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SYNOPSIS

The salinity distribution in estuaries has generally been calculated on the
basis of a one-dimensional advection-dispersion equation, and expressed as a con-
tinuous function of longitudinal position x and time t. By means of transforming
the independent variable from x into storage volume V, we found that the salinicy
concentration C observed in tidal estuaries under constant fresh water inflow is a
function of V only. Consequently, the unsteady dispersion equation expressed in
terms of the ordinary x - t coordinate system reduces to the quasi-steady disper-
sion equation in terms of V. Using this equation, the longitudinal distribution of
dispersion coefficients is evaluated with ease from the observed C - V relationship
and fresh water discharge.

Further, the dispersion mechanism in a homogeneous oscillating flow accom-
panied with steady inflow is investigated theoretically. The dispersion coeffi-
cient in tidal estuaries is formulated, introducing the empirical correction factor
to include buoyancy effects into the theoretical result. We also found that both
the correction factor for the dispersion coefficient and non-dimensional storage
volume vx (the storage volume where the salinity concentration is equal to that of
sea water imposed on the quasi-steady transformed dispersion equation) are corre-
lated well with the overall Richadson number.

INTRODUCTION

Salinity intrusion in estuaries is controlled mainly by geometry of estuary,
tidal motion, inflow of fresh water and the density differential between fresh and
sea water. Analytical and experimental studies on the basis of one-dimensional
advection-dispersion equation have been carried out by various investigators.

Among them, Ippen and Harleman(7) have conducted large-scale flume experiments on
salinity intrusion, and introduced the analytical formulation known as the "slack-
tide" approximation. Harleman and Thatcher(5) have proposed the one-dimensional
numerical model on the basis of a set of equations of flow continuity, momentum and
salt balance. The salinity intrusion expressed in terms of the ordinary coordinate
system x - t is essentially time-varying due to periodic tidal motion.

The authors(8) have proposed a numerical method to calculate unsteady salinity
intrusion in tidal estuaries by means of transforming the independent variable from
the longitudinal position x into the storage volume V. The significant feature of
this approach is that the position for a certain value of V shifts continuously
with tide, and the variations of cross-sectional parameters for a fixed V in the
avdection-dispersion equation are much smaller than those for a fixed x within a
tidal cycle.

Another important problem is the evaluation of a dispersion coefficient. The
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dispersion coefficient for estuaries is naturally determined by a number of complex
factor,i.e. tidal oscillation, fresh water inflow, vertical motion and transverse
motion. Recently, Fischer(2), Smith(9) and others have demonstrated that the
dominant mechanisms of dispersion in stratified estuaries are not the boundary
shear and internal gravitational circulation in vertical direction, but the ones in
transverse direction. The characteristic length scale controlling the dispersion
mechanisms is channel width. Since the duration of a tidal cycle is generally
shorter than the time scale of transverse diffusion of contaminant in real
estuaries, it is also of significance to estimate the effects of oscillating flow
accompanied with fresh water inflow on the dispersion.

In this paper, the analysis using the independent variable V is re-examined
and extended, utilizing the data of salinity and tidal elevation in the Chikugo and
the Sendai Rivers. It is found that salinity concentration expressed in terms of V
is practically independent of tidal motion within a tidal cycle, provided that
fresh water inflow is constant. The dispersion coefficient is obtained from the
quasi-steady dispersion equation using the observed salinity distributions and the
fresh water inflows. Furthermore, the form of dispersion coefficient is proposed
in a semi-theoretical manner, considering the effects of tidal oscillating flow
with steady river inflow and the effects of buoyancy in stratified flow. The
simple method is proposed in order to treat the salinity intrusion in partially-
and well-mixed estuaries.

