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SYNOPSIS

The quantile and sextile methods are developed as new parameter estimation techniques for the
gamma-type distributions. The applicability of the proposed methods is examined by choosing the Pearson
type 3 (P3) and log Pearson type 3 (LP3) distributions as representatives of gamma-type distributions.
Extensive Monte Carlo experiments are conducted to evaluate the performance of six fitting procedures for
different sample sizes and different combinations of population statistics.

Of hydrologic concern is the accuracy with which the fitted distributions give rise to good estimates of
various quantiles (e. g., T-year design magnitudes). It follows from the root mean square error (rmse) criterion
of quantile estimates that for less variable P3 distributions, there is little difference between performances of
five fitting methods examined herein. The sextile method as well as the quantile methods coupling with
moment and maximum likelihood estimators dominate the widely used method of moments, when the
observations are highly variable and skewed. In the application to the LP3 distribution, the method of
quantiles combined with the method using the first two moments in real space yields the most accurate
estimates of high extreme quantiles with probability levels larger than 0.99 for highly variable and skewed
data sequences.

INTRODUCTION

Frequency analysis of hydrologic variables has a long history in the phases associated with hydrology
for water resources planning, design and management. Although numerous probability density functions have
been used to describe sequences of hydrologic variables, no “a priori” knowledge exists to support the
assumption that the specific distribution is indeed the underlying distribution. Classical statistical tests of
goodness of fit are not powerful enough to discriminate among reasonable choice of distributions. Generally,
the adoption of distributions would be determined from their computational simplicity.

In most cases, frequency distributions of hydrologic data are positively skewed. To meet such practical
requirements, a versatile family of garnma-type disitributions has been widely used to describe the frequency
of observed hydrologic data. The gamma-type distributions are classified into two-parameter gamma (P2),
Pearson type 3 (P3), log Pearson type 3 (LP3), and generalized gamma (Stacy and Mihram, 1965; Prentice, 1974;
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Hoshi and Yamaoka, 1980) distributions. For example, Benson (1968) and the U. S. Water Resources Council
(1977) recommended the use of a log Pearson type 3 distribution as a base technique in flood frequency
methods. For methods of fitting gamma-type distributions, much is known about the methods of moments and
maximum likelihood. Matalas and Wallis (1973), Bobée (1973), Bobée and Robitaille (1975), Bobée and
Robitaille (1977), and Buckett and Oliver (1977) have examined the statistical precision and properties of the
two methods of fitting the P3 distribution to observed or generated data. A parameter estimating technique for
the LP3 distribution adopted by the U. S. Water Resources Council (WRC) is the method of moments by which
a P3 distribution is fitted to the logarithmically transformed data sequences. As an alternative method to the
U. S. WRC technique, Bobée (1975) and Hoshi and Burges (1981) developed a parameter estimation schéme of
the LP3 distribution which could preserve the first three moments in real space. Condie (1977) applied the
maximum likelihood estimator (MLE) of the LP3 distribution to the data in the Canadian rivers. Nozdryn-
Plotnicki and Watt (1979) examined the performance of the three different fitting techniques for the LP3
distribution, i. e., the method of maximum likelihood, two methods of moments in real and log spaces. The
comparison of additional LP3 estimation procedures was also made by Rao (1980) and Phien and Hira (1983)
who used the method of mixed moments in real and log spaces.

In the past years considerable arguments existed concerning the relative merits of uses of regional skew
maps in the log domain, advocated by the WRC (Landwehr et al., 1978; Wallis and Wood, 1985). Common to
the discussions raised by the above studies is the limited properties of a LP3 distribution that if the skew
coefficient of the logarithms of data is negative, the scale parameter of this distribution must be negative and
therefore the distribution has an upper bound. It is well known that a large portion of flood data exhibits
negative skews in log space. Thus the probability of the LP3 having an upper bound becomes quite large,
when using the WRC procedures on such data.

Recently, Stedinger (1980) and Hoshi et al. (1984) used Monte Carlo techniques to investigate sampling
properties of lower and upper quantile estimates using several fitting methods for a three-parameter log
normal (LN3) distribution. The results show that Stedinger’s quantile-lower bound methods perform better for
highly skewed LN3 distributions. Jenkinson (1969) developed the method of sextiles for a generalized extreme
value distribution which has the three parameters. The main features of this method are such that the sextile
means have smaller sampling errors than individual sample observations and that the effect of outliers is
significantly removed.

To date no attempts have been made to apply the quantile and sextile methcds to parameter estimations
of gamma-type distributions. The present study is intended to develop these two methods to be capable of
fitting the Pearson type 3 (P3) and log Pearson type 3 (LP3) distributions. Monte Carlo simulations are carried
out to assess the performances of the quantile and sextile methods by comparing with presently available
procedures.

PEARSON TYPE 3 DISTRIBUTION AND PARAMETER ESTIMATION

The density function of the Pearson type 3 (P3) distribution used in this study is
F»=0y—-c)/al*" exp[—(y — )/ al/(aT (B)] ]

where g, b and ¢ are scale, shape and location parameters, respectively. The parameters a and b are positive, and
I'(b) denotes the gamma function. The cumulative distribution function of P3 is defined by

p=F» = raadw @
where

w=(y—¢c)/a 3

fw) = exp(— wIw*'/T(b) {4)

p is a non-exceedance probability of a P3-distributed variate y, and F(y) is the cumulative distribution function.
Equation 4 is the standard gamma ‘distribution and w is a standard gamma quantile dependent on a

probability level and parameter b. Several procedures employed for estimating the distribution parameters are
discussed below.
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Method of Moments
The mean u,, variance o2, and coefficient of skewness 7, of a random variable y with a P3 distribution are
given by
uy=ab+c ; dgi=a'b ; 1r,=2/bV? {5)

Moment estimates of a, b and ¢ for the P3 distribution can be obtained by replacing the population statistics
I, 0} and 7, by the sample mean, unbiased variance and an estimate of the skew coefficient. Let y,, y3,----- 7%
be a sample of N independently distributed random variables from a P3 distribution. The unbiased sample
variance is computed as

o= [N/(N - 1)1s} (6)
where
N N
st= ‘le(;v‘ -9PYN ; 3= ‘?] »/N (n
The sample coefficient of skewness is computed as

