanced coin is tossed.. For reasons of symmetry we can readily expect the
events "head" and "tail" to be independent even without resorting to the formal
statistical test. The equality sign of the equation (1) can, of course, be
assured precisely by the absolutely independent events, if such a test is indeed
performed.

An opposite concept to the absolute independency is the absolute depen-
dency. The absolute dependency is represented concretely by such an event that,
even without resorting to the formal statistical test for dependence, one can
intuitively have the correct feeling of its dependency. For example, suppose
that hourly rainfalls in the i-1 th day and i th day are observed. Total amount
of hourly rainfalls from 0:00 to 24:00 in the i-1 th day and that in the same
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hours in the next i th day are recorded as the daily rainfall of the i-l1 th day
and that of the ith day respectively. Suppose also that a depression, a
meteorological disturbance, stagnated over the area for these two days and have
originated these rainfalls. Then, since these rainfalls were originated from
the same common depression, they cannot be absolutely independent but be absolu-
tely dependent.

Next, the relative independency is an independency that can only be
established by the application of certain statistical test for independence,
such as the Chi-square test (2), Mann-Whitney test (3), etc., based on a certain
level of significance, where the level of significance, or@, is the maximum
probability of rejecting a true null hypothesis (4). The test, in essence, con-
sists of statistical treatments of observed sample values to see whether the
equality sign of the equation (1) is accepted or rejected at the given level of
significance. Thus the relative independency depends on the assumed numerical
value of a.

A concept of the relative dependency is an opposite concept to the relative
independency. It is defined by replacing the word "independent" by "dependent"
and vice versa in the above descriptions on the relative independency.

Now many statistical theories and application procedures are based on an
assumption that the variable in question is an independent random variable (5).
Strictly speaking, however, almost all the variables that we encounter in real
world problems are absolutely dependent. Therefore, in order to cope with this
reality, we must pursue either one of the following two options:

One is to search for or contrive a new random variable that is absolutely
independent so that the well-developed theories and procedures in the field of
the statistics can be applied strictly and conveniently. This is the line that
we want to pursue in the present study, so it shall be discussed in detail
later.

The other option is to admit the reality that the variable in question is, in
fact, the dependent variable and to develop and construct the theory and proce-
dure based on this reality. Many researches (6), (7) are made along this lines.

Etoh, et. al. propose a concept of a rain storm, thereby they develop very
acute idea by interconnecting the statistical intermittent series (sequence of
rainfall records) with an actual meteorological disturbance. According to their
definition (8), the rain storm is a meso-~scale meteorological disturbance such
as a front, instability line, etc. The life length of the meso—scale distur-
bance is 10 hours or more (9).

Now from a practical view point, collecting and processing the hourly data
are extremely laborious. Moreover, in some cases, the hourly data are even un-
available. (Especially in some underdeveloped countries.) Therefore we set the
precondition in this study that only daily rainfall data are available. Then
our definition of the rain storm should be read as follows.

A sequence of precipitations that are originated from a synoptic-scale (10)
meteorological disturbance is called a rain storm, where the constituting preci-
pitations in the rain storm are not necessarily contiguous. Short pause(s) of
precipitation(s) can be intervened between the constituting precipitations in
one rain storm, if these pauses occur in the period in which the sole synoptic-
scale disturbance prevails.

According to the definition (10) given in the meteorology, the synoptic-
scale disturbance includes such meteorological phenomena as migratory anti-—
cyclone, migratory cyclone, typhoon, frontal wave, etc. The wave length of the
disturbance in horizontal direction ranges from 1000 km to 5000 km, the vertical
height is about 10 km, and the life span varies between one day and one week.

It is noted that above definition is a conceptual one and that the stated
numerical values should not be taken as strict quantitative criteria but be
interpreted as rough illustrations of the standard size of the synoptic-scale
disturbance. This implies that some ambiguities and difficulties are encoutered
when the rain storm is identified from observed meteorological data.
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Now it is obvious that an occurrence of a rain storm is absolutely indepen—
dent and random because each synoptic-scale disturbance which originates the
rain storm occurs independently and randomly. (This is our basic postulation in
this study.) It is important to note, therefore, that because of this absolute
independency, the occurrence of rain storm can be regarded as independent and
random even without applying any formal test for its independency.

Next problem is how to extract and compile the rain storm data.
Meteorological agencies publish regularly daily synoptic charts (weather maps),
monthly weather reports, etc. These contain the information on the synoptic-—
scale disturbance, hence they are especially suited for our purpose.
(Incidentally, this is one of the reasons that we adopt the synoptic-scale
disturbance as the base of the definition of the rain storm.)

However, the work involved in the extraction and compilation is prohibiti=-
vely laborious because the work is not computer oriented but calls for human's
judging ability to solve the ambiguities and difficulties exist in the infor-
mation. Therefore, we must contrive somewhat expedient means to substitute for
the rain storm by using the daily rainfall records directly without resorting to
the various information above mentioned. Two substitutes, a rain run and rain
cluster, will be discussed in the following sections.

RAIN RUN AND NO-RAIN RUN

The first substitute that is considered is called a rain run, where a run is
the borrowed term from the field of the statistics and its definition reads(11):
"In any ordered sequence of elements of two kinds, each maximal subsequence of
elements of like kind is called a run." For example, the sequence

rroorrrrororrro (2)
opens with an r run of length 2; it is followed by runs of length 2,4,1,1,1,3,1,
respectively. A length of a run is the number of elements contained in the run.
In our case, the "element of one kind" corresponds to the rain day denoted by r
in the expression (2), and the "element of another kind" is the no-rain day
denoted by o. Thus the rain run can be a substitute of the rain storm because
each rain run is separated by each no-rain run and hence it is likely that each
run corresponds with each synoptic-scale disturbance.