GOVERNING EQUATIONS

Salinity intrusion in a tidal estuary of partially- or well-mixed type is in
general described by one-dimensional advection-dispersion equation
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where C = the cross-sectional average of salinity concentration; U = the cross-
sectional average of velocity; A = the cross-sectional area; D = the longitudinal
dispersion coefficient. The distribution of salinity concentration in a tidal es-
tuary is customarily predicted by solving numerically Eq.l. All of the quantities
in Eq.! must be functions of longitudinal position x and time t. The authors (8)
have introduced the new coordinate system moving with tide in order to circumvent
this parametric complexity.

The definitions of variables and the coordinate system are shown in Fig.l. We
take the origin of x-axis (positive in downstream direction) at the upstream end of
an estuary, where the water level is
not affected by tidal motion. The , origin
stored water volume V from the origin Qr
to any section is defined as

o
v = [*a(x,t) d (2) A7 —
= ], alx, x 22@
Integrating the continuity equation, ) ~-—— x
U is given by A fixed value of V river
moves with tide mouth

I v
U=+ (Qp- 37) (3)

Fig.| Definition sketch of a tidal estuary

where Qp = the fresh water inflow. Transformation of the independent variable from
(x,t) to (V,t) gives the following relationships.

3y a8 . 9 ) 3
[3x]t AT ; (57) = Cor-va) 55 + 57 (4)

Eq.!| together with Eqs.3 and 4 yields

aC 3C _ 3 ¢, 3C
36 * O av = 37 A0 5y) (5
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Fig.2 An example of salinity inmtrusion
in the Chikugo River (C-2). The numbers
in bracket denote the distance from river
mouth.

The position of a certain value
of V shifts upstream and downstream 10
corresponding to the flood and ebb
tide respectively. Therefore, it may -
be expected that salinity concentration i

calculated

C and the cross-sectional parameters xdzg- o

are practically independent of time ¢, F %

and thus are functions of V only [ 4 32 E

provided that Qp is constant. - 5 %“# 3
The salinity distribution observed T Y | o -

within a tidal cycle in the Chikugo River - %“’,' ]

is plotted against x in Fig.2. The ob——tr .

observed relationships between c = C/Co (b) The Sendai River

and v = V/Vy in the Chikugo and the Sendai

Rivers are shown in Figs.3(a) and 3(b) Fig.3 Salinity concentration versus

respectively, where Cg = the salinity non-dimensional storage volume V/Vy.

concentration of sea water; v = the non-

dimensional storage volume; Vy = the

storage volume upstream of the river mouth at a high water slack. Upon comparing
Fig.2 with Fig.3, it is apparent that the variations of salinity distributions
resulting from tidal action in v -.t plane are much smaller than those in x - t
plane. This leads to the further simplification of Eq.5. The quasi-steady equa-
tion of ¢ = C/Cg, negrecting the term 3C/dt in Eq.5, is thus given by

A2D dc
QF [ —VH v (6)

The specification of functional relation for dispersion coefficient in Eq.6 is
of the most importance.

LONGITUDINAL DISPERSION COEFFICIENT IN ESTUARIES
Brief Review of Previous Investigations

A dispersion coefficient for homogeneous steady flows in cross—section with
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variable depth has been proposed by Fischer et al. (3) as
D = 0.011 ( W2u2 )/( dux ) (7

where W = the channel width; d = the mean flow depth; ux = the shear velocity.

The dispersion processes in estuaries are remarkably influenced by the
buoyancy and the tidal oscillation. Smith (9) and others have argued that there
are two effects of buoyancy on the dispersion mechanism of steady stratified shear
flows. First, the longitudinal density gradient promotes the vertical velocity
gradient and consequently increases the dispersion. Secondly, the transverse cir-
culation caused by the lateral variation of density reduces the dispersion.
Analytical investigation by Smith (9) shows that the dispersion coefficient in
stratified estuaries tends to decrease with increase of the buoyancy parameter.
However, no reliable functional relations have been developed for the effects of
density stratification.