So= £ (3= VIV ®

Two methods of moments are considered. The first procedure makes use of 7, 8%, and the corrected estimate %,
of the sample skew S,, given by

ta=+INW-1)] Se/WN-2) (9)

It is well known that, in general, 7, is not an unbiased estimate. Use of 7, 8} and ¥, yields moment estimators
of parameters a, b and ¢ as

a=0,/6" ; b= (2/%)*;: e=3-06,6" a0
The second moment method makes use of y, 8, and #,, given by

fu =Sy (A + BSL) (1)
where

A=1+651/N+202/N* ; B=148/N+6.71/N* 12

The bias correction formula for small samples drawn from the P3 distribution, eq. 11, was proposed by Bobée
and Robitaille (1975). A slight modification of the above method is to replace #, in eq. 10 by #,.. The resulting
estimators are

4a=06,/6" ; b= (2/%0; é=3— 6,6 )

Method of Quantiles

Iwai (1949) and Stedinger (1980) proposed the quantile method to estimate the lower bound or location
parameter for a three-parameter log normal (LN3) distribution in which the largest and smallest observations
with the sample median were employed. Considerably less is known for parameter estimation techniques of
gamma-type distributions via the quantile method. We introduce here the quantile-lower bound estimation
procedures using a simple extension of a Wilson-Hilferty transformation.

The standard gamma quantile w in eq. 3 is approximated using a Wilson-Hilferty transformation as

w=>b{1- (1/9b) + (t/36VH)] 14

where w is distributed as standard gamma distribution with shape parameter b, and ¢ is a standard normal
variate corresponding to a probability level. Hence, a P3-distributed variate y is expressed from egs. 3 and 14
as

y=c+abll— (1/9b) + (t/3b)] 09
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Using the median, and the p and (1 — p) quantiles, the following three equations are obtained:
ym=c+abll- (17907

»w=c+abll- (1/98 + (,/3b"H] e
y,=c+ab[l—- (1/96) — t/3bVD]
with t. = 0 and ¢,-, = — ¢, from the properties of the standard normal distribution. From a set of the above
three equations, we have
2 (}'— — c)l/l = (y‘_' —_ C)l/3 + (y’ —_ C)I/3 (]‘n

Note that the quantile estimate of ¢ does not depend on ¢, and other two parameters a and b. Solving eq. 17 for
¢, the quantile-lower bound estimator &, is calculated simply as

oz G =3B/ /G - 3E/D' ~1(G; = 3E/D G —E/8) @
- 2(G:—3E/2)
where
{Gn =YVt VB tRHIe 5 GCr=Yut N T I 19
Gy=YaN-s¥ : 3E=8VYu—=Y-s—%

As was done by Stedinger (1980) for the LN3 distribution, the best choices of ya, ¥, and y;-, would be the
median, largest, and smallest values of observations, respectively. Two constraints are imposed on two roots
of eq. 18. The first condition is such that if & is the estimate of the location parameter for the P3 distribution,
then &, should be less than or equal to the smallest observation yu;

¢o < yu @0

The second condition is such that when & is obtained from eq. 18, & has to satisfy the original cubic equation
of eq. 17:

2 (=)' = (31-p — 8" + (y, — EQ'? @n

The quantile estimate & of ¢ may be combined with either the maximum likelihood estimates (MLE) or
the moment estimates of a and b for given c. Both combinations are considered in this paper. When & is
obtained from eq. 18, the other two parameters a and b can be estimated by solving the two likelihood
equations as follows:

b=E (-t VIE (3-t™ -N/E (3= 2]

. @
ab= ‘_Z‘ (3 —&)/N

Similarly, moment estimates of a and b combined with the quantile estimate of & are given from eq. 5, using
the sample moments, y and 6, as

a=06/(3-0) : b= (5-e)Ve @

Method of Sextiles

The method of sextiles was developed by Jenkinson (1969) for the generalized extreme value distribu-
tion which has location, scale and shape parameters. The basic idea of this method is as follows: the range of
variates is divided into six intervals in such a manner that the cumulative probability in each interval is one
sixth. Jenkinson’s sextile method can easily be extended to the P3 distribution for estimating the distribution
parameters a, b and ¢. The derivation and procedure are detailed below.

From the cumulative distribution function of the P3 distribution defined in eq. 2, the bounding values
of w;-; and w; in the jth interval are determined from

i/6="FGw) = [% #1exp(= Ddt/T®) =706, w) /T ®) 09



or
1/6=FGw) - Fw.-) = 7 #eap(~ 0dt/T ) )
where .
w=ctaw (j=1,2,8, - . 5) i

7(b, wy)) /T(b) denotes the incomplete gamma ratio. The standard gamma quantile w, corresponding to probabil-
ity j/6 (j=1,2, 3, ----- , 5) is calculated from eq. 24 for a given value of b. Let v; be the mean value of variate
in the sth interval for a standard gamma distribution defined in eq. 4, which is given by

u= L2 wwaw)/(f7 swdw)

w,

=6 {7 rex(- nar - [ rexp(~ 0at )/ T®)

=6[r(6+1,w) —7v0b+1,w-)1/TO®) (i=1,2,3, < , 6) @n
The six means v,, vy, ***+** , Us called by Jenkinson the sextile means, characterize the parent distribution. From
the statistical property of any distribution, the mean of sextile means has to be the mean of the assumed
distribution. This can be achieved by

w=%uv/6 @

Substituting eq. 27 into eq. 28 yields
1=6[TWG+1)/T®)6=0"b @9

It is clear that eq. 29 verifies the theoretical mean of the standard gamma distribution. The variance ¢} of
sextile means can be expressed as

L1
d= 7% (- uY6 ol
Jenkinson also defined the £ ratio as follows:
= (v — 1)/ (vs — vs) @)
Note that the values of g, and £ are a function of shape parameter b only. Thus if b is specified and v{j =1, 2,
3, e , 6) can be computed from eq. 27, then g, and £ ratio are consequently determined. The relationships

between o, and b as well as £ and b are tabulated by Leeyavanija (1983).

