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SYNOPSIS

The present study gives a theoretical treatment to the storm surges running up
a river of uniform flow. Sinusoidal waves with very long period are given at the
downstream end of the river as substitute for storm surges. The analytical soluti-
ons for river water level and flow velocity are obtained by use of a perturbation
method. From these solutions, an approximate formula for the highest water levels
along a river channel is derived and their relations with the amplitude and the
period of waves and with the river discharge are investigated. Basic characterist-
ics of propagation of storm surges in a river are also revealed based on the
obtained analytical solution.

INTRODUCTION

Typhoons as well as hurricanmes and cyclones drive occasionally storm surges on
the coasts and in the bays. To protect the coastal regions from inundation damages
caused by storm surges, the seadikes have been constructed extensively along coast-
lines. It is apparent that such measures have been much effective for diminution
“n the inundation damages. However, there is the serious vulnerable point left
in the tidal reach where storm surges invade through river mouths.

Typhoons cause not only the storm surges frequently, but also the rainfalls in
river basins. Simultaneous occurrence of the flood flowing down and the storm
surge running up a river, should make river water levels considerably high, compar-
ed with the case that the storm surge only runs up the river of a certain constant
iischarge (Hashino and Kanda (2)). In order to evaluate quantitatively this
concurrent effect of the storm surge and the flood flow on river water levels, the
techanism of interaction between storm surge and flood flow has to be clarified.

The experimental studies on storm surges running up a river were reported in
the past, for example, by Hayami et al.(3) and the theoretical ones by Ichiye (4)
ind by Yano (9). In recent years, numerical simulations have prevailed, especially
lor the problems with complex boundary conditions (Kanda (5)). The theoretical
investigations on travelling-up of astronomical tides were performed for the river
f uniform flow by Okamoto (7) and for the river of non-uniform flow by Unoki (8).

The present study treats the storm surges running up a river of uniform flow.
\t the downstream end of the river, is given the tidal wave with very long period
those lowest water level coincides with the water surface of uniform flow, and the
malytical solutions are obtained. Based on these solutions, basic characteristics
f propagation of storm surges are revealed.
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BASIC EQUATIONS AND BOUNDARY CONDITIONS

The river channel with a wide rectangular cross section and a constant bed
slope is considered. The river flow before invasion of a storm surge is assumed to
be uniform throughout the river chanmel. Beginning with this initial condition,
water level at a river mouth rises gradually and the river flow becomes unsteady.

If we neglect the effect of a density current caused by sea water intrusion,
the one-dimensional analysis using the following basic equations will be allowed:

13 , vav dh _
g ot T g ax + 2% S+8=0 (1)

dh | 3(hv) _

it 9x 0 (2)

where h = water depth; v = mean velocity in x-direction; S = river-bed slope; Sg¢ =

friction slope, Sg = nzvlvl/h“/3; n = Manning's roughness coefficient; and x-axis

has the origin (x=0) at river mouth and is positive in the upstream direction.
Neglecting the inertia terms in Eq. 1, then it becomes

1 dhy 1/2
v=i;h2/3(is¢a—x) for v%_O (3)
For uniform flows in the steady state,
v = - % h02/3(_ 3)1/2 (4)

where vy = velocity of uniform flow; and hy = uniform water depth.
From Eqs. 2 and 3, the basic equation in terms of water depth is obtained as

dh , 5hn2/3 3hy1/23n  n5/3 shy=1/252p
- _ e -
ot t 3n s+ 3x) 3% 7n s+ 3x) 2 0 forvz0 (5)

Boundary conditions at the downstream end (x=0) and at the infinitely upstream
location (x+») are

h(0,t)

[}

%g(l - cosyt) + hg (6)

h('”’ t)

]

ho @)

where Ay = amplitude of time-varying water level, or wave height of storm surge at
river mouth; y = 27/T = angular frequency; and T = period of wave.

