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SYNOPSIS

A vertically integrated thermal-hydraulic model is developed based on the
finite element Lax-Wendroff method to study the heat transport phenomenon in the
transition region. 1In addition to the advection-diffusion heat transport, the
effects of thermal-hydraulic interaction and surface heat exchange are included in
the model. The numerical results show a fair degree of agreement with those
obtained from a physical model. The temperature in the transition region varies
roughly between 50% and 15% of the maximum temperature rise at the effluent
discharge point. This region appears to lie between radii of 0.4 km and 0.8 km
under the assumed operating conditions. The reasons for using lumped mass
formulation in dynamic problems are investigated both from the mathematical and
physical point of view. The method is efficient and reduces computer core
storage. It also permits the use of larger elements as compared to the method of
consistent mass representation.

INTRODUCTION

Hydraulic laboratories all over the world have been increasingly involved in
combined physical and mathematical modeling of thermal-hydraulic problems.
Physical model studies are valuable tools for demonstrating the characteristies of
a phenomenon and for deriving solutions to problems that do not lend themselves to
analytical computation. Computational analysis is commended for efficient
solutions of two-dimensional problems. Numerical models are limited in space
towards the lower end of the scale whereas physical models are limited towards the
upper end. Therefore numerical models are usually more suitable for simulation of
large-scale thermal-hydraulic processes in the transition or far field, whereas
physical models are more suitable for investigation of local phenomena of
relatively small scale. It is often found that a combination of methods benefits
for each other and may result in more efficient approach to the required
solutions. The present paper presents a combined model study of the heat
transport of a thermal discharge in the transition region,

FLOW REGIME IDENTIFICATION

When a heated jet discharges into an unstratified receiving water, the
initial stage of vertical mixing is transient and may not be considered in
long~-term prediction. It is followed by further cooling in the form of horizontal
diffusion and dispersion as well as heat loss to the atmosphere. The horizontal
mixing processes last relatively longer. It requires some distance before the
waste heat can be distributed across the flow in the form of a belt. The
temperature distribution downstream from the point of a thermal discharge is
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primarily determined by the hydrodynamic characteristics of the stream and the
meteorological conditions prevailing at the site. The heat transport phenomenon
of a thermal discharge in nature is extremely complicated and is affected by
numerous factors. From an analytical stand point, the phenomenon could be viewed
macroscopically as taking place in three regions, viz., the near field, the
transition region and the far field. Figures 1 and 2 depict the general
development of a thermal discharge in these three regions. The prediction of
temperature and flow distribution in these three regions requires an understanding
of the various mechanisms in the heat transport processes individually and
collectively.
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DYNAMICS OF TRANSITION REGION

Qutside the near field and covering a much wider area is the transition
region. This transition region must be employed to allow the heated effluent to
approach hydrostatic equilibrium and to allow the longitudinal velocity to
approach the velocity in the far field. Beyond the transition region, the far
field model can then assume a velocity independent of the discharge in the near
field and decouple the momentum and the energy equations. The concept of heat
conservation in the transition region can be used as a rough approximation to the
true physical situation and can provide the basic linkage for the near and far
fields (7). 1In practice, this region is of great importance because the excess
temperature is still significant and a large area is affected. Unfortunately, it
has received little attention and no firm theories have yet been advanced for this
transition region to integrate the near and far field analysis. A complete
picture of the temperature distribution in the near and far fields necessitates
the implementation of a transition model and entails the development of a theory
for this transition region (8].

There is no clear-cut physical boundary between different zones. The
boundary between the near field and the transition zone is defined as where the
discharge has reached the point when its jet-like behaviour ceases and the action
of turbulent entrainment has completed. To this end, the three-dimensional
temperature and flow fields could be reduced to two-dimensional approximation as
the vertical mixing is complete and the flow and heat transport are essentially
horizontal. The jet velocity is also reduced to a velocity comparable with that
in the transition region. In this region, the effluent is still spreading
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laterally and longitudinally due to thermal-hydraulic interaction and initial
momentum respectively. Further out, as the temperature and the velocity profiles
become uniform laterally, density-induced spreading diminishes. This marks the
outer boundary between the transition region and the far field. The extent of
each region depends on the thermal-hydraulics of the discharge, the outlet design,
the bottom topography, the ambient conditions and other factors. From the
momentum considerations, Adams showed that the radius of the transition region
varies from 0.4 km to 0.8 km [1].

NUMERICAL MODEL FORMULATION
Governing Equations
The governing equations for the thermal-hydraulic model consist of the
vertically integrated shallow water equations and the advection-diffusion
equation. They are given below [6, 10]:
The momentum equations
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The continuity equation

13 9UH 9VH
+ — =0 (3)
at X oy

—_

The advection~-diffusion equation
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Initial/Boundary Conditions

In order to solve the above governing equations, the following initial/
boundary conditons need to be specified.