Now we restrict our attention to sextile estimates of a, b and ¢ for the P3 distribution. The y, contained
in eq. 26 defines the bounding value in the jth interval for the P3 distribution. Let 5, be the mean value of the
P3 distributed variate in the jth interval. When making use of a linear relationship between P3 and standard
gamma distributed variates, the sextile means 7, are expressed by corresponding values of v, as

m=c+ay (G=1,2,36) @
Hence, the mean g, and variance o} of sextile means 7, are given from eq. 32 by
Me=c+ap.=c+ab ; di=aol 6y

where
”'=,3‘:. m/6 a$=‘§'2, y — )Y/ 6 G

From the relation of eq. 32, the £ ratio in eq. 31 is obtained from
2= m—nm)/ (s —nd= (2 — )/ (vs — vs) 83

As mentioned earlier, the £ ratio depends on shape parameter b only and hence an estimate of 2 from the
observations is used to determine the corresponding shape parameter b. In the next step, &, can be obtained
from known b. Finally, the estimates of 2, and &, can be computed using eq. 34. The sextile estimates of 4 and
¢ are given from eq. 33 as follows:
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As a summary of how to estimate the parameters a, b and ¢ for the P3 distribution by the sextile method,
the following computational schemes are taken: )

(1) Arrange the observations in ascending order and divide the ordered observations into six groups of equal
size. If the sample size is N and M is an integer part of N/6, there should be M sample members in some
groups and (M + 1) in others; it is advisable to assign the larger items in the lower and upper tails of the
distribution to reduce the sampling variabilities of data.

(2) Compute the sextile mean in each group of samples, 7, (7 = 1, 2, 3, +++++* , 6).

{3) Compute the mean g,, variance 8% and ratio 2 of sextile means 7, using egs. 34 and 35.

(4) Compute the shape parameter 6 from 2 and then 9, from the corresponding estimate b, using eqs. 30 and
31. Of practical concern is how to determine the shape parameter b from the £ ratio in eq. 31 as well as g,
from b in eq. 30. For computational convenience, the polynomial interpolating curves are fitted to the
tabular results to yield an estimate of b from the £ ratio (Leeyavanija, 1983). Similarly we use polynomial
fitting functions to estimate o, as a function of b.

(5) Compute the scale parameter @ and location parameter ¢, using eq. 36.

Five fitting techniques of the Pearson type 3 (P3) distribution tested in this study are summarized below:
Method 1 ; the method of moments with the biased skew, using eq. 10
Method 2 ; the method of moments with the unbiased skew, using eq. 13
Method 3 ; the quantile method with the maximum likelihood estimates, using egs. 18 and 22
Method 4 ; the quantile method with the moment estimates, using egs. 18 and 23
Method 5 ; the method of sextiles, using eqs. 35 and 36

LOG PEARSON TYPE 3 DISTRIBUTION AND PARAMETER ESTIMATION

The density function of a log Pearson type 3 (LP3) distribution is defined by
f@) = ((nx—c)/al" expl—(Unx —c)/a)/[1a| (B)x] on

By definition, the logarithmically transformed variate y (=£n x) is distributed as P3 whose density function is
given by eq. 1 for a > 0. The shape of the LP3 distribution is characterized as follows:

If a > 0, then y has a positive skewness and ¢ £y < + o0 and exp(c) < x < + o,

If a < 0, then y has a negative skewness and — o < y < c and 0 < x < exp(c).

The first three moments of y = £n x are given by eq. 5 in which 7, should be replaced by 22 /( | a | ). The
cumulative distribution function of a LP3-distributed variate x is defined in standard form as

S:f(w)dw a>0
‘p=F@x) = . &
l—sof(w)dw a< 0

where
= (fnx—c)/a (k)]

F(x) is the cumulative distribution function of a LP3-distributed variate x, and f(w) in eq. 38 is the standard
gamma distribution defined by eq. 4.
The population moments of the LP3 distribution are given by

vo=exp(rc)(l—-ra)* 1-ra>0 40
(r=1,92, 3 )

where v, is the rth moment about the origin.
The sign of scale parameter a for the LP3 distribution is classified into two cases:

if 7 <C% + 3C., thena <0 and 0 < x < exp(c) “n
if7: >CL + 3Ca.thena >0 and exp(c) <x < + oo 7]

where C.: and 7. are the coefficients of variation and skewness for the LP3 distribution, respectively.
The conditions of eqs. 41 and 42 are of practical use to check whether or not the fitted distribtions have upper
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Method of Moments

There are two ways to estimate the parameters of a log Pearson type 3 (LP3) distribution using
moments; the first method fits a Pearson type 3 (P3) distribution to logarithmically transformed data (U. S.
WRC, 1977), the second fits a LP3 distribution to untransformed data (Bobée, 1975; Hoshi and Burges, 1981).
When using log-space moments for parameter estimation of LP3, we follow the same procedures as in eq. 13
for the P3 distribution in which all sample statistics are computed in log space (y =£n x). Following the
procedure developed by Bobée (1975), the parameter estimation technique using real-space moments is briefly
described. The sample moments about the origin are computed from

bo=ZFx/N  @=1,2.3) @

From eqgs. 40 and 43 the estimate of scale parameter 4 of the LP3 distribution is expressed as

gn [(1-a)/(1-3a)] _
Q= ar/d=m] =~ P “
where
_ on by — anﬁn
b= n 0y — 2000y @

Once @ has been determined from eq. 44, the other two parameters can easily be computed from eqs. 40 and 43
as

{6 =eﬂ(0d/0§l /én [(1—0)7(1—20)] “

é=0noy+ 6tn(1—-a)

To solve eq. 44 for 4, several approximate functions are proposed by Bobée (1975) and Kite (1977). We have
also attempted to fit polynomial functions to the results of the theoretical relationship between parameter a
and D ratio for computational convenience (Leeyavanija, 1983).

Method of Quantiles

Previously the quantile-lower bound method was presented to fit the P3 distribution to hydrologic data.
Such a method can readily be extended to estimate the parameters of the LP3 distribution. There are two cases
where the LP3 distribution has a lower bound or an upper bound, depending on the constraints imposed by eq.
42 or eq. 41. For both cases, the estimate of location parameter ¢ can be computed by eq. 18; the quantities of
Y= ¥, and y, -, contained in eq. 19 should be replaced by y. = ¢n xa, ¥, = €nx, and y, -, = €n x, -,, respectively.
For the LP3 distribution having a lower bound (i. e., eq. 42), two conditions to be satisfied are given by eqs. 20
and 21 in which y, should be replaced by yn = £n x with x, being the smallest observation. Similarly for the
LP3 distribution having an upper bound (i. e, eq. 41), two constraints are imposed on the roots of eq. 18 as
follows:

{L‘q 2y =Enxm @

2@ =y = Qo= - + (G0 — )/

where xu is the largest observation; yo = #n xu, y1-, = €nx,_,, and y, = €nx,.