Now in order to proceed the discussion further, it seems necessary to
illustrate an actual example, which will be presented in the following. We will
take up the daily rainfalls at Hitoyoshi, Kumamoto prefecture, Kyushu, Japan, as
our example. Among all the uninterruptedly observed data at Hitoyoshi Weather
Station (15) for more than 40 years, only a fraction of them, that is, from the
st January, 1975 to 31st December, 1986 is extracted for this study.(Hitoyoshi
Weather Station belongs to Kumamoto Meteorological Observatory, Japan
Meteorological Agency.) This period is selected by considering the fact that in
around 1975 a new meteorological observation network over Japan, named
"Automated Meteorological Data Acquisition System (AMeDAS)" was set up by Japan
Meteorological Agency and the observation network has greatly been strengthened
since then. (Of course, Hitoyoshi Weather Station forms a link in the network.)
Since, even for this period (1975 - 1986, 12 years), the whole daily data are so
voluminous, their complete presentation here is omitted (16), and only a part of
them, from the lst to the 30th April, 1975 is shown on Fig. 1 for illustration.
(The complete data are included in the monthly reports (12), issued by Kumamoto
Meteorological Observatory.)

) Fig. 1(a) illustrates the grouping of the daily rainfalls into rain runs as
introduced at the beginning of this section, and Fig.l(b) lists the amounts of
daily rainfalls observed at Hitoyoshi. (Fig. 1 (¢) will be explained in the
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later section.) By means of Fig.l we can easily see the one-to-one correspon-—
dences of the rain runs with their respective meteorological phenomena. Several
interesting points will be described below.

For a few days at the beginning
of April, the pressure pattern over

the southern part of the Kyushu continued rain doys f:;z"s Cluster
district being that of a winter 12345678910 ;

type (cold high pressure moved onto ror. 1 BT T o = :T

the area from the Asian Countinent 2 02 oz = i ] 22
built up the so-called west-high- 3

east-low pressure pattern), it 4 b}

snowed especially in mountaneous : ; . z;‘ 3:] 23
zones. Hence the cause of the rain 7 U7 Vs ba: 2

run {a] agp } was the winter type 8 ba be = eu] 24
pressure pattern. On the 5th, it s

rained, due to a passing of a 10| 2 ¢ s 5 25
pressure Frough over the area. On :; : di e 23

the 6th, it was fine (actually by = i3 [ Ve dz v (5 ] 2
lom), covered by a moving high 14 a3 dy= 2
pressure. On the 7th and 8th, it HOET)

rained due to a passing of a | 16 Y e =25
pressure trough. Thus we see that, N :; ezes :2° 52] a7
although we have classified the T e ] g
sequence by, by, b3, by into the < 20 es, es = 57] 28
single rain run, rigorously it o 21 26 es =

shuld be divided into two rain 22 i

storms, either {b] by} and {bj :: U fis 1] 3
by} or {by} and {by b3 by }. 25

This ambiguity illustrates the 26 9 L G = 79
nature of the rain run as being the 27 | W% [} 92 . 6. 30
second (or the third) best version 28 |1 :

for representing the rain storm. §Z f' i M= 8] 3t
According to the reports, l4th was : :
fine covered by a moving high Note: Hotched elements tolal « 336
pressure. But actually there was a indicot in o

rain (d3 = 2mm) recorded at indicote ram coys

Hitoyoshi. The monthly reports (a) (b} )
generally describe the synoptic-

scale meteorological disturbances

all over the southern part of the Fig. 1 Daily rainfalls at Hitoyoshi,
Kyushu district, while the rainfall

record d3 is a point rainfall lst - 30th, April, 1975

observed at Hitoyoshi. Therefore,

we interprete the above discrepancy

as follows: On the whole, it was fine on the l4th, but there was a local rain-
fall at Hitoyoshi due to small-scale disturbance or convection. This is one of
the examples of the difficulties to classify all the daily point rainfalls
exhaustively by referring to the descriptions of the monthly reports. According
to our definition of the raim rum, the rainfall d3 is an element of the rain run
{ d1 d9 d3 } and this may be reasonable if we interprete the d3 as a con—
sequence or aftermath of the low pressure, which is a synoptic-scale distur-
bance, passed on the 12th aand 13th.

From the 15th through 20th, a stationary front stagnated over the sea south
to Kyushu district. Moreover, several low pressures crossed (or superposed)
over the front from west to east one after another, orginated rains, ej,es, e3,
e4, e5, and eg. Especially on the 16th and 17th, the front moved up toward the
middle part of Kyushu district and was stimulated by low pressure passing over
it, and so, heavy rainfall (e; = 58mm) was recorded. Here we have another
example of difficulties. The cause of this heavy rainfall was the stationary
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front plus the low pressure, that is, a compound cause. But other rainfalls
might have been originated either by the compound cause or by the single cause
(i.e. the stationary front only). Thus subdividing the rain run { e} eo e3 e,
e5 eg } into several rain storms is difficult, and hence classifying these rain-
falls into one rain run is somewhat unreasonable in this case.