As the present study treats the behavior of storm surges running up a uniform
flow, the boundary condition at the downstream end is given so that the lowest
water level coincides with water surface of uniform flow in the steady state, as
expressed by Eq. 6. Wave shape of storm surges is not the periodic one; rather,
they have the shape of a single hump. Nevertheless, the characteristics of propag-
ation of periodic waves with very long period are presumed to be fundamentally
close to those of storm surges. From this point of view, the above sinusoidal
wave, which would be convenient for analytical treatment, is used as substitute for
storm surge.

DERIVATION OF SOLUTIONS

To obtain the solution of Eq. 5 (v<0) under the boundary conditions 6 and 7,
the method of perturbation is used.

Suppose that the solution for water depth h is expressed by the power series
in the following form:
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h = hg(l + ey) + €2y, + eoo ) (8)

where ¢ = Ap/(2hg).
Now, we neglect the terms of higher order than the second order with respect
to € in Eq. 8, and substitute it for Eq. 5. Then, we have

1/2

ho*/3(1 + ey + e2y,)1/3{- s + hO(% + Engu]} (‘:g_tu * ezgtﬁ)

= 3ho2(L + ey) + e2y){- S + ho (2D 4 c2202)} (2N 4 (2002

ax 9x
‘1—h3(1+ + g2 )2(3_22'_L+23_2Y_2.-0 9
T 7m0 EY1 T €7Y2) " 652 & ox2 ] - ®)

Rearranging Eq. 9 and putting each of the coefficients for ¢ and €2 to be equal t
zero, the following set of equations with respect to y; and y, is obtained:

) ] 3%yy _
St tugh - ug =0 (10)
2
War w2y 32y, (11)
_ 5 (cay1y 2 92y) 2 3yl . Sp? 3y1 9y1
Mo = B e S - T BRI
where
w = (5/3)vg (13)
u = (hgvg)/(25) (14)

The boundary conditions 6 and 7 are rewritten as

y1(0,t) = 1 - cosyt; y2(0,t) = 0
} (15)
yi(=,t) = yo(=,t) = 0
First Approximation
The solution of Eq. 10 is given by
y1 = exp(ﬁx] - expf (;’—u - pl)x}cos(yt ~-q)X) (16)

where

P /—m"—Z 0 22 1/2

(o) - [V &%« &)1 an
Second Approximation

Substituting Eq. 16 for Eq. 12, TI'(x,t) is represented as

2
Tx,t) = 32 = exp(ﬁ—wXJ - %exp{[;—:’ - p1)x}

+ {032 - 23p1)cos(rt - qix) + uay (B2 - 20p))sintyt - 4,00}
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2
- ) €3 - P - Peitcosone - 20

2
+ q3 ('T - %E'pl + 30 12)Sin(2Yt - qux)} (18)

w

The right hand side of Eq. 18 consists of the non-oscillatory terms, the oscillat-
ory terms with fundamental frequency y/2w and those with bi-frequency vy/w.

Firstly, let the general solution of the homogeneous equation corresponding
to Eq. 11 be denoted by yyq, that is,

d d 32
%.,.msiﬂ_ug&&(l:o (19)
Then, yz¢ is given by

Y20 = Azoexp('(;"x] + 13206)(1"{(;)—u - p1)x}eos(yt - qix + 0;)

+ CzoeXP{(E' - pa)x}cos(2yt - qox + 6) (20)

where Ajyg, Byg, Cog = integral constants; 0;, 6, = phase constants; and
P2 w 4 2y, 2 w y2 ]1/2
= )7+ ()72 (3) )2 21
(o] Ve ™ & Y (21

Secondly, the equation for the oscillatory terms with fundamental frequency is
represented as

%t?-u +w —L —L Ty (x,t) (22)
Fy(x,t) = - %exp{(%% - pl)x}{w(%%ﬂ - 23p))cos(yt - qx)
+ q1(23w - 20pp;)sin(yt - qx)} (23)

The solution of this equation is given by

yo1 = Dlexp{(%g - p1)x}eos(yt - qix + 8) (24)
where
D, =/ M? + N, (25)
8y = tan ' (- N—l] (26)
M = - %Pl(% - 36p) + ﬂ131 ) (27)
1= T2+ 10p; - £p12)/ (5 - 1) (28)