U=0
V=20
£ =0
AT= 0 at boundary C, (Figure U4)
No flux of matter is allowed at the water-land boundary, i.e.,
(U,V)'n=0 at C, (Figure 4)

The steady velocity and temperature at the discharge point are specified as
follows:
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U= U
V = V¥
AT=AT*

When there is no heat transfer across the solid boundary, the heat flux normal to
the boundary is:

oAT
— =0 atC,
an

For cold start, the initial conditions are:

and AT= 0
Finite Element Discretization

The finite element method plays a key role in transforming the governing
equations into a numerical procedure. It assumes that the flow and temperature
fields can be analysed by dividing them spatially into small domains which can be
represented as follows:

U = [ N]e {ule (5)
v = [ N]e {v]e (6)
g = [n]e{g]e (7
AT = [ N ]& {aT}® (8)

In order to select an interpolation function [ N ]e, it is necessary to
consider its relationship with the discretization procedure for the time function.
In tidal flow computation, the modified two-step Lax-Wendroff scheme has been
successfully applied to a triangular element with three nodes by using a linear
polynomial function in space [3, 4]. For the heat transport computation, the same
linear polynomial function is employed for the temperature field, such that:

Nf =aj + bix +eyy 9
i=1,2,3
The coefficients aj, bj and ¢j are determined by the coordinates of the node of
the triangular element. In the present model, it is also assumed that the same

interpolation function is used to approximate the time rate change of variables,
i.e.,

ausat = [ N ]© a{u}®sat (10)
avsat = [ N ]® a{v]esat (1)
agsat = [ N )€ afe}®sat (12)

and 3AT/at= [ N € a{aT}®/8t (13)



The Galerkin integral for equation (1), (2), (3) or (4) is given as follows:
£y SNl ®w®, ot to®e®, 00%n®)-rle = o (1)
where L = differential operator
FS- the sum of all terms not containing U, V, £ or AT
and i =1, 2, 3, 4......M

Integrating by parts yields,
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e e
/{1/3j§1 up? - (1/3J§1VJ)2/H9

e =
1/6 2
Kb = g/(]-ln /)
e
P = Pu” B/3 J.21L\1.‘j
i =1, 2, 3
and J =1, 2, 3

Note that indicial summation is implied in the above equations.

The above discretization procedure introduces a change in the nature of the
problem as the domain with infinite degrees of freedom is approximated by a
discrete domain with finite degrees of freedom. Equations (15), (16), (17) and
(18) apply only at each node after the domain is discretized whereas equations
(1), (2), (3) and (4) hold everywhere within the domain. The accuracy of the
solution for the discretized domain depends on the scheme used to transform
equations (1), (2), (3) and (4) into the discrete form given by equations (15),
(16), (17) and (18) respectively. In addition, the choice of mass matrix mﬁj is
also critical in dynamic analysis if reliable and accurate results are to be
obtained [2].

Lumped Masses versus Consistent Masses

Because the same interpolation function is used for the time rate of change
of variables, the matrix mﬁj expressed by equation (19) is a consistent mass
matrix. This matrix is usually a full matrix. The resulting assemblage mass

E e
matrixez1mij is also a non-diagonal matrix. Suppose an arbitrary element
E
e§1mi§ (i#j) is a non-zero element in the left hand side of equation (15).

This element consists of 3Uj/dt and 3Uj/3t during the process of assemblage.
This means that the ith equation in the assemblage equation (15) includes terms
an/Bt coming from the jth node. There is contradiction in the ith equation
resulting from the corresponding ith node. This is because equation (15) requires
that the resultant external force at the ith node must be taken as the sum of all
the external forces at that node. This resultant external force should not be
affected by the external forces at any other nodes. The same analysis applies to
equations (16), (17) and (18).

To resolve the above dilemma, an alternative is to employ lumped mass matrix
which assumes that all the mass tributary to a particular node is concentrated at
the node. The lumped mass matrix for a triangular element is [2]:

* e A/3 for i = j
m S = (
J 0 for i « j (20)
The above lumped mass matrix is independent of the interpolation function being
E ¥ e
used and is diagonal. The resulting assemblage mass matrixez1mij is also

diagonal . In this case, the ith equation derived at the ith node will not be

E *¥ ¢
affected by the jth node as the elemente§1mij (i « j) now assumes zero value.
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The result by using lumped mass representation is indeed consistent with that of
equation (15, (16), (17) or (18). However, the requirement of continuity in 3U/3t
within the element is abandoned. This is physically justified as the inertia
force of an element in dynamic analysis is the sum of the inertia forces of the
lumped masses at the nodes regardless of the force distribution within the
element. The lumped masses will not cause inertia forces to act on any other
lumped masses except at its own node.