From 24th to 26th, it was fine covered by a moving high pressure, but from
the evening of the 26th to the morning of the 27th, it rained (g; = 7mm, gy =
6mm), due to a passing of a pressure trough. This is an example that the daily
rainfalls g and gy do not constitute a mutually independent random variable,
but the rain run { gy gg} does.

So far, we have focused our attention on the extraction of the rain runms.
However, we can also extract the no-rain runs as well. There are altogether 7
no-rain runs, that is, { 3rd, 4th}, {9th}, {11cth}, {15th}, {22nd},

{ 24th, 25th} and {28th} in April, 1975 as can obviously be identified on
Fig. 1 (See the footnote of Table 2 for the reason why the 30th is not included
in the no-rain rums in April).

Thus, we have seen the mutually independent and random nature of the rain
runs and no-rain rums and so we confirm that the rain run can, in fact, be a
substitute for the rain storm.

Now, therefore, we form all the rain runs and no-rain runs for whole the
period from 1975 to 1986. The result are summarized as follows. Within this
period, total number of calendar days is 4,383 days of which the number of rain
days and the number of no-rain days are 1,616 days and 2,767 days respectively.
The total number of the rain runs and the total number of no-rain runs are both
782 as shown on Table 1. On the average, the length of the rainm rum is
1,616/782 = 2.1 days and that of the no-rain run is 2,767/782 = 3.5 days. The
mean rainfall per rain runm is 35.5mm.

Although we obtained much more information on the rain run, its complete
presentation here is omitted, because the rain run is not preferable to another
substitute, a rain cluster, as will be discussed in the following section.

Table 1 Number of rain runs and no-rain rums
Jan. 1, 1975 - Dec. 31, 1986, Hitoyoshi

Length in days Number of rain runs Number of no-rain rumns
1 349 230
2 239 166
3 100 120
4 44 773 65
5 29 48
6 7 41
7 5 _| 26
8 3 7 25
9 1 12
10 2 9 12
11 0 13
12 2 4
13 1 _ 8
14 - 4
15 - 3
16 - 3
17 - 1
28 - 1
Total 782 782
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RAIN CLUSTER

In the preceding section, we defined the rain run and adopted it as a
substitute for the rain storm. We saw, in the actual example, that the maximal
length of the rain run was 13 days and there were 9 rain runs (out of total 782
rain runs) whose lengths were larger than 7 days (See Table 1). The lengths of
these 9 rain runs are somewhat larger than the standard length (from 1 day to 1
week) of the rain storm (synoptic-scale disturbance) given in the introductory
section. The reason why these larger lengths come about is found in the defini-
tion and the way of forming the rain run. Namely, as long as rain days con-
tinue, they are collected together and are formed into a single rain run without
any regard to the underlying meteorological phenomena that these rainfalls might
actually be originated from two or more different synoptic-scale disturbances.
In fact, in the preceding example we saw that the single rain run { bj by b3
bsz} should be separated into two rain storms. From the results, therefore, we
see that the length of the rain run always gives the upper bound of the con-
ceivable range of the length of the rain storm.

Now therefore the problem is to select more adequate substitute for the
rain storm. However, the difficulty for the selection of the perfect substitute
remains unchanged. Therefore, our strategy this time is that we will select
such a substitute that gives the lower bound of the length. Then, the real
length will, anyway, be in-between them.

Etoh et. al. (7) proposed an energy relaxation process of a sequence of
concentrated energy bursts (i.e. sequence of points) as a model for the rain-
fall time series. Since these bursts relax during ensuing time period, there
are as many relaxing time periods as there are energy bursts. Thus if some of
the adjacent relaxing periods overlap each other, they are merged into one state
of the process. Then, the problem here is how to count the number of energy
bursts from the observed rainfall records, because the actual records represent
only the number of merged states, not the number of energy bursts. The prac-—
tical method, however, is not clear to count this number on which the probabi-
lity of the occurrences of energy bursts stands.

Now, our second substitute, a rain cluster, is contrived and formed as
follows. We know from our experiences that whenever a rainfall occurs, the
intensity of the rainfall is relatively low at the beginning, it then goes up to
its maximum and decreases toward the end of the rainfall. We also know that
this rainfall is originated from a certain meteorological cause, e.g. a passing
of a low pressure, etc. Note that we are not concerned with hourly (nor minute-
ly) rainfalls but are interested in the daily rainfalls. Although the inten-
sities of the former oscilate so that often they form many peaks and bottoms on
an hourly hyetograph, the daily rainfall as the sum of the hourly rainfalls does
not fluctuate so often as does the hourly rainfall. Rather, within a period of
a few days over which a sole meteorological disturbance prevails, the shape of
hyetograph of daily rainfalls is usually simple, i.e. mono-peaked type or uni-
modal. Therefore it is reasonable to infer that, in most cases, a meteorologi-
cal disturbance corresponds to such a group of daily rainfalls that the shape of
the hyetegraph is uni-modal.

Now we define the rain cluster as follows. If a uni-modal structure is
formed by a portion of the rain rum, that portion forms a rain cluster, and if a
uni-modal structure is formed by the whole single rain run, that rain run forms
a rain cluster.

For example, Fig. 2(a) shows a hyetograph from llth to 15th April, 1975 at
Hitoyoshi (based on the data given in Fig. 1). The uni-modality of the
hyetograph is clearly seen on this graph. Hence, the group of the daily rain-
falls from the 12th to l4th is identified as the rain cluster according to the
definition. Incidentally, this group of rainfalls (see { dj, dz, d3} in Fig.
1) was originated from a passing of a low pressure over the sea south to Kyushu
district. Thus, even without resorting to the monthly meteorological reports,
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we have obtained, in this case, the
exact result that this rain cluster
coincides with the distinct rain
storm.