On the other hand, the dispersion process in oscillatory flows has been inves-
tigated analytically by Holley et al. (6) and Furumoto and Shimada (4). The dis-
persion coefficient D depends strongly on the ratio of the oscillatory period (T)
to the Eulerian time scale (Tg) for cross—sectional mixing. The dispersion coeffi-
cient is proportional to the square of (T/Tg) when (T/Tg) is small. Since the
values of (T/Tg) are very small in real estuaries, fresh water inflow is expected
to have an important role on the formation of transverse concentration distribution
and consequently on the dispersion coefficient. The dispersion process of a
homogeneous oscillatory flow with steady infow in the channel with variable depth
should be examined theoretically, taking into account the periodic variation of the
turbulent mixing within a tidal cycle.

Dispersion in Oscillating Flow with Steady Inflow

Consider the dispersion in a homogeneous turbulent shear flow in a channel
with a very large channel aspect ratio (=B/H). B refers to flow width (the half
width if the cross-section is symmetrical about the centerline), and H to the rep-
resentative flow depth. Since the variation of flow depth in the lateral direction
is gradual in most estuaries, the vertical average velocity u and the discharge
q per unit width at a position y respectively, taking y-axis along transverse
direction, are assumed to be given by Manning's formula,

21 2/350102 . _1.s/3/2
u=—h?"1 ; q—;ﬁ I

where h = the flow depth at a position y; n = Manning's roughness; I = the water
surface slope. The cross—sectional average velocity U is given by

U=%I]/2ff w3 gy /ffhdy (8)

Introducing new variables N = y/B and { = h/H, the equations for u and q become
respectively

u=quc2/3 ; q=quUL;S/3 (9)

where

kq = f,,lc dn /[ £33 an (10)

kq is a proportional constant dependent on the geometry of a channel cross-section.
Denoting the vertical mean concentration of dissolved substances by C, the
equation of conservation of mass is

A€, 2C _ 2, . ac
h 5t +q % ay[ h eta y ] (1)

where x = the longitudinal coordinate; e = the transverse eddy diffusivity.
Assuming that the transverse eddy diffusivity e, is proportional to the cross-
product of shear velocity ux and flow depth h, e, is given by
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e¢ = aush = ko|U|H ¢3/2 (12)
where
ke = akqngl/zﬂ"l/6 (13)

We introduce the moving coordinate x; and the non-dimensional time § as

X = x - jtu de
° ¢ (14)
$ = ( keH/B?) L Juldt

and considering the case that the concentration gradient is constant in the
longitudinal direction, we put

B?
m ¢ ) + Const. 1s)
where ¢ shows the deviation of concentration from the cross-sectional mean. Eq.ll
becomes

U 3
* 7ot ¢ kqe®/P-0) = g (212 5 ac) (16)

Y
|
|0

The solutions of Eq.16 for U20 and for US 0 can be obtained separately. The solu-
tion for each region is required to match at the time when the sign of U changes.
The solution of Eq.16 for U20 is assumed to be the sum of the steady solution

cs and the transient solution ¢; (i = 1,2,3,--+). The steady solution cs is given
by
N - s/3
cs = L z S/ZL (kq £*/% - z)andn an
The transient solution €i satisfies the following equation
39 an an !

The solution of Eq.18 is thus given by
i = AjY;(n) exp(-0;%) (19)

where Y;(n) is the solution of the ordinary differential equation

Y .
o (@2 oy =0 (20)

0; denotes a comstant to be determined as an eigenvalue for the boundary condition,
transverse flux = 0 at N= 0, 1. The eigenfunction Yj(n) for 0; is obtained
numerically from Eq.20. The general solutions of Eq.16 for U2 0 and for USO0 are
thus given respectively as follows;

[~

¢ = 8g + ;I AjYjexp(-0;9) (v20) (21)
«©

& =-8g + ;I BjYjexp(-0;%) (uso) (22)

The coefficients ( A; and B; ) must be determined so as to satisfy the condition
that ¢ is equal at a matching point.