Based on the above analysis, it can be seen that the lumped mass
representation should be used in dynamic problems in order to obtain reliable
results. The advantages of using lumped mass formulation are that it simplifies
the computation and reduces computer core storage. In comparison with the
consistent mass representation, the lumped mass does not depend on the
interpolation function and element nodal locations. Hence, larger elements can be
employed.

Finite Difference Time Discretization

The time integration scheme adopted in the present model is the modified
two-step Lax-Wendroff scheme which is an extension of the well known Runge-Kutta
method. This integration scheme is first introduced by Kawahara in the study of
tsunami wave propagation. It requires that the total time be segmented into equal
time interval At, i.e.,

T = nAt forn=0,1, 2, 3, «e..., T/AL

e e e e T

Let W { Uy Uy U3 }

e e e T
1' V2' V3 ]

"

{v

T

e e e

e

e e T
or = { AT, ATy, AT3 }

be the unknowns at the element nodes. Denoting their values at the nth time step
as wﬁ, the explicit integration scheme advances the solution from time level n

to time level n+1 in two steps. The first step advances the solution to an
intermediate level n+!/, as follows:

Step 1: At (n, n+!'/,), the forward difference yields
E¥*¥e e E-e e E

e
1 -
eglmij Wn+l/, = e§1mij W+ JL,at/2 Gy (21)

Step 2: At (n, n+1), the central difference gives

E¥*e e E-e e E e
eE1™ij Mner T By Mn t Byt Cnuay, (22)
where G® = the sum of all terms excluding the time derivatives
- e * e e
mij-amij+( 1-a )mi‘j (23)

and O s a s 1 is the artificial damping coefficient. The stability criterion for

this explicit time integration scheme can be determined according to the following
equation (3, 4):
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At < ((2-a)/(3/2)} (as//gHg} (24)

In the present model, the time step At and a are taken as 4.5 seconds and 0.85
respectively.

Element Mesh Configuration

The element mesh configuration is determined by the model objectives as well
as the required accuracy in the numerical simulation and the measurement of
various parameters. The present model area is shown in Figure 3. It covers an
area of 6.25 km? over which a total of 233 triangular elements are used. The
corresponding mesh system is shown in Figure 4. The length of the element is kept
small to reduce the numerical dispersion effect. The smallest elements whose
sides are 85m are densely packed near the outlet as the velocity and temperature
gradients are steep there. Large elements are placed where the gradients become
small.
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MODEL PARAMETERS AND SENSITIVITY TEST

The numerical model requires an estimate of the values of the overall thermal
diffusivity, the surface heat exchange coefficient and the Manning roughness
coefficient for the particular situation of concern. Unlike the molecular
diffusivity, the overall thermal diffusivity is not a physical parameter of the
fluid. It is a complicated function of the stream turbulence, width to depth
ratio, bottom topography and, to a large extent, depends on the enviromment [5, 6,
9). Like the momentum diffusivity, it cannot be determined by means of purely
mathematical treatment. Taylor suggested to express it in terms of the
statistical properties of turbulence. While our understanding of the detail
mechanism is as incomplete as it is at present, the overall thermal diffusivity is
one of the model parameters that have to be inferred from observations of related
bulk stream variables. Great difficulties have arisen in interpreting the
published values of coefficients of diffusivity as there are several ways of
formulating the coefficients from the measured data. Despite the existence of
many different formulation, the concept as such continues to be useful and



33

practical in solving the transport problems. A survey of the literatures reveals
that there is huge scatter of data regarding the coefficients of diffusivity
ranging from 5 x 1072 to 4 x 10* m®/s [5, 91. Rich [5] indicated that the
diffusivity is greatly influenced by the natural environment. The data collected
by Rich [5] and Pearson [9] provide useful information to estimate the diffusivity
for a particular environment. As an initial estimate, the data suggested a mean
diffusivity of 1 m?/s for a horizontal surface water environment [5]. Considering
the fact that the lateral diffusivity is of the same order of magnitude as the
longtudinal counterpart in the transition region, the following values are
considered to be adequate for the numerical model:

Ky = 40 m?/s
Ky = 20 m2/s

The Peclet number then assumes the following values based on the mean discharge
velocity and mean water depth in the prototype.

Pey = 0.61
Pey = 1.23

This indicates that both the advective transport and diffusive transport are
dominant in the transition region and that the actual phenomenon is reasonably
simulated. The surface heat exchange coefficient and Manning roughness
coefficient are taken to be 0.15 kKW/m2°C and 0.03 respectively in the numerical
model.