The second example concerns with cluster #26
the daily rainfalls from the 1l5th to
22nd April, 1975. (These rainfalls
were already classified as the rain
run {e), e, e3, e4, e5, eg } in Fig.
1.) The hyetograph of these rainfalls
is plotted on Fig. 2(b). It starts
with the positive slope followed by
the negative slope forming the first o2 13 4 15 doys
peak at the 17th. The slope then ()
turns up from negative to positive at
the 19th and the second peak is formed
at the 20th. After that, the slope is
negative again to the end of the cluster #27  cluster #28

dolly rainfoll in mm

hyetograph. Hence these daily rain- = t 1
falls should be separated into two ! ! !
rain clusters because the shape of the &or | ! :
hyetograph clearly represents the bi- sof ! ! |
modal structure. The boundary day E : : |
between these separated rain clusters c 99 | ) |
is the 19th where the sign of the = s ! 1 |
slope changes from negative to posi- < i : :
tive. ° 20} I } [

Generalizing these observations, > + P oost- I
we establish a separation criterion as ] '0{ cluster cluster \ |
follows: Whenever a change of the o ! | -

sign of slope of hyetograph from nega- 15 t6 17 18 19 20 21 22days
tive to positive occurs, those daily

rainfalls that constitute the (o)

hyetograph should be separated into

two distinct rain clusters. This cri-

terion, however, is not a complete Fig. 2 Identification of rain
one. For example, it fails to specify clusters, Apr. 1975,
that to which separated cluster the Hitoyoshi

boundary day itself should belong.
For the sake of completeness and uni-
quenness, therefore, we must add several supplementary rules to the criterion.

However, since all of those supplementary rules are not theoretical ones
but are merely for coanvention to obtain the unique result, the detailed explana-
tion is omitted here except that the results of their application are exhibited
on Fig. 1 (c).

Anyhow we have seen by way of the examples that the criteria above spe-
cified have worked reasonably well and that even if we do not resort to the
meteorological reports, the identification of the rain clusters is seemingly
possible.

Finally, in connection with the rain cluster, we will define the cluster
interval as follows. The time interval (or distance on the time axis) between
the centers of gravity of the adjacent rain clusters is called the cluster
interval. One of the interesting properties of the cluster interval is that it
has a theoretical (or proper) distribution, i.e. an exponential distribution.
We will take up this matter shortly.

So far we have defined and dicussed the identification of the rain
clusters, no-rain runs and cluster intervals by observing the basic requirement
that the variables should be absolutely indenpendent. Now, therefore, we are in
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a situation that we can develop proper probability distributions that represent
these variables formally. For example, since the occurrences of the rain
cluster can be compared favorably with the well-known Bernoulli trials (13),
many theories established in the field of statistics can be applied rigorously
to our variables. Thus, the exponential distribution (14) can properly be
assigned for the cluster interval, because the cluster interval (i.e. time
interval of the cluster occurrences) is comparable with the waiting time for the
success in the sequence of the Bernoulli trials and this waiting time is proved
to be exponentially distributed.

Unfortunately, however, we are not given similarly well established distri-
butions for other variables. Therefore, we select the ones for the length of
rain cluster, the length of no-rain run and the amount of cluster rainfall by a
trial-and-error method. Namely, we select them from the inventory of the
distributions available in any handbook (15) of the statistics (we call these
distributions the standard distributions) employing a numerical fitting proce-
dure, where the inventory includes such distributions as Poisson, geometric,
exponential, gamma, etc.

Note that all the standard distributions in the inventory are based on the
assumption that the variable in question should be the mutually independent ran-
dom variable. Since our variables are all mutually independent, we are equipped
with power to select any of these distributions in the inventory. More concrete
details on the selection, including such manipulations as compounding, trun-
cation of the distributions will be illustrated in the following case study.

A CASE STUDY
This case study uses the same data as were introduced in the previous sec—

tion, that is, the daily rainfall! data from Jan. 1, 1975 to Dec., 31, 1986
at Hitoyoshi. All the rain clusters in this period were identified by

Table 2 Rain clusters and no-rain runs from lst to 29th, April 1975

No-rain run Rain cluster
Start day Length Start day Length Amountisz;"l“fall Location of
Wo. Start in Nou | seare in Ist 20d 3ed 4th c:::::tgf
day # Date days day ¢ Date days day day day day Total in day No.
22 91 | Apr. 1 2 7 1 - - 8 91.1
20 93 | Apr. 3 2
23 95 | Apr. 5 2 k1 1 - - 32 95.0
24 97 | Ape. 7 2 2 61 - - 63 98.0
21 99 | Apr. 9 1
25 100 | Apc. 10O 1 5 - - - 5 100.0
22 | 101 |apr. 11 1
26 102 | Apr. 12 3 23 15 2 - 40 102.5
23 105 | Apr. 15 1
27 106 | Apr. 16 3 25 58 8 - 91 106.8
28 109 | Apr. 19 3 7 57 1 - 65 109.9
24 112 | Apr. 22 1
29 113 | Apr. 23 1 1 - - - 1 113.0
25 114 | Apr. 24 2
30 116 | Apr. 26 2 ? 6 - - 13 116.5
26 118 | apr. 28 1
31 119 | Apr. 29 1 18 - - - 18 119.0
(¢2] (9) | C10) (20) (336)

Note: 1) Day ¢ indicates serial day number stacting on lst Jan. 1975
(day #1) & ending on 3lsc Dec. 1986 (day $#4383).