For both cases where the LP3 distribution has either lower bound or upper bound, the maximum
likelihood estimates of a and ¢ coupling with the quantile estimate &, are given by eq. 22 in which y, should be
re'placed by yi=fnx; (i =1, 2, 3, -oceeeer , N). The quantile estimate of & is also combined with the moment
estimators of a and b, using the sample moment estimates y and 6% in log space: eq. 23 can be used for both cases
where the scale parametre 4 becomes either positive or negative.

When the estimate & of location parameter c is obtained from the quantile method, it is possible to
estimate the parameters a and b, using the first two moments in the real domain. For known &, an estimate of
a can be expressed by the sample moments about the origin of eq. 43 as



m(1-8) _ noi—¢
2n (1-28) On 0a — 24

=D| (48)

Again to facilitate practical computations, we use polynomial interpolating functions to estimate a as a
function of D,, based on tabular results between the scale parameter a and D, ratio. When a has been estimated,
the shape parameter b is easily estimated using eq. 40 as

b= —(noq — E)/en(1 - a) 9

where 9,, is the sample mean of the untransformed data.
Method of Sextiles

An attempt is made to extend the methodology of the sextile method developed for the P3 distribution
to parameter estimation of the LP3 distribution. If the variate x is distributed as LP3, then y = ¢nx is
distributed as P3 whose relationship is given by eq. 39, ie:

y =fnx=c+aw (50}

When the sample skew of logarithmically transformed data is positive (i.e., 2 >0), the parameter estimating
procedures for LP3 are exactly the same as those for P3; log-space statistics 2., 8, and 2 result from using
ordered sequences of ¥y = €n xy (i=1, 2, 3, -~ , N) where x, is the ith smallest observation. The shape
parameter b is estimated from an estimate £ via polynomial equations, while the estimates of a and ¢ result
from eq. 36.

A slight modification is needed to accommodate parameter estimation of the LP3 distribution for which
the sample skewness in log space is negative (i.e., @ < 0). From eqgs. 38 and 50, the P3 quantiley, (7 =1, 2, 3, ---
-+, 5) corresponding to a non-exceedance probability level j/6 is related to the standard gamma quantile wy
dependent on a probability level of (1—j/6) for a < 0. Thus for a < 0, eq. 26 should be replaced by the
following relationship:

yy=c+awsy (]=1,2' """ ’5) 60
Accordingly, eq. 32 reduces to
m=c+av; (j=1,2,3, == , 6) 2

where 7; and v, are the sextile mean of P3 and standard gamma distributed variates y and w in the jth interval,
respectively.
The substitution of eq. 52 into eq. 31 yields

2= (s — 1)/ (= m) = (v2 — )/ (vs — vs) 63

It is of interest to compare eq. 53 with eq. 35 in that the £ statistic for the P3 having a negative skew is the
reciprocal of the £ ratio for the positively skewed case. What is required to obtain the sextile estimators of
parameters a and c is identical with the procedure given by eq. 36; if the skewness coefficient of transformed
data is negative, then the negative sign should be assigned to 4.

As for the Pearson type 3 (P3) distribution, Monte Carlo experiments are conducted to evaluate the
performance of fitting methods for the log Pearson type 3 (LP3) distribution. The following are the parameter
estimation techniques examined for the LP3 distribution:

Method 1 ; the method of moments in log space (LS), using eq. 13

Method 2 ; the method of moments in real space (RS), using egs. 44 and 46

Method 3 ; the quantile method with the maximum likelihood estimates (MLE), using eqs. 18 and 22
Method 4 ; the quantile method with the moment estimates in log space (LS), using egs. 18 and 23
Method § ; the quantile method with the moment estimates in real space (RS), using eqs. 18, 48 and 49
Method 6 ; the method of sextiles, using eqs. 35 and 36 (or egs. 53 and 36)

PERFORMANCE COMPARISON

To evaluate the performance of the quantile and sextile methods as new fitting procedures for the
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Pearson type 3 (P3) and log Pearson type 3 (LP3) distributions, a comparison is made between the proposed and
currently available methods, using Monte Carlo techniques. Performance criterion used herein is the root mean
square error (rmse) of the estimate of quantile corresponding to each of six probability levels. This criterion
certainly allows for an objective comparison of the methods and can aid in identification of the best fitting
method to use in a particular application. The root mean square error (rmse) of quantile estimate 2, ( §, for P3
and %, for LP3) is defined by

[rmse(8) ] = E[(z, — 2,)4
= EZ; - E(zp)]z + Var(z,) 64

where Var(,) is the variance of quantile estimates ; Var{g,) = E{(2, — E(,))%} and 2, is the true quantile of the
parent distribution corresponding to a probability level p.
In order to eliminate the effect of scale on Monte Carlo results, the ratio rmse(3,)/z, is used to allow for the
comparison of the relative errors which are made in estimating z,.

The Monte Carlo experiments evaluate the performance of quantile estimates of the 100p percentile 2,
(3, for P3 or x, for LP3) for p = 0.01, 0.10, 0.50, 0.90, 0.99 and 0.998. These correspond to the 1.01, 1.11, 2, 10,
100, and 500 year events, respectively. Study of the results corresponding to p = 0.01, 0.10 and 0.5 allows
investigation of the relative performance of the methods in a drought frequency context. Results with p =
0.90, 0.99 and 0.998 provide a comparison of how well the methods might perform in fiood frequency
investigations.

Pearson Type 3 Distribution

The first Monte Carlo experiments are to fit the Pearson type 3 (P3) distribution to observations drawn
from a two-parameter gamma (P2) distribution (i.e, ¢ = 0 and 7, = 2C,). Two-parameter gamma distributed
deviates with sample size N = 20, 40 and 80 are generated, using a simple extension of Kirby’s (1972)
algorithm (Hoshi and Burges, 1981). In all cases, the population mean u, is always set to 1.0. The population
coefficient of variation C,, examined in this analysis is C,, = 0.25, 0.50 and 1.0; hence corresponding skew
coefficients are 0.50, 1.0 and 2.0, respectively.