One can determine the coefficients, assuming the mean velocity as the sum of a
steady flow component and oscillating flow component,

U = Up + Up cOS( 2mt/T ) (23)
where T = the oscillatory period. Both Up and Up are defined as positive values in

Eq.23. It is obvious that when Up < Up the solution of Eq.16 tends to be
independent of § , because U is always positive.
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While, U may change its sign when Ut > Up. Denoting the time when the sign of
U changes from negative to positive by ty, and the time from positive to negative
by tom+}|s tom and tons) are given by

1 - -
= B 5+ g cos '@} T oy = {m+ 2 - e @upl T (25)

We define § and §_as the increments of § for the period while U is kept positive
and negative respectively. They are given by

keH 2 1
9, = _,[ I m*('qu-UTcos—) dte =9 ( ¥ + Up/2U7) (26)
26
where B2 2
- . —E ]
0 =1 /i) 7 1= B (E)) ()

We take the origin of non-dimensional time $ in Eqs.2] and 22 respect:ively at the
beginning time for U 20 and US 0. Matching the tail of an interval for UgO0 with
the head of a following interval for U2 0 and the tail for U2 0 with the head for
Us O respectively, we have for 0 << |

cg + Z ALYy = - T + Z | Bj Yj exp(-0f )
~ © (28)
- cg + Z = ¢g +i§lAi Y; exp(-Oi\?)
Since Yj(n) is determined by Eq.20, the orthogonal condition exists.

1 . .
JotiYjz dn = 0 (i # 3] (29)

Using this condition and the periodicity of ¢, after some calculations Aj and Bj
become
A; = Bj exp(-oi $.) - 2F; ; Bj = Aj expl-0; 9,) + 2F; (30)

where A 1 2
F; = [, s Yj ¢ dn / [, ¥j ¢ dn (31)

Solving Eq.30 for A; and Bj,

c aoy l—exp(-g:9_) . . | —exp(-0;9, )
Ai 2 l-epr-01(3++3 pFi 3 Bi= 2 I -expl-0; (8, +5 )] (32)

The dispersion coefficient D averaged over an oscillatory period is given by
1 f B acf
D=-7 oJ'OC(u Uhdyde / (—2 [hdy) (33)

When Up SUp , Eq.33 becomes
D= g,( B2UF )/( keH ) (34)

where 1 s/3 n 1
Bo == (xqt®/*= )& an/[ g an (35)

Eq.34 suggests that the component of an oscillatory flow has no effect on the dis-
persion process when Up SUp.
When Up > U, Eq.33 becomes
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. BUr [1-exp{-0; €C¥+UR/20p) } [ 1-expl ~0;0(¥-Up/2Up)} ]
D ke [ 2yg - 4;2“ 5,07 1-exp(-20, 0¥ IR g 1 (36)

where .
#; = 'FiIo(KqCVa-C)Yidﬂ/I;Cdﬂ 37

#; , similar to ¥, , is the quantity to be determined solely by geometry of
cross—section. Accordingly, the non-dimensional dispersion coefficient is given
as a function of non-dimensional period O and the velocity ratio Up/Up. © is the
ratio of the oscillating period T to the reference time scale (BZ/keHUT) required
for complete lateral mixing due to diffusion mechanisms.

Eq.36 yields the dispersion coefficient Dgp in the case of Up = 0 and O + as

2 2
2va(—) = Zadfm)

Dot = ko

(38)

Eqs.34 and 36 are rewritten respectively in the non-dimensional forms as

D/Dgr = (/2 )( Up/Ur ) [ UpS Up ] (39)
D/D = P2 L [ l-exp{—o e(‘y"'UF/ZUT)}][ I‘EXP{-G G(W—UF/ZUT)}] . 40)
or =¥ 4, 12’1 0;0{1-exp(-20;0¥)} g
[ Up > UF ]