2) From the 30th Apr. to the 3rd May, mo-rains. Hence the 30th Apr. is
included in the no-rain run #27 which is a no-rain run in May, and
80 it is not included in this Table.
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applying the criteria discussed in the preceding section. Since the whole
results are so voluminous, only a part of them is excerpted and 1illustrated on
Table 2, which contains the rain clusters and no-rain runs from the lst to 29th
April 1975 only.

Some of the main results for the whole 12 years are as follows. The total
number of rain clusters is 887 and the length of rain cluster ranges from 1 day
to 7 days. The mean length and standard deviation are calculated to be 1.8 days
and 0.9 day respectively. (see Table 3.) The last column in Table 3, the
fitted probability distribution, will be explained later in this section.

Table 3 Lengths of rain clusters,
Jan. 1975 - Dec. 1986, Hitoyoshi

Length of a Fitted
rain cluster Number of Observed probability
in days rain clusters frequency distribution
1 394 444 473
2 322 .363 .319
3 123 .139 .143
4 35 .040 .048
5 11 .012 .013
6 1 .001 .003
7 1 .001 .001
Total: 887 1.000 1.000

Mean length: 1.821 days
Standard deviation = 0.931 day
Fitted distribution = Truncated Poisson distribution (See Fig. 3)

Table 4 Number of rain clusters by month and by year,
Jan. 1, 1975 - Dec. 31, 1986, Hitoyoshi

JAN FEB HAR APR MAY JUN JuL AUG SEP oct Nov DEC |} TOTAL
1975 9 ? 3 10 8 [ 7 7 7 [ 4 s 8l
1976 (] 7 [ 1o 8 6 7 7 3 6 [ (] 80
1977 4 5 9 ? 7 ? S 7 8 1 6 7 73
1978 8 5 [ 8 4 [ 8 7 b 4 3 S 69
1979 6 7 8 [ b 7 7 7 7 1 6 ? 74
1980 ? 3 8 9 [ 7 8 8 3 4 4 7 74
1981 4 7 9 8 6 ] 9 6 3 7 3 3 74
1982 6 (] 8 8 6 S ] 6 6 4 ] S 71
1983 [ 4 8 9 6 7 7 b) ? [3 6 3 72
1984 6 [ 8 6 ] 9 7 4 ? 5 2 S 1
1985 7 7 9 7 6 ? 5 4 3 3 6 ? 75
1986 5 4 ? (-] 5 [ 9 8 [ 6 [ 3 3
TOTAL | 72 68 9l 94 73 18 84 16 71 55 60 65 887
%!f 6.0 5.7 1.6 7.8 6.1 6.5 7.0 6.3 5.9 4.6 5.0 5.4 6.2
cg::r 1.6 1.4 1.3 1.5 1.2 1.1 1.4 1.4 1.4 1.9 1.4 1.4 1.6
OF VAR} 0.274 0.25] 0.17] o0.19]| 0.19]| 0.17| 0.20] 0.22]| 0.23]| 0.42| 0.28] 0.27 0.27
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It should be noticed that the range of the length of rain cluster (i.e.
from 1 to 7 days) just coincides with that given in the introductory section for
the length of the synoptic-scale rain storm. This implies that our scheme of
contrivance, the rain cluster, as a substitute for the rain storm, has worked
well. We prefer, therefore, the rain cluster to the rain run and adopt the rain
cluster as the substitute for the rain storm in the following discussion.

The break-down of the number of occurrences of the rain clusters into month
and year is shown on Table 4 together with some statistics computed. It is seen
from this table that the mean number of occurrences of the rain clusters is
winimal (i.e. 4.6) in October and is maximal (i.e. 7.8) imn April. Annual
average is 6.2 clusters per month. On the other hand, the amount of rainfall
per one cluster ranges widely from lmm to 727mm. (see Table 5) Incidentally,
the reason why the amount of rainfall less than lmm is excluded is as follows.
Robotto rain gauges of the AMeDAS transmit the signals of rainfalls at every
lmm. As the result, the minimum amount of rainfall recorded is lmm and the
rainfalls whose amounts are less than lmm are not observed.

Table 5 Amount of rainfall of rain clusters
1975 - 1986, Hitoyoshi

Upper boundary Number of Observed

Cell # of each cell in mm clusters frequency

1 67 784 .88

2 133 71 .08

3 199 17 .02

4 265 10 .01

5 331 3 .00

6 397 1 .00

7 463 0 .00

8 529 0 .00

9 595 0 .00
10 661 0 .00
11 727 1 .00
Total 887 1.00

Mean rainfall per cluster = 31.268 mm
Standard deviation = 48.357 mm

Now, the variation or distribution of observed lengths and amounts of rain-
falls of the rain clusters are best visualized by creating histograms. These
are shown on Fig. 3 and Fig. 4. On these histograms, thick bars (thick spikes)
in Fig. 3 and cells in Fig. 4 represent the observed distributions. (Each
block of equal width which consitutes the histogram is called a cell.) The thin
spikes in Fig. 3 and a chained curve in Fig. 4 show the fitted probability
distribution which will be discussed soon.