Generated sequences are sometimes rejected for several reasons, because five fitting methods fail to
produce parameter estimates with some samples. The following are the reasons for rejecting a generated
sequence:

(1) When the sample skew is very small (Sy, < 0.05), the sample is rejected, because the use of a normal
distribution might be appropriate for such a sequence. A comparable problem results if the skew estimator
is used when a negative sample skew is generated.

(2) In the method of quantiles, the sample sequences result in estimates & of lower bound ¢ which are
imaginary in eq. 18 or violate the two constraints on & given by egs. 20 and 21. In these cases the
generated sample is rejected and a new sequence is generated.

{3) Samples with values of < 0 are rejected as being inappropriate to fit with P3 by the quantile-maximum
likelihood estimator in eq. 22.

(4) With the sextile method the rejection occurs when the £ ratio becomes larger than 0.85. Beyond this range,

Table 1
Number of Rejected Sequences for Various Reasons before 2500 Acceptable Samples
are Obtained when Fitting the P3 Distribution to the P2 Distribution

Coefficient
of variation C, 0.25 0.50 1.00
Reasons Sample size N 20 40 80 20 40 80 20 40 80
Small skewness (S, < 0.05) 133 199 62 54 15 2 3 0 0
Negative skewness (Sy, < 0) 828 470 123 209 41 0 13 0 0
Infeasible solution for & 82 105 70 53 12 0 421 635 1106
£ ratio greater than 0.85 212 296 256 86 41 19 4 0 0
Negative b in MLE 2 3 8 3 2 0 0 0 0
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Table 2
Root Mean Square Error of Quantile Estimates with C,, = 0.25 and 7, = 0.50
Fitting rmse (95} /Ys
method ) 0.01 0.10 0.50 0.90 099 0998
Sample size N = 20
1) Moments with biased skew 0.188 0.091 0.060 0.070 0.105 0.132
2) Moments with unbiased skew 0.250 0.098 0.064 0.070 0.124 0.173
3) Quantile + MLE 0.211 0.093 0.061 0.071 0.114 0.149
4) Quantile + Moments 0.213 0.093 0.061 0.070 0.111 0.145
6) Sextiles 0.221 0.092 0.074 0.073 0.106 0.142
Sample size N = 40
1) Moments with biased skew 0.138 0.064 0.044 0.049 0.075 0.097
2) Moments with unbiased skew 0.163 0.065 0.045 0.049 0.083 0.113
3) Quantile + MLE 0.143 0.064 0.045 0.050 0.082 0.109
4) Quantile + Moments 0.145 0.064 0.044 0.049 0.078 0.101
5) Sextiles 0.147 0.066 0.049 0.049 0.081 0.109
Samle size N = 80
1) Moments with biased skew 0.104 0.046 0.033 0.035 0.055 0.072
2) Moments with unbiased skew 0.112 0.047 0.033 0.035 0.057 0.078
3) Quantile + MLE 0.101 0.046 0.034 0.036 0.060 0.080
4) Quantile + Moments 0.105 0.046 0.033 0.035 0.055 0.073
5) Sextiles 0.104 0.047 0.035 0.035 0.053 0.070
Table 3
Root Mean Square Error of Quantile Estimates with C,, = 0.50 and 7, = 1.00
Fitting rmse (5,) /¥»
method ) 0.01 0.10 0.50 0.90 099 0998
Sample size N = 20
1) Moments with biased skew 0.790 0.223 0.125 0.128 0.180 0.213
2) Moments with unbiased skew 1014 0.265 0.131 0.126 0.202 0.268
3) Quantile + MLE 0672 0.219 0.122 0.128 0.180 0.212
4) Quantile + Moments 0.679 0.219 0.122 0.128 0.180 0.213
5) Sextiles 0.710 0.220 0.136 0.133 0.174 0.206
Sample size N = 40
1) Moments with biased skew 0.651 0.157 0.091 0.093 0.144 0.176
2) Moments with unbiased skew 0.749 0.176 0.094 0.092 0.154 0.201
3) Quantile + MLE 0.461 0.149 0.088 0.095 0.143 0.172
4) Quantile + Moments 0473 0.149 0.087 0.093 0.137 0.162
5) Sextiles 0.537 0.154 0.092 0.093 0.136 0.165
Sample size N = 80
1) Moments with biased skew 0.528 0.114 0.068 0.064 0.106 0.132
2) Moments with unbiased skew 0.558 0.120 0.069 0.064 0.110 0.142
3) Quantile + MLE 0.328 0.108 0.065 0.068 0.110 0.133
4) Quantile + Moments 0.346 0.106 0.063 0.064 0.097 0.116
5) Sextiles 0.389 0.107 0.065 0.065 0.096 0.115
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Table 4
Root Mean Square Error of Quantile Estimates with C,, = 1.00 and 7, = 2.00
Fitting rmse (95) /9,
method p 001 010 050 090 099 0998
Sample size N = 20

1) Moments with biased skew 39.83 1.269 0.360 0.230 0.295 0.330
2) Moments with unbiased skew 29.98 1.665 0.318 0.229 0.290 0.332
3) Quantile + MLE 10.96 0.841 0.308 0.225 0.265 0.283
4) Quantile + Moments 11.26 0.843 0.301 0.229 0.272 0.293

5) Sextiles 12.54 0814 0.257 0.237 0.276 0.294

Sample size N = 40

1) Moments with biased skew 33.15 1.033 0.263 0.161 0.222 0.254
2) Moments with unbiased skew 25.14 1.094 0.235 0.161 0.213 0.242
3) Quantile + MLE 5.15 0.488 0.211 0.159 0.180 0.202
4) Quantile + Moments 5.20 0.541 0.210 0.161 0.195 0.209
5) Sextiles 10.00 0.552 0.184 0.162 0.194 0.209

Sample size N = 80

1) Moments with biased skew 27.71 0.878 0.200 0.119 0.173 0.200
2) Moments with unbiased skew 21.66 0.748 0.182 0.119 0.164 0.186
3) Quantile + MLE 244 0.291 0.146 0.116 0.135 0.140
4) Quantile + Moments 2.33 0.377 0.152 0.120 0.145 0.154
5) Sextiles 8.28 0417 0.139 0.122 0.151 0.162

the fitted distribution yields an estimate of shape parameter b larger than 80, resulting in a small skew,

and hence the use of the P3 distribution would probably not be appropriate.
Table 1 shows the frequency with which sample sequences are rejected before 2500 traces of length N = 20,
40 and 80 are ultimately obtained. As might be expected, the number of samples rejected for small or negative
skew coefficients, and £ ratios larger than 0.85 is generally larger for the small coefficient of variation (C,, =
0.25 and 7, = 0.50). A large portion of rejected samples with the quantile method for C,, = 1.0 is due to the
violation of the first constraint on & which should be less than the smallest value (i.e., eq. 20). Five fitting
methods of the P3 distribution are applied to 2500 acceptable samples and the performance of estimates of the
100p percentile y, is compared between the five fitting techniques for each of three sample sizes and three
different population statistics of the P2 distribution.