The relationships between D/Dgr,

Up/Ur and the parameter © are shown Table | The factors of cross-sections

in Fig.4. They are calculated from

Eqs.39 and 40 for a triangular and

a parabolic cross-section. The values

of factor associated with both the

cross—sections are shown in Table 1. Triangle /2 1.33 .00732  .228
Here, the characteristics of Eq.40

in some limiting cases are examined. Parabola 2/3 1.17 .00341 .201
When UF = 0, ¥ reduces tol/m. We

have

<o
. 2
cross-section | d/H kg Po ;2,9i%;

41

T Ty
IR

Eq.41 is further simplified when ©-+0
into Q = 100

D
Dor * ¥ ¢° E oi#s (42)

ERerI

Eqs.41 and 42 resemble the result of

Holley et al. (6), though the turbulent

mixing coefficient is assumed to be

constant in their analysis. 10
Using ¢ =I # derived from

Eqs.31,35 and 37 and letting @+ 0 , we

have

e

D/Dgr & (m/4¥ )( UR/UT )2 (43)

Using Dot given by Eq.38 and the
mean absolute velocity U given by 10

10 10 1

Uf/UT

E'_-
Fig.4 Relationship among D/Dgy, Up/Ur and ©

J:| U+ UTcOS(z—T,'—r'-:-)ldtx: 2¥u,,

1
T
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Eq.43 is rewritten as
D/(B2U/H) = ( Bo/ke )( Up/T )2 (44)

D is proportional to (BZ/H)(Up2/U). This means that Up contributes to the forma-
tion of concentration distribution due to advection and U contributes to the
transverse mixing.

Estimation of Dispersion Coefficient for Estuaries
(a) Description of prototype estuaries

We apply the model to the Chikugo and the Sendai Rivers to establish the func-
tional form of the dispersion coefficient accounting for the buoyancy effects. The
Chikugo River is in a well-mixed condition at spring tide and a partially-mixed one
at neap tide. While, the Sendai River is a partially-mixed type. In both rivers
the field surveys on tidal currents and the water qualities have been conducted by
Chikugo River Construction Office and Sendai River Construction Office, Ministry of
Construction, respectively. These field data are used in the following analysis.

Items of the observations are summarized in Table 2, where AH = the tidal
range at river mouth; Ap = the maximum excess density observed at the river mouth;
U' = the r.m.s.current velocity within a tidal cycle. The subscript e denotes the
quantities near the river mouth. Riy, K and vx will be described later.

Table 2 Items of observation in the Chikugo and the Sendai Rivers.

River, No. Qr OH Aplo A We Ug Vg Riy K Vi WZITOiTI
Figs.9,10,

( date ) m’/s m m? n ws x10'a’ &

Chikugo,C-1 | 222.4 1.75 .0233 3020 990 .17 3.38 16.8 .027 1.05 )

(1966-9.23)

Chikugo,C-2 | 42.1 3.53 .0234 3230 970 .38 4.36 0.35 .59 .62 Y

(1967.9:1)

%hikugo C-3 | 24.2 4.78 .0257 3540 1010 .54 5.54 0.085 1.85 .SI °

1967-10.5)

Sendai, S-| 75.7 2.73 .0255 1650 570 .31 1.72 2.46 .15 .74 A

(1973.9.26)

Sendai, S-2 | 93.7 2.00 .0301 1620 620 .24 1.64 6.91 .075 .83 A

(1980. 10.29)

(b) Transformation of variables

The geometric and hydraulic quantities (A,W,U') are expressed originally in
terms of x and t. They must be transformed into functions of V in order to compute
salinity distributions on the basis of Eq.6. The procedure is as follows;

(1) Fig.5 shows an example of the time variations of the tidal elevation H ob-
served in the Chikugo River. The longitudinal variations of A and W at mean water
level are shown in Fig.6. Using the diagrams H - A and H - W together with H - t
curces, the value of the quantities of A(xi,tj), w(xi,tj), U(xi,tj) and V(xi,tj) at
the longitudinal coordinate xj and time t; are obtained.