Thirdly, the equation for the oscillatory terms with bi-frequency is
represented as

3y2z . . dy22 _ 3%y22 _

at + w ax l-l axz rz(X,t) (29)
130 _ 5 5p2

raGee) = expl2(g; - pa)x (g - 1) (557 - o1 - 35m1%)

2
+ cos(2yt - 2q;x) + qlflgg - 2-Z-Epl + %ﬁ—plz]sin(Zyt - 2q;x)} (30)

The solution of this equation is given by

Yap = - Dzexp{Z(g; - p1)x}eos(2yt - 2q;x + 83) L
where
D2 = Mzi + Nzi (32)
6, = an-l(_ ;‘11_:_] (33)
My = - o (22 + 25p) - 12p,2) G4
2
Ny = g (50 - SP1 + Tn?)/ (3 - v) (%)

Lastly, the equation for the non-oscillatory terms is represented as

2
323 4y W23 2H2I - ryx,e) (36)
1302 2w

ra(x,t) = “3exp (S =x) + exp{Z(%’; - p1)x}

2
. (;’—u -p1) (3 - %EPI + ﬁw 1%) (37

The solution of this equation is given by

13 2 IR
Y23 = - -6—exp(aﬂx) - Doexp{Z(;’u - p1)x} 38)
where
-l _5, om0
Do = = 75, (35 = 1 + 3p1%) >
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Consequently, from Eqs. 20, 24, 31, 38 and the boundary conditions 15, the

second approximation y, is given as follows:
1
v2 = golexp () - exp(B2)} + Do [exp () - exp{2(3 - p1)x}]

+ Dl[exp{(g—ﬁ - p1)x} - exp{[';—u - p1)x}]eos(yt - qix + 87)
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+ D, [exp{ (;’—u - pa)x}cos(2yt - qux + 8,)

- exp{Z(%; - py)x}cos(2yt - 2q;x + 65)] (40)

After all, by using y; and y, obtained above, the water depth h is given as

2
h=h0+%le+%-g'o—yZ=h0+AH (41)
- Ag AQZ
AH = Z_yl + M’loyz (42)

where AH will be called the wave height, or the increase in water depth measured
from water surface of uniform flow.

Solution for Flow Velocity

From Eq. 3, the solution for the flow velocity v is given as

__1 Ao, A2 (2/3; o Ag 3yy . Ao? 3y2y1/?
veE- n(ho Nt hhoyz) -5+ 2 o 4hp 9x } (43)

where y; and y, are given by Eqs. 16 and 40, respectively.
ACCURACY OF SOLUTIONS OBTAINED

Accuracy of the analytical solution 41 is examined by comparing it with the
numerical solution of Eq. 5 for river discharge per unit width qg = 5(m?/s), river-
bed slope S = -1/10000, wave amplitude 45 = 0.52(m) and period T = 1n8(hr). In
addition, because Eq. 5 has been obtained as a result of omitting the inertia terms
in Eq. 1, the numerical solution of Eqs. 1 and 2 is also compared with that of Eq.
5 to confirm the pertinence of this omitting. The exact solution of Eq. 5 and that
of Eqs. 1 and 2 are never to be given analytically. Therefore, the numerical
solutions by a finite difference method—Preissmann four-point implicit scheme
(Cunge et al.(l); Kanda and Kitada (6))—are substituted for the exact solutioms.

As examples of the computed results, Figs. 1 and 2 show the magnitude of each
term in Eq. 1 at river mouth and the variations of water level and velocity with
time, respectively, for Ag = 1(m), T = 4(hr), and Figs. 3 and 4 for Ay = 1(m), T =
8(hr). Analytical solutions 41 and 43 show good agreement with numerical solutions
except those for the velocity near a river mouth. Inertia terms, (1/g)(3v/3t) and
(v/g) (3v/3x) tend to have a significant magnitude with increasing wave amplitude
and with decreasing wave period. Although the omission of inertia terms may yield
a slight time-lag between both the wave phases, there is little difference in peak
values of water level and velocity between the numerical solutions to Eqs. 1, 2 and
Eq. 5.