Tables 2 to 4 report the performance of five methods of fitting the P3 distribution to samples drawn
from a P2 distribution with C,, =0.25, 0.50, and 1.00, respectively. Several general conclusions can be drawn
from Monte Carlo results shown in the tables. First consider the method of moments using the biased and
unbiased skew coefficients. It is found that when C,, < 0.5, the use of unbiased skew coefficients is never better
than the biased ones when estimating the extreme lower and upper quantiles. The opposite performance
occurs for C,, = 1.0; the use of the unbiased skew perhaps yields the smaller root mean square error except for
rmse( $a10) for all sample sizes examined. Second, a comparison is made between the methods of moments and
maximum likelihood (MLE) with &, (i.e., quantile method). While the differences among the performance of
these two estimators are generally small, the use of the moment estimate with &, tends to produce the better
performance for C,, < 0.5 when estimating all five quantiles except for estimation of 0. On the other hand, the
quantile estimator &, with the MLE can do appreciably better at estimating y, for p =0.90 and C,, = 1.0. The
rmse’s of the sextile method are comparable to those of moment and MLE estimators combined with &. The
method of sextiles performs to estimate the median quantile ( $os) considerably better than do the others for
C,=10.

Overall, for less variable distributions with C,, = 0.25, there is little difference between performances of
five fitting methods; the method which uses the biased skew estimator does very well at estimating Yaoi, Yoss.
and yuse. When C,, 2 0.50, the quantile and sextile methods are always superior to the method of moments.
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These new estimators may be used as a surrogate for the usual skew estimators when highly skewed
distributions are encountered; as a consequence, these procedures yield very good estimates of the lower and
upper quantiles.

1t is of practical importance to check which methods of fitting the P3 distribution perform well when the
observations are drawn from other than the P2 distribution. To assess the robustness of the methods, the
second Monte Carlo analysis is to fit the P3 distribution to observations drawn from a two-parameter log
normal (LN2) distribution (i.e., 7, = C, + 3C,,). While we have not shown the results for the LN2 case, the study
of robustness indicates that for highly variable and skewed distributions with C, = 1.0 and 7, = 4.0, the
moment and maximum likelihood methods with & produce the best performance as measured by rmse( fon)
and rmse( fa10). For the quantile estimation of yass and yoss, the method of moments using the unbiased skew
results in the best performance, when 7, 2 1.6.

Log Pearson Type 3 Distribution

As has been done with the Pearson type 3 distribution, Monte Carlo experiments are carried out to
examine performances of six different fitting techniques for the log Pearson type 3 (LP3) distribution. The
population mean (u,), coefficients of variation (C.) and skewness (7:) are specified to generate the LP3
distributed deviates of sample size N = 20, 40 and 80. The mean value is set to g, = 1 for all the cases
examined. Two parameter combinations are considered for C. and 7, values; the first experiment uses C. =
0.66 and 7. = 3.95, and the second set uses C, = 0.5 and 7, = 1.0. The first combination of parameters was
chosen from the experiment conducted by Landwehr et al. (1978) who used this set to explain the “condition
of separation” by the Wakeby distribution. The second combination of population statistics is the same as that
for a two-parameter gamma (P2) distribution. Table 5 contains the true values of population parameters and
six quantiles of the two different LP3 distributions examined here. Note from eqs. 41 and 42 that the first case
gives a positive scale parameter (@ > 0) with the parent LP3 distribution having a lower bound, while the
second the negative value {(a < 0) with the upper bound.

In the Monte Carlo analysis, some samples are rejected for various reasons as shown in Table 6. The
reasons for rejecting the sequences drawn from the LP3 distribution are almost the same as those for the P3,
which have been reported in Table 1. Some specific comments can be made in reference to rejection processes

Table 5
Parameters and Quantiles of LP3 Distributions with g, = 1

Ca s a b c Xom Xaao Xoso Xoso Xoss Xogss

066 3.95 0.1366 14.2579 —2.0946 03187 04623 08253 1.7103 34808 5.2363
050 1.00 -0.1184 19.8036 22158 02187 04387 09145 16755 25118 3.0192

Table 6
Number of Rejected Sequences for Various Reasons before 2500 Acceptable Samples
are Obtained when Fitting the LP3 Distribution to the LP3 Distribution

C. = 0.66, 7, = 3.95 Ce =050, 7. = 1.00
Reasons
N=20 N=40 N=80 N=20 N=40 N =80
Small skewness (Su < 0.05) 7 0 0 76 12 2
Negative skewness (S <0) 24 0 0 238 27 2
&9 less than the largest observation 2 0 0 0 0 0
& and 4 have conflicts 19 20 11 29 24 17
D ratio yields |4 | > 0.005 85 132 186 39 30 34
£ ratio greater than 0.85 624 548 349 1163 971 784

Infeasible 6 in MLE 11 16 23 15 25 21
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with particular methods. If & would be a lower bound, using the quantile method, the estimate & resulting from
the D, ratio of eq. 48 should be positive. Similarly when & is an upper bound, 4 should be negative. The
generated sequence is rejected unless the above requirements are satisfied. The LP3 distribution degenerates
to the log normal (LN2) distribution, when the parameters of a and b become zero and infinity, respectively; if
the D ratio of eq. 44 would yield the absolute value of a larger than 0.005, the shape parameter b estimated
from eq. 46 becomes quite large. Hence, the generated sample is rejected in such cases where the use of the LP3
distribution would probably be inappropriate. In all cases, six parameter estimating techniques are applied to
ultimately accepted 2500 traces, each trace having a length of N = 20, 40 and 80.