(2) Vp is defined as ¥y = m AV (m ="0, 1, 2,...). AV is the volume element.

(3) The location x(Vp,t;) corresponding to a fixed value of Vp at each time t;
is interpolated from V(xi,t-} A calculated example on the trajectory of Vy within
a tidal cycle is shown in Fig.7. A(Vp,tj;), W(Vp,t;) and U(Vy,tj) are obtained in a
similar manner.

(4) In order to take into account the sea region connected with the river, we
assume that the river channel is extended seaward after Ippen and Harleman (7).

The hypothetical channel has the area A and the width W, holding the tendency of
exponential expansion of the actual one in the river region.

(5) The flow area A and the flow width W in Eq.6 are considered to be the
average value A(Vy) and W(Vy),which are obtained by averaging A(Vp,tj) and W(Vm,tj)
over a tidal cycle respectively. The calculated relation between the quantities
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Fig.5 Tidal elevations within a tidal
cycle in the Chikugo River (C-1). (Data
from Ref.],X=distance from river mouth)

Fig.7 Trajectories of fixed values
of V within a tidal cycle (C-3).
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Fig.6 Longitudinal variations of flow 10 @@ 1°
area A and width W at mean water level

in the Chikugo River. 10 1

vV (a)

C The Sendat River 3 v’

(A,W) and V in the Chikugo and Sendai
Rivers are shown in Fig.8(a) and 8(b)
respectively. It may be seen that A and
W are a function of V and almost
independent of the fresh water discharge
as well as tidal conditionm.

The r.m.s.velocity U'(Vy) obtained from
U'(Vm,tj) are also shown in the figures.

(¢} Estimation of dispersion coefficient

The normalized dispersion coefficient

( D/Dgy ) for oscillating flows with the 10 (b) 10’ v e
steady flow depends upon the non-

dimensional period ©( = T/(B2/kcHUp) ) Fig.8 The relationship between flow
and the velocity ratio ( Up/Ur ) as area A, width W, r.m.s.current velocity

indicated by Eq.40. U and storage volume V.
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We estimate the values of O at the
location near the upstream end of salinity
intrusion in the Chikugo and the Sendai
Rivers. Assuming the cross-section of
the streams to be parabolic and using the
values shown in Table 3, the calculated
results are O = 0.046 for the Chikugo
River and © = 0.060 for the Sendai River
respectively. Fig.4 indicates that the
influence of © on D/DgT in Eq.40 may be
considerably small, so that Eq.44 may be
applicable for both rivers if the streams
are assumed to be neutrally buoyant.

We attempt to estimate longitudinal
distributions of the dispersion coef-
ficients in both rivers from Eq.6, and
to introduce the buoyancy effects into
Eq.44. The relationships between A and
V and between the observed salinity c and
v = V/Vy are presented in Fig.8 and Fig.3
respectively. The mean curves of the
¢ - v relationship are also shown with the
broken lines in Fig.3. Using the ¢ - v
curves observed under the given values of
QF and Vg together with the use of the
A - V relationships, we obtain the values
of D at the position of v for ¢ = 0.015,
0.0s5, o0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
and 0.8 from Eq.6. The values of A, W,
U' (5Up/Y2), Up (=Qp/A) and d (=A/W) at
those positions of v are also obtained
from Fig.8.

D/(W2U'/d) and (Up/U') in Eq.44 are
calculated by using the above values and
U = 0.9U' , and are plotted in Fig.9.

It is apparent that D/(W2U'/d) is propor-
tional to (UF/U’)Z, and that individual
lines corresponding to each observation
shift in parallel. D is thus of the form,
wlud?

o (45)

D =K

The values of K are shown in Table 2. The
variation of K for each observation is not
caused solely by the cross-sectional
geometry, but significantly by the buoyancy
effects due to tidal stratified flow.