After all, these results together with the results for the other conditions
demonstrate that Eq. 41 is a fairly good approximation to the exact solution of
Eqs. 1 and 2 for Apsl(m) and T24(hr).

CHARACTERISTICS OF PROPAGATION OF LONG PERIOD WAVE
Structural Feature of Solutions

The first term of y; in Eq. 16 is the mean water level, the second term being
the deviation from it. The former is the function of river discharge, and the
latter the function of river discharge and wave period. The first and the second
terms of y, in Eq. 40 denote the non-oscillatory variations, the third term the
fundamental oscillation, and the fourth term the oscillation with bi-frequency.
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Fig. 1 Comparison of magnitude of Fig. 3 Comparison of magnitude of
the terms in Eq. 1 for wave the terms in Eq. 1 for wave
period T=4 (hr). period T=8 (hr).
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Fig. 2 Variations of water level and Fig. 4 Variations of water level and
velocity with time for T=4 (hr). velocity with time for T=8 (hr).

In Fig. 5, the upper figure shows the magnitude proportion of the first appro-
ximation (Ag/2)y; and the second approximation (Ag2?/4hg)y, for wave height AH. It
can be seen that the wave of the latter term propagates with a larger speed than
the wave of the former term, which brings about the change in wave shape, that is,
makes the foreside of the wave steep and the backside mild. The lower figure is a
comparison of the respective terms of the second approximation (A02/4h0)y2. The
third term refering to the fundamental oscillation is the most significant in
magnitude, and the fourth term refering to the oscillation with bi-frequency has
non-negligible magnitude. Figure 6 shows the phase lag & for each term included in
y1 and y,, where §p = q1%, 6; = q1%-0;, 85 = (q2x-03)/2, 83 = q;x-6,/2. As is
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Fig. 6 Phase lags for the terms
in y; and y;.

Fig. 5 Magnitude of the terms in Eq. 42
and those in Eq. 40.

obvious from the figure, only the phase lag 6§, for the term with bi-frequency is

considerably small compared with the other phase lags. This means that the corres-
ponding wave propagates faster and accordingly results in deformation of the total

wave, as described above.

Highest Water Level along River Channel

If we neglect the difference among phase lags of the elementary waves in Egs.
16 and 40, then Eq. 42 yields the highest water level AH;,,, namely, the maximum
increase in water depth, as follows:

AHpax _ 1 Ag
) + &hg Y2.max (44)

&y 2 Y1.max
Y1.max = exp((x) + exp{ (5= - p1)x} (45)
Y2.max = golexp (%) - exp ()}

+ Do[exp (3x) - exp{2(3; - p1)xl]

+ 0 [exp{ (55 - p1)x} - exp{(32 - p1)x]]

+ Dp[exp{ (3 - p2)x} - exp{2(3; - p1)x}] (46)

In Fig. 7, Eq. 44 is shown together with the highest water level obtained from
numerical solution of Eq. 5 and that from Eq. 42. This figure substantiates that
Eq. 44 is the approximation with high accuracy to the highest water level.
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In case that the river discharge AHma
qp and the wave period T are kept cons- Ao — 2
tant, both of y, nay and ¥, pax in Eq. 9o=5(m4s)
44 take constant values. Therefore, 1.0 Ao=1(m)
AHpayx/Ag is linearly dependent on the ] T = 4(hr)
relative wave height Ap/hg. 1

Secondly, the relations of the 0.5
highest water level with wave period
and river discharge in case of the
constant wave amplitude are given from | o
Eq. 44, as follows. Figure 8 shows [-—analytical,Bq. (44) | g
its relation with wave period. For :'_:::g:é:iléq&‘é;'z) R
the shorter period, the highest water 0. - e
level attenuates more largely as the 0 10 20 30 X (km)

wave runs upstream. ILf the period
approaches infinity in Eq. 44, the

following equation is obtained: Fig. 7 Maximum increase in water

depth due to storm surge.