Tables 7 and 8 report the relative root mean square error of quantile estimate, rmse(%,)/x, for probability
levels of p = 0.01, 0.10, 0.50, 0.90, 0.99 and 0.998 where performances of fitting the LP3 distributions to
observations from the same distributions are compared between the six estimating methods. First consider
Monte Carlo results shown in Table 7 with C. = 0.66 and 7. =3.95 for which the assumed distribution has the
lower bound. There is no significant difference between the quantile method coupled with either maximum
likelihood or log-space moment estimators, and the sextile method at estimating %, and xay0 in terms of the
least rmse values. The quantile-moment estimator in real space (RS) achieves the minimum values of rmse(£as)
and rmse(£oxs), While the performance of the moment method in RS is the second best at estimating the upper
quantiles of highly skewed distributions. All the procedures except for the method using the first three
real-space moments are of almost the same performance for quantile estimate of xas and x.x. Second, for the
case of C, = 0.50 and 7, = 1.0 with the LP3 distribution having the upper bound, the results of Table 8 reveal
that the estimator with all real-space moments is the best with respect to the overall performance in the rmse
(%,); no single estimation performs significantly better than any other, when the sample size becomes larger (N
= 80). Finally, it is of interest to compare methods which use the sample skew estimators in real or log spaces.
When the skew coefficient in log space (LS) is positive in the experiments of C. = 0.66 and 7. = 3.95, the
method of moments in LS produces the smaller root mean square error (rmse) of £, for p < 0.90. On the other

Table 7
Root Mean Square Error of Quantile Estimates with C. = 0.66 and 7, = 3.95
Fitting rmse (£,) /%,
method p 001 010 050 080 099 0998
Sample size N = 20
1) Moments in LS 0.308 0.148 0.127 0.193 0.642 2.042
2) Moments in RS 0.449 0.246 0.142 0.263 0.398 0.467
3) Quantile + MLE 0.245 0.135 0.124 0.198 0.537 1.103
4) Quantile + Moments in LS 0.246 0.135 0.124 0.196 0.507 0.988
5) Quantile + Moments in RS 0.298 0.181 0.134 0.187 0.331 0.464
6) Sextiles 0.257 0.130 0.132 0.185 0.459 0.949
Sample size N = 40
1) Moments in LS 0.199 0.095 0.090 0.140 0.386 0.883
2) Moments in RS 0.394 0.205 0.102 0.190 0.318 0.399
3) Quantile + MLE 0.161 0.090 0.088 0.144 0.359 0.633
4) Quantile + Moments in LS 0.163 0.090 0.087 0.141 0.326 0.550
5) Quantile + Moments in RS 0.201 0.123 0.094 0.137 0.263 0.384
6) Sextiles 0.167 0.089 0.092 0.137 0.342 0619

Sample size N = 80

1) Moments in LS 0.129 0.063 0.064 0.099 0.245 0.450
2) Moments in RS 0.333 0.166 0.074 0.135 0.244 0.326
3) Quantile + MLE 0.111 0.063 0.063 0.103 0.255 0.433
4) Quantile + Moments in LS 0.114 0.062 0.063 0.099 0.220 0.346
5) Quantile + Moments in RS 0.140 0.085 0.066 0.100 0.205 0.307

6) Sextiles 0.112 0.062 0.063 0.097 0210 0.336
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Table 8
Root Mean Square Error of Quantile Estimates with Co = 0.5 and 7, = 1.00
Fitting rmse (&) /%
method » 0.01 0.10 0.50 0.90 099 0998
Sample size N = 20
1) Moments in LS 0.495 0.206 0.133 0.136 0.275 0.449
2) Moments in RS 0.383 0.204 0.126 0.133 0.180 0.242
3) Quantile + MLE 0.495 0.207 0.129 0.130 0.276 0.495
4) Quantile + Moments in LS 0.492 0.207 0.128 0.130 0.268 0.467
5) Quantile + Moments in RS 0.566 0.232 0.125 0.131 0.205 0.313
6) Sextiles 0514 0.204 0.139 0.137 0.285 0.555
Sample size N = 40
1) Moments in LS 0.299 0.139 0.095 0.097 0.180 0.260
2) Moments in RS 0.275 0.141 0.093 0.096 0.146 0.192
3) Quantile + MLE 0.310 0.142 0.094 0.096 0.175 0.267
4) Quantile + Momentsin LS 0.300 0.139 0.093 0.096 0.176 0.265
5) Quantile + Moments in RS 0.372 0.164 0.092 0.096 0.154 0.217
6) Sextiles 0.303 0.141 0.095 0.096 0.190 0.307

Sample size N = 80

1) Moments in LS 0.198 0.095 0.065 0.067 0.122 0.167
2) Moments in RS 0.204 0.099 0.064 0.066 0.106 0.143
3) Quantile + MLE 0.217 0.100 0.065 0.067 0.118 0.168
4) Quantile + Moments in LS 0.197 0.095 0.064 0.066 0.122 0.173
5) Quantile + Moments in RS 0.259 0.115 0.064 0.067 0.109 0.149
6) Sextiles 0.193 0.095 0.063 0.067 0.119 0.169

Table 9

Number of Statistic Relationships in Real and Log Spaces for 2500 Accepted LP3 Sequences
Ce =066, 7. = 3.95 Ca = 0.50, 7. = 1.00
Outcome of statistic relationships

N=20N=40 N=80 N=20 N=40 N=80
7.>C +36..%>0 388 801 1280 92 34 3
7.>C+3C., 5,<0 7 6 2 16 40 26
F. < €+ 36, 7,< 0 245 101 25 1729 2153 2399
7 <€ +3C.. 5 >0 1860 1592 1193 663 273 72
Sequences with &, as the lower bound 2181 2332 2436 734 323 106
Sequences with &g as the upper bound 319 168 64 1766 2177 2394

hand, quantile estimates £, for p > 0.5, employing the sample moments in real space (RS), yield the smaller rmse
values, when the skew in LS is negative in the experiments with C. =05 and 7, = 1.00. The above
observations bear out similar conclusions made by Nozdryn-Plotnicki and Watt (1979); the most efficient
quantile estimates were obtained by using log-space moments for 7, > 0, and real-space counterparts for 7, <
0, when fitting the LP3 to samples generated from the same distribution. The method of moments recom-
mended by the U.S. WRC (1977) for flood frequency analysis is never superior to use of real-space moments at
estimating the upper quantiles of the distribution, especially for £oss.