The no-rain runs for the same period (1975 - 1986) are also extracted. The
results are shown on Table 6 and Table 7. It is seen that the length of no-rain
run varies from the minimum 1 day to the maximum 28 days. The mean length is
3.5 days and the mean number of occurrences of the no-rain run is 5.4 runs per
month. The histogram of the length of the no~rain runs is also created as shown
on Fig. 5.

Finally, interval lengths (i.e. distances on the time axis) between cen-
teres of gravity of the rain clusters are computed. The result is that the
total number of intervals is 886, the maximum interval length is 29.0 days, the
minimum interval length is 1.5 days and the mean interval length is 4.9 days.
The histogram of the interval length is also created (see Fig. 6). The fitted
curve appearing in Fig. 6 will be explained soon.
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ek Std.dev.=.8931 days
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> 6k V =1.3476
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®
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length (number of days)

Fig. 3 Number of rain days fitted truncated
Poisson distribution, Hitoyoshi.

1 Total counts=887
Mean=3].268 mm

.8 -i Std.dev.=48.357 mm

Parameters:

»
T

\ V (Poisson)=1.3476
\ ) (Gamma)=.B582

frequency
L}

.
a
T

i

397.0
463.0
529.0
595.0
G61.0
727.0

133.0
199.0
265.0
33i.0

Q
~
©

ratnfalls in mm

Fig. 4 Histogram of rainfalls & fitted gamma &
truncated Poisson compound, Hitoyoshi.

A few comments may be in order at this point. Recall that all the data
used in this case study are daily observation records and hence the minimum
cluster length, the minimum length of no-rain run and the minimum length of
cluster interval are all 1 day. This implies that the range of the variables
(i.e. the lengths in days) less than 1 day is completely eliminated from the
sample space. However, the range of the variable of the standard distribution
function §s either from 0 to o (or 0, 1, 2, ...) or from - » to o (or ..., -1,
0,1, ...).
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Table 6 Lengths of no-rain rums,
Jan. 1975 - Dec. 1986, Hitoyoshi

Length of a Fitted
rain cluster Number of Observed probability
in_days rain clusters frequency distribution
1 230
2 166 516 .660 .622
3 120 |
4 65 ] 113 144 .180
5 48
6 41 7
7 26 92 .118 .123
8 25 |
9 12 ] 24 .031 .036
10 12
11 13 1
12 4 25 .032 .024
13 8 |
14 4 ] 7 .009 .007
15 3
16 3
17 1 4 .005 .005
18 0o
19 0 J 0 0 .001
20 0
21 0
22 0 0 0 .001
23 0 J
24 07 o 0 .000
25 0 .
26 0 7
27 0 1 ,001 .000
28 1
782 1.000 1.000

Mean length: 3.588 days
Standard deviation = 3.149 days
Fitted distribution = Truncated Poisson distribution (See Fig. 8)

For example, the range of the variable x of the standard exponential
distribution function is from O to ©® as can be seen from the following formula,

flx)=ae™ %% X=0 (3

k]

where O 1is a parameter to be estimated from the observed data. However, if
the range of x is bounded away from x, (x4, > 0), the density (3) shall be
adjusted to conform with the new range. Thus, the truncated exponential den-
sity,

- a(x-x,l

s XZX0>0 (4)

fi [x)= ae
where,
Xo @ truncation point (x, = 1 day in this case)
should be adopted for the truncated variable. In fact this truncated exponen-—



Table 7 Number of no-rain runs by month and by year,
Jan, 1, 1975 - Dec. 31, 1986, Hitoyoshi

JAN FEB HAR APR MAY JUN JuL AUG SEP ocT Nov DEC | TOTAL

1975 9 5 5 ? ? 3 6 8 3 5 ) 3 66
1976 6 5 6 8 7 4 4 7 3 5 7 4 68
1977 4 6 8 ? 7 b] 6 7 b] 2 6 4 67
1978 8 4 6 [ ) 5 7 6 b 4 4 4 64
1979 7 7 7 3 5 4 3 4 6 2 3 7 64
1980 ? 3 7 8 ? 3 & 6 3 4 5 7 64
1981 4 6 6 7 5 4 8 6 5 6 4 3 64
1982 S 6 8 8 4 6 3 6 5 4 5 5 65
1983 4 4 7 8 5 7 3 4 & 7 5 4 64
1984 5 6 8 6 & 6 5 5 5 5 k] 5 63
1985 6 7 9 6 7 6 4 2 3 b] 7 6 68
1986 5 4 7 7 ) 4 5 (] 7 S 6 5 65

TOTAL | 70 63 84 83 67 57 62 67 56 54 62 57 782
HEAN 5.8 5.3 7.0 6.9 5.6 4.8 5.2 5.6 4.7 4.5 5.2 4.8 5.4
ISDEVII, 1.6 1.3 1.1 1.0 1.3 1.3 1.4 1.6 1.2 1.4 1.2 1.4 1.5

COEFF.

OF VAR| 0.28] 0.25] 0.16] 0.14) 0.24} 0.27] 0.27]| 0.29} 0.26] 0.32{ 0.23]| ©.29 0.28

1~ Total counts=782
s Mean=3.538 days
.8k Std.dev.=3.149 days

L Parameter:

> Bf p=.2828, q=.7174
c
§ L Thick bars: sample frequency
o
PP Thin bars: fitted probability
’2 _“’
") Ihlll“l“lnlnl. s

B 2 4 6 B8 18 12 14 16 18 20 22 24 26 28
length (number of days)

Fig. 5 Number of no-rain days in no-rain rumns & fitted
truncated geometric distribution, Hitoyoshi
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Fig. 6 Histogram of cluster intervals (c. to c.) &
fitted truncated exponential density, Hitoyoshi

tial density is applied for the interval length of the rain clusters as will be
seen later.