The influence of the above parameters in affecting the behavior of the
thermal plume may be assessed by systematic variation of each parameter.
Initially the model is run with Ky ranging in magnitude from O to 500 m2?/s while
the rest are kept constant. The same test is repeated for Ky. The results
indicate that the temperature rise in the transition region ¥s sensitive to
variation in the thermal diffusivity. The test on the surface heat exchange
coefficient shows that the temperature distributions near the outer boundary are
affected moderately by this parameter. Variation in this parameter is less
influential in the transition region.

After several test runs, it is found that the Manning roughness coefficient
is not a critical parameter in affecting the solution stability. This is because
the solution stability for the present explicit integration scheme is governed by
equation (24).

PHYSICAL MODEL

To demonstrate the prediction ability of the numerical model, a physical
model is designed and constructed to simulate the thermal plume. The physical
model is a replica of the prototype shown in Figure 3. The physical model has the
following scales:

Lx=Ly
= 250
L, = 50

The model distortion ration is 5. The use of a distorted model is justified
provided that the flow and heat transport are two-dimensional in the model region
of interest. Screens are introduced near the discharge to enhance the vertical
mixing actions to completion before entering the model region. Water is used as
the flow medium and the mean water depth is maintained at 0.14 m. The background
water temperature is found to increase slightly after each test run. As an
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average, this temperature is taken to be 18°C. The model Reynolds number is
6.9 x 10*. Turbulent flow is therefore reproduced in the model.
The model similitude is based on the densimetric Froude number, such that:

( Frp p = € Frp )p 27)
This leads to,

( Fr )y = CFr )p (28)
and Vdp 7 o)y = Wap / pa)p (29)

The subscripts m and p denote the model and prototype respectively.

Table 1 summarizes the assumed operating conditions for the prototype. The
operating conditions for the physical model are determined by equations (25),
(26), (28) and (29). They are also given in Table 1.

Table |. Susmiry of ratiag Conditions {or the Protot sud Physics) Mudel

Paramciers Prototype Phyzical Model
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MODEL PERFORMANCE

The time history of computed temperature rise at various salient points is
shown in Figure 5. The locations of these salient points are marked in Figure 4.
The results show that the initial transient is damped out very quickly and a
steady state is reached after approximately 0.5 hour. Figure 6 shows that the
temperature in the transition region varies roughly between 50% and 15% of the
maximum temperature rise at the discharge point. The transition region lies
approximately between the radii of 0.4 km and 0.8 km for the assumed operating
conditions. The computed temperature distributions are also compared in Figure 6
with those measured from the physical model. The discrepancy between the computed
results and the measurements is less than 18%. Quantitative comparison between
computed fluid velocities and measurements is not possible because of the
difficulty in measuring low velocities in the physical model.
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CONCLUSIONS

For the assumed operating conditions, the transition region is found to lie
between radii of 0.4 km and 0.8 km measuring from the point of discharge. The
temperature in this region varies roughly between 50% and 15% of the maximum
temperature rise at the discharge point.

The numerical results illustrate that the vertically integrated heat
transport model yields a fair degree of agreement with that of the physical model
to justify its basic assumption of a vertically mixed layer.

A parametric analysis can be carried out easily using the numerical model.
The studies show that the influence of the thermal diffusivity is much greater
than that of the surface heat exchange coefficient in affecting the temperature
distributions in the transition region. The Manning roughness coefficient does
not appear to be a critical parameter in affecting the solution stability.

The study shows that lumped mass formulation yields reliable and accurate
results in dynamic problems. The method is efficient and reduces computer core
storage. It also permits the use of large elements as compared to that of the
consistent mass representation.
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APPENDIX-NOTATION

The following symbols are used in this paper:
Cp = specific heat of water;
= total number of elements;

= coriolis parameter;

Fr = Froude number;
=Vo/ (g H )Yz,

Fro = densimetri¢ Froude number;
=Vo/ (g Hap / pw)??;

g = gravitational acceleration;

= water depth below mean sea level;

= elevation of water surface level;

=h+E;

H = mean water depth;

Hg = mean water depth of an element;
Kp = friction factor;

Kxs Ky = overall thermal diffusivity;
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differential operator;

= physical model scales along the x, y and z axis;

total number of nodes;

time level;

unit normal vector;

Peclet number;

VoH/Ky, Vol /Kys

discharge volume flow rate;
Reynolds number;

Voﬁ/v

time coordinate;

total time of integration;

background water temperature;

vertically averaged velocity component along the x-axis;
vertically averaged velocity component along the y-axis;

mean discharge velocity at the point of discharge;
Manning roughness coefficient;

water surface elevation above mean sea level;
kinematic viscosity of water;

element domain;

water density;

water density at background water temperature;
average water density for an element;

area of a triangular element;

length of one side of a triangular element;
integration time interval;

vertically averaged temperture rise;

maximum temperature rise;

difference in water density;

P~ Poi

surface water heat exchange coefficient;
artificial damping coefficient; and

volumetric expansion coefficient for water.