The similar form of the parameter
representing the effects of buoyancy in
estuaries have been proposed by Ippen and
Harleman (7), Fischer (2), Harleman and
Thatcher (5) and others. We introduce the
overall Richardson number Ri, for estuaries
expressed in terms of the storage volume V

T(ap/plgd
- w_e._ 46)
(Vg-vp) U2

where T = the tidal period; Vg and Vp = the
storage volume V at the river mouth in high

Table 3 The values used
to estimate O

3 W
River H(= id) B(=?) v,

T

m m m/s

Chikugo | 3.75 150 0.7
Sendai 3.75 100 0.4

a (=e¢/duy) = 0.15
n (Manning's roughness)=0.02
T = 12.5x3600 s

kq= 1.17
Bo= 0.00341
10-1: T T T T
D _F ]
wiuy'
d
B 1
10 2

T lllllll

0\0\0
[
N%'O

el

Io e g1l 1.t yepa

-2 -1
Upyr !

10 10
Fig.9 The relation between
D/(W2U'/d) and Up/U'

Fig.10 K-dependence on Riv
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and low water slack respectively. The proportional coefficient K in Eq.45 cor-
related with Riy as shown in Fig.10. K decreases with the increase of Riy.
K is thus given by

K = 0.28 Ri,~3/4 [ 0.08 < Riy < 17 ] (47)

The relationship between K and Riy in the channel with variable depth coin-
cides qualitatively with one given by Smith (9), which was stated previously.
We obtain the dispersion coefficient of the form,

2. 2 2., 2
WU .—3/4_W7U
D =K —-d—TJ—F; = 0.28 Rlv / —d_U_I‘: (48)

BOUNDARY CONDITION AND ANALYSIS OF SALINITY CONCENTRATION

Substituting Eq.48 into Eq.6, the steady dispersion equation to predict
salinity distribution in tidal estuaries is given by

d v AU’
~ R_Kgg(wT]c (49)

The determination of the boundary condition has still remained as a very dif-
ficult problem. The salinity distribution near the ocean entrance is very complex
and can not be properly described by Eq.49. Because the flow field changes drasti-
cally from the river to the ocean.

We thus impose conveniently the boundary condition as

c=1 at v =vx =Vg/Vy (50)

vx denotes the non-dimensional storage volume v to be determined as the intrusion
position of the sea water. vx for each observations was obtained as follows; The
initial point of (c,v) to begin the computation of Eq.49 was chosen at the point,
where ¢ is about 0.3 on the broken line in Fig.3. Therein, the computation was
proceeded in the upstream and downstream flow direction. vx was determined as the
v-value corresponding to the intersection between the straight line of ¢ = | and
the computed curve which is shown with solid line in Fig.3. The results are shown
in Table 2. wvx correlates reasonably well with Ri, as shown in Fig.ll, and
increases with the increase of Ri,.

We can discuss the salinity )
concentration in terms of v, based on o /
the quasi-steady equation (Eq.6) with o //f

the use of K and vx.
A diagram of the c-v relationship

can be converted back into that of the 08— 5//A

¢ - x relationship (the longitudinal — //////

salinity distribution in the physical 0.6 |- o

plane within a tidal cycle), using the e////

trajectories of V on x - t plane as B //I| Lol L oo

shown in Fig.7. One example of calcu- 0.4 -1

lated results is presented in Fig.2. Riy

This figure shows good agreement with

the observed salinity distribution.

Fig.ll vy -dependence on Riy

CONCLUSIONS

) Salinity intrusion in tidal estuaries is investigated theoretically and ex-
perimentally by using the model based on storage volune V. The data obtained under
the constant fresh water inflow from the Chikugo and the Sendai Rivers, which are

typical examples of well- and partially-mixed estuaries, is used to verify the
model.
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The results obtained in this study are as follows;

(1) The variations of salinity concentration C in terms of independent vari-
able V are comparably very small within a tidal cycle, and therefore can be
regarded as a function of V only. Consequently, the one-dimensional dispersion
equation in x - t plane reduces to the quasi-steady dispersion equation (Eq.6)
expressed in terms of V.