A similar comment is applicable for the distribution of the amount of the
rain cluster, because the observation of the amount of the rainfall below lmm is
truncated under the AMeDAS as explained already. However, in this case, the
amount of lmm rainfall is small compared with the mean amount (31.3mm, see Table
5) of the cluster rainfall, the truncation may not be so indispensable.

Now the selected distributions are exhibited in the following.
(i) For the length of rain clusters, the truncated Poisson distribution is
selected, and its distribution and mean are expressed in the forms,

_ 1 e’ y” 21 2.

Pln) s ———=5—, =04 (5)
& Y,

mn=z npln):-——-—_—v (6)
n=1 1"5

Since the value m, is given by the observed data (m, = 1.821 days), the
parameter V can be estimated by this equation (V = 1.3476 days). Consequently,
the distribution can be calculated by (5) for n = 1, 2, .... The thin spikes on
Fig. 3 shows thus calculated distribution.

(ii) For the amount of rainfalls of rain clusters, the truncated Poisson and
gamma compound density is selected, which is expressed in the forms,

oo
Ae M ot 1 gy
h{t)= —_— —_—
(f) ’;(n_1]!(lf] 1_e-V ni >0 (7)
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Mp

$ = X (8)

m

where, the value my represents the same value as defined in (6) and so, its
value has been obtained already. Since the value my is calculated from the
observed data (my = 31.268 mm), the value of parameter A is estimated using
the equation (8). (A = 0.0582). Consequently, the density can be calculated
by (7) for t > 0. (the value of v has already been obtained by (6) to be
1.3476). Since the density (7) is a continuous in t, it is plotted as a curve
(a chain line) on Fig. 4.

(iii) For the length of no-rain runs, the truncated geometric distributiom is
selected, and its distribution expressed in the forms,

plk)=pl1-p) " k=12, (9

1
[3}

Since the value my is given by the observed data (mg = 3.538 days), the
parameter p can be estimated by this equation. ( p= 0.2826) Consequently, the
distribution can be calculated by (9) for each of k = 1, 2, .... The results are
plotted by thin spikes on Fig. 5, together with the observed distribution (thick
spikes) of no-rain ruans.

(iv) For the interval length of the rain clusters, the truncated exponential
density is selected. This density has been discussed already as the density
(4). The mean my of x is obtained by

(1D

Since the value my is given by the observed data (my = 4.942 day), the
value of parameter o can be estimated from this equation (a = 0.2537).
Consequently, the density can be calculated by (4). Since it is continuous in
t, it is plotted as a curve (a chain line) on Fig. 6.

SUPPLEMENTAL COMMENTS

The first supplemental comment is as follows. In the preceding section we
set up the rule and criteria to identify the rain cluster from the daily rain-
fall records observed at one place. However, at this stage of study, we try to
see the rain cluster with a bit broadened eyes. Namely, although our discussion
has so far been based only on the point rainfall data, now we take areal rain-
fall data into our consideration.

Suppose that several rain gauges are scattered over a basin and the daily
rainfalls are observed. By using all of these scattered observations, the
correlation coefficient between the daily rainfalls of a certain day and the
subsequent day can easily be calculated 16). The value of the correlation coef-
ficient thus calculated indicates the closeness of the relation between these
two daily rainfalls. In other words, it gives us an idea how similar these two
rainfalls are. This suggests us that the correlation coefficient can be used as
a base of the extraction rule of the rain cluster instead of the sign change of
the slope of hyetograph as previously adopted. It is obvious that multiple
point observation data are more effectual than single point observation data for
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obtaining the information on the synoptic-scale disturbance.

Moreover, by utilizing these multi-point observation data and the newly
obtained rain clusters, we may estimate more reliable mean areal rainfall over
the basin which, up to present, has been estimated only by taking simple arith-
metric mean of the available data regardless how each of the observed data
shares the role to represent the true basin mean. However, this kind of study is
detoured in this paper and suggested here as one of the application fields of
the rain cluster.

The second supplemental comment is as follows. In the foregoing study we
formed the rain cluster from the daily rainfall data. But it may sometime be
needed to predict the daily rainfall inversely from the rain cluster.

In this connection, Nagao 17) proposed a method to estimate the rainfall of
shorter time interval (hourly rainfall, say) from the given data of rainfall of
longer time interval (daily rainfall, say). Although the rain cluster is a bit
different from the rainfall of this longer time interval, Nagao's method and
idea will be of reference for us.

Since the daily rainfalls within a rain cluster are not mutually indepen-
dent, we cannot directly estimate the probability distribution of the daily
rainfall by selecting and/or manipulating some of the standard distributions.
One of the ways to overcome this difficulty is to introduce the auto-correlation
coefficient of the daily rainfalls based on the reality that the daily rainfalls
are, in fact, absolutely dependent. This is the way that Nagao adopted.

But we will pursue another way in this study, i.e. we want to find such
measures of rainfalls that are derived from mutually independent random
variables. Recall Fig., 1 and Table 2 and suppose we extract a sample of rain-
falls { aj, bp, b3, ¢}, dj, ...} . Then the constituent daily rainfalls are
obviously independent because the rain clusters{aj ag}, {bj; by}, {b3bg} ,
{e1} , {d; d3 d3}, ... are mutually independent. Similarly, another sample
of rainfalls { ag, by, by, dg, ...} , say, can be extracted which constitutes
another sample of the mutually independent random variable.