Recently, there are considerable arguments about the U.S. WRC flood frequency procedures, which fit a
P3 distribution to the first three moments of the logarithmically transformed data sequences. For example,
Landwehr et al. (1978) showed that the regional skew maps in the log domain, advocated by the WRC was
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incompatible with those in real space; it would be extremely difficult to infer the properties of real-space skews
from those of log-space skews. Wallis and Wood (1985) pointed out, based on Monte Carlo experiments, that
the WRC procedures performed very poorly for basins having negative log skews. Equations 41 and 42 impose
the conditions under which the LP3 distribution fitted in RS has either lower or upper bounds. It is obvious
that if the skew %, in LS is positive (or negative), the estimate of scale parameter, @ becomes positive (or
negative).

Table 9 reports the frequency with which 2500 accepted sequences would detect either positive or
negative signs of ¢, when using moment estimators in RS and LS, and the quantile method to estimate &, of
location parameter c. It is noted from information contained in Table 9 that a large portion of generated
sequences tends to result in the opposite sign of &, estimated from real- and log-space moments in the case of
C. =0.66 and 7, =3.95 for which the parent LP3 distribution expects to yield the positive scale parameter. On
the other hand, the minimum of about 70% yields the negative value of @ in both real and log spaces for C. =
0.5 and 7. = 1.0 as the parent expects to do. The last two rows of Table 9 indicate the extent to which the fitted
LP3 distributions resulting from use of the quantile method have either lower or upper bounds. In contrast
with statistical behaviors involved in moment estimators in RS and LS, generated sequences yield dominantly
lower-bound estimates of & (more than 87%) for C. = 0.66 and 7. = 3.95, and upper-bound estimates of &s(more
than 70%) for C. = 0.5 and 7. = 1.0 as the parent LP3 distributions expect to do.

CONCLUSIONS

New knowledge obtained from the present study is the quantile and sextile methods for estimating the
parameters of gamma-type distributions. Monte Carlo simulation techniques were employed to evaluate the
performance of these two methods by comparing with that of currently available procedures. Five estimators
were used for the Monte Carlo analysis with the Pearson type 3 (P3) distribution, while six estimators for the
log Pearson type 3 (LP3) distribution.

The full maximum likelihood estimator (MLE) was not pursued in this study for several reasons. The
MLE cannot necessarily retain its desirable asymptotic properties for small samples and requires the numer-
ical solution of a single nonlinear equation. Hoshi et al. (1984) showed that the quantile method combined with
the MLE estimator of other two parameters always did better or almost as well as the full MLE estimator for
the log normal distributions; moreover the use of the quantile method avoids the need to optimize the
likelihood function numerically.

The accuracy of various quantile estimates is of practical concern because of the frequent use of
quantile estimates in hydrologic designs. Thus the performance of several fitting procedures was evaluated
using the criterion of the root mean square error (rmse) of quantile estimates. Not only are fitted the
gamma-type distributions to the observations drawn from the same distributions but also to the samples
drawn from other distributions for the test of robustness.

Based on the results of Monte Carlo experiments performed to determine the precision with which
parameter estimating techniques estimate several quantiles, the following conclusions have been reached:

(1) For the P3 distributions, new procedures of quantile-MLE, quantile-moment, and sextile methods
yielded a very good all-around quantile estimate and genérally performed best or about the best, in terms of
the rmse of estimates of y, for p = 0.01, 0.99 and 0.998. When fitting the P3 distribution, there is little
advantage to using unbiased skew estimates in the method of moments at estimating the upper quantiles for
7 < 1.0.

(2) For the LP3 distribution having the lower bound (C. = 0.66 and 7, = 3.95), the most accurate
estimates of high extreme quantiles with p > 0.99 were obtained by using the quantile method coupling with
the method of moments in real space. The quantile-MLE and quantile-moment (in LS) estimators yielded the
least rmse values of £:01 and £a.0; the sextile method also became very competitive.

(3) For the LP3 distribution having the upper bound (C.. = 0.5 and 7. = 1.0), overall performances of
the method using the first three moments in the real domain were the best for quantile estimates £, with either
small or large p. The method of quantiles with use of real-space moments was also capable of estimating the
quantiles for p = 0.99 with acceptable accuracy. The method of moments using the first three moments in log
space performed very poorly. The principal usefulness of the quantile method is that it avoids the problems
that are often introduced when the scale parameters resulting from use of real- and log-space statistics have
different signs.
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APPENDIX—-NOTATION

The following symbols are used in this paper :

Oy o R

o0&

D,
)
F()

LN2
LN3
LP3

P2
P3
rmse(-)

R

2,
Uy
g,
T
()
Y
Ve
L/
I()

1l

i

scale parameter ;

coefficient defined in eq. 12 ;

shape parameter ;

coefficient defined in eq. 12 ;

location parameter ;

estimate of lower or upper bounds with use of quantile method ;
coefficient of variation of variate x ;

ratio defined in eq. 44 ;

ratio defined in eq. 48 ;

probability density function ;

cumulative distribution function ;

ratio defined in eq. 31 ;

two parameter log normal distribution ;
three parameter log normal distribution ;
log Pearson type 3 distribution ;

sample size ;

non-exceedance probability ;

two parameter gamma distribution ;
Pearson type 3 distribution ;

root mean square error ;

sample standard deviation of variate y ;
sample skew coefficient of variate y ;
standard normal variate ;

standard gamma variate ;

log Pearson type 3 distributed variate ;
Pearson type 3 distributed variate ;
sample mean of variate y ;

sample observation of variate y ;

ith largest observation of variate y ;
estimate of variate or parameter z ;

100p percentile of variate z ;

population mean of variate y ;

population standard deviation of variate y ;
population skew coefficient of variate y ;
incomplete gamma function ;

sextile mean of standard gamma variate ;
rth moment about the origin for LP3 distribution ;
sextile mean of P3 distributed variate ; and
gamma function.