(2) The longitudinal distribution of the dispersion coefficient in an estuary
is obtained with ease, based on the quasi-steady transformed dispersion equation
with aid of the observed C - V relationship and fresh water inflow.

(3) The dispersion process in a homogeneous oscillating flow with steady in-
flow in the channel with variable depth has been investigated theoretically. The
dispersion coefficient reduces to Eq.44 under the condition that the ratio of the
tidal period to the time scale of transverse diffusion is sufficiently small. The
functional form of the dispersion coefficient agrees well with the one estimated
from longitudinal salinity distributions, and the coefficient K in Eq.45 depends
upon the overall Richardson number (Riy,). The value of K decreases with increase
of Ri,, (Fig.10). It implies that the transverse circulation is the dominant
mechanism for the dispersion in the channel with variable depth.

(4) vx, which is introduced to impose the boundary condition on governing
equation, means the non-dimensional storage volume v corresponding to the intrusion
position of ocean salinity. We found experimentally that vx correlated well with
Riy, and that vx increased with the increase of Riy (Fig.ll). The dispersion
process can be analized properly, based on the quasi-steady dispersion equation
with the use of the dispersion coefficient D and the boundary condition vx.

(5) A diagram of the c - v relationship can be converted back into that of the
physical plane, using the trajectories of V on x - t plane (Fig.7).

Detailed field studies in many estuaries should be required for the further
elaboration of the model.
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Dr.J.Akiyama for earnest technical helps, and to acknowledge the staffs of Chikugo
River Construction Office and Sendai River Construction Office, Ministry of
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APPENDIX - NOTATION

symbols are used in this paper:

cross—sectional flow area;

constant ,Eq. 12;

flow width;

salinity concentration and that of sea water;
non-dimensional salinity concentration as defined by Cc/Cos
non-dimensional concentration associated with the deviation from
cross-sectional mean as defined by Eq.15;

steady solution of Eq.16 and transient solution of Eq.18;
longitudinal dispersion coefficient;

longitudinal dispersion coefficient in the case of Up=0 and € *>0
mean flow depth;

transverse eddy diffusivity;

parameter as defined by Eq.31;

acceleration of gravity;

representative flow depth or tidal elevation;

tidal range at river mouth;

flow depth at a position y;

surface slope;

coefficient defined by D=K(W2Up2/dU'),Eq45;

parameters given by Eqs.10 and 13;

Manning's roughness coefficient;

fresh water discharge;

discharge per unit width at a position y;

modified estuarine Richardson number, Eq.46;

time;

oscillatory period;

Eulerian time scale for cross-sectional mixing;
cross—sectional mean velocity;

fresh water velocity;

ampritude of oscillating flow velocity;

r.m.s.current velocity;

mean absolute velocity over an oscillating cycle;

vertical mean velocity at a position y;

friction velocity;

storage volume as defined by LfA(x,t)dx;

storage volume V at the river mouth in high and low water slack;
V corresponding to c = 13

non-dimensional storage volume as defined by V/Vy and Vi /Vy;
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volume element by which the estuary is divided;

mAV (m = 1,2,... );

flow width;

coordinates in longitudinal and transverse direction;
coordinate moving with cross—-sectional mean velocity;
eigenfunction for Eq.18;

y/B;

h/H;

eigenvalue for Eq.18;

non—-dimensional time as defined by (keH/BZ)Lfluldt;
increments of % for the teriod of U 2 0 and U £ 0;
non-dimensional oscillatory period as defined by Eq.27;
density and density differential between fresh and sea water;
parameters as defined by Eqs.35 and 37; and

parameter as defined by Eq.27.