We generalize the above procedures as follows. Suppose that all the n th
day (n=1,2,..., N) rainfalls in the rain clusters are extracted. Then the
extracted daily rainfalls constitute a sample of the independent random
variable. Thus we can obtain altogether N samples of the daily rainfall data
that are independent random variables.

As has been stressed, any standard distribution should not be applied for
the aggregate of daily rainfall data, but now it can be applied for each of
these samples of daily rainfalls. On Fig. 7 are shown the histograms of the
n th day rainfalls, n=1,2,3,4 of the rain clusters formed in the foregoing case
study. The shapes of the histograms remind us of highly skewed distributioms,
such as gamma, Poisson and gamma compound, etc. It is noted that, since the
number of rain clusters (i.e. number of counts) whose lengths are more than &4
days is small (see Table 3), the histograms for the 5th day, 6th day and the 7th
day rainfalls are not created in this case.

Based on these histograms, it is possible to select the most appropriate
distribution for each of the samples of the daily rainfalls above extracted.
Then, by gathering all the results, we will have a medley of the daily rainfall
distributions, the distribution of the lst day rainfall, the distribution of the
2nd day rainfall, ..., in the rain cluster. Thus if we shall predict a daily
rainfall, the prediction shall be done in two steps. In the first step we shall
predict whole rain clusters using the distribution of the rain cluster already
estimated. Then in the next step, we shall predict the daily rainfall of the
nth day in the rain cluster utilizing the nth day rainfall distribution above
suggested, for n=1,2, ..., N. By employing these two step procedure, we shall
predict more reliable daily rainfalls because we can apply more authentic proba-
bility distributions. However, we will not proceed this matter any further in
this study. Here we are only to illustrate the usefulness of the rain cluster
and to suggest some of the promisable application fields.
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Fig. 7 Histograms of n th day rainfalls in rain clusters,
n = 1,2,3,4, Hitoyoshi.

SUMMARY AND CONCLUSION

The main purpose of this study is to establish new mutually independent
random variables that can be derived from daily rainfall records. Basically,
the postulate of this study is that the occurrences of the synoptic-scale
meteorological disturbances, such as typhoon, frontal wave, etc. whose life
lengths vary from one day to one week, are random and mutually independent.
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Based on this postulate, the key idea is to let the new variable correspond to
the synoptic-scale disturbance one by one. By doing so, the new variable
established is obviously the mutually independent random variable.

A group of daily rainfalls originated by an individual synoptic-scale
meteorological disturbance is called a rain storm. In order to facilitate the
actual works involved in identifying all the rain storms from the daily rainfall
records, two substitues for the rain storm are contrived, the rain run and the
rain cluster. They were compared by means of the case study and it is concluded
that the rain cluster is preferable to the rain run. A notion of no-rain run is
also introduced. Then, by combining all the rain clusters and no-rain runs,
whole daily rainfall data are partitioned into a sequence of alternations of the
rain clusters and no-rain runs. Finally, the cluster interval is defined as the
time interval between the centers of gravity of the adjacent rain clusters.
Since the occurrence of the rain cluster is assured of its mutual independency
and randomness, the waiting time for the occurrence, or the cluster interval, is
distributed as purely exponential. This is one of the remarkable properties of
the rain cluster,

In the case study, the rain clusters and no-rain runs are identified from
the daily rainfall records from 1975 to 1986 at Hitoyoshi, Kyushu, Japan. The
characteristics of the rain cluster and no-rain run as well as the cluster
interval are analyzed statistically, and their hitograms are created. Based on
these histograms, the probability distributions of these new variables are esti-
mated. It is important to note that these distributions can be regarded as
proper or authentic because they are obtained based on the mutually independent
random variables. Owing to this authenticity of the probability distributions,
many application fields, such as estimation of mean rainfall over a basin, pre-
diction of daily rainfalls, etc., are foreseen and the results are bound to be
more reliable than before.

Finally, the author would like to express his sincere gratitude to the
officials of Hitoyoshi Weather Station, Japan Meteorological Agency, who kindly
showed and explained the activities of the station and gave him the valuable
information. Also the auther's foremost thanks go to the officials of Tsuruta
Dam Management Office, Ministry of Construction, Japan, and the staff of Sendai-
gawa Power Station, Electric Power Development Co., Japan, for their vast
cooperation.
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NOTATIONS
P{A}: probability of event A.
P{B}: probability of event B.
P {AB}: probability of the event '"both A and B occur jointly".
i : serial # of the day in the cluster.
£(x) : exponential density.
x : 1independent random variable of the exponential density
o : parameter of the exponential density.
Xo truncation point of the variable x.
fe(x) : truncated exponential density.

p(n) : truncated Poisson distribution.
n : length (in days) of a rain cluster.
vV : a parameter of the truncated Poisson distribution, and also
a parameter of the truncated Poisson and gamma compound density.

mp : mean value of n.

h(t) : compound density of truncated Poisson and gamma.
t : amount of rainfall in a rain cluster.
A : a parameter of the truncated Poisson and gamma compound density.

mg : mean value of t.

p(k) : truncated geometric probability distribution.

k : 1length (in days) of a no-rain run.

P : a parameter of the truncated geometric probability distribution.
mp : mean value of k,

my : mean value of x