Al 134 2
At::ax = exp (-:ix] + —Eg-{exp (%x] - exp (u—wx]} (47)

The above equation would provide a fairly good approximation to surface profiles
for the steady non-uniform flow, when we regard (hg+Ap) and (hy+AHpax) as water
depths at the downstream end and the arbitrary location along a river, respective-
1y.

The relation of the highest water level with river discharge is shown in Fig.
9. As the discharge is smaller, the attenuation becomes larger. This is due to
the fact that attenuation coefficients in Egs. 45 and 46, -w/y, -w/2u+p;, -2uw/yu,
etc. are larger for the smaller discharge.

Ag=1(m) Ag=1(m)
Agm q, =5(m?/s) AH: = | 7= 40)
| x = 0 (kn) x = 0 (kn)
1.01 2.5 1.0 2.5
1 5 0.8 >
0.8 _— — 1;.5
. 10 0.61
0.6 ?__ . "
041 _— 25 0.41 2
0.2 / 0.2 1
o3 8 16 2% Tthn 00 5 10 15 Go(mis)
Fig. 8 Relation of AHpgx with wave Fig. 9 Relation of AHpax with river
period T. discharge qg.

Velocity of Propagation of Highest Water Level

Time-distance relations which trace the propagation of the highest water level
are shown by the broken line for numerical solution of Eq. 5 and by the solid line
for Eq. 41 in Fig. 10. Dot-dash-lines denote the reference waves whose propagation
velocities are y/q) and 2y/qy, respectively. The solid line as well as the broken
line becomes parallel to the upper dot-dash-line, as the wave runs upstream. This
means that the elementary waves with bi-frequency attenuate and the wave with the
fundamental frequency and the velocity y/q; becomes dominant at the upstream
region. The velocity y/q; is the function of river discharge and wave period, and
the relation between them is illustrated in Fig. 1l1.
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Fig. 10 Propagation of the highest Fig. 11 Relation of y/q; with river
water level. discharge and water period.

CONCLUDING REMARKS

Real wave shapes of storm surges are made up mainly of a single hump, although
they are generally accompanied by the forerunner and small oscillatory waves at the
front and the tail of a hump, respectively. On the contrary, analytical solutioms
in the present study have been obtained for the successive wave and they are the
stationary solutions to which the transient waves converge after the lapse of time.
In this respect, the applicability of these solutions to storm surges has been
examined, as follows.

A sine wave of one cycle from a trough to the next trough has been used as the
wave shape of storm surges at a river mouth, instead of the successive sine wave
used in the above-described analyses. As a result of comparison between the wave
shape in a river channel calculated for this boundary condition and that for the
obtained analytical solution, both wave shapes have agreed precisely except the
portion near troughs or front and tail of the wave. Consequently, the characteris-
tics of propagation of the successive waves obtained in this study, especially
those near the wave peak are regarded to be fundamentally identical with those of
storm surges.

Equation 41 is a fairly satisfactory solution of Eq. 5 for the amplitude;
Ag/hg s 0.3. However, this basic equation itself is not applicable to the overall
boundary conditions. For the larger amplitude and the smaller period of waves at a
river mouth, inertia terms in Eq. 1 cannot be neglected and accordingly Eq. 5 comes
to lose the validity. Therefore, further investigations are necessary to clarify
the running-up behavior of storm surges under such conditionms.
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APPENDIX -~ NOTATION
The following symbols are used in this paper:

Ag = amplitude of time-varying water level or wave height of storm
surge at river mouth;

(Ag/2)y) = first approximation to solution of river water depth;

(A02/4h0)y2 = second approximation to solution of river water depth;

g = gravitational acceleration;

h = water depth at arbitrary location along river channel;

hy = uniform water depth;

AH = increase in water depth due to storm surge, measured from water

surface of uniform flow;
AHpax = maximum value of AH;
n = Manning's roughness coefficient;

P1sP2591>92 = function of w, y and y;

q0 = river discharge per unit width;
S = river-bed slope;

S¢ = friction slope;

t = time;

= wave period;

= mean velocity at the arbitrary location along river channel;
Vo = velocity of uniform flow;
b3 = coordinate which has the origin (x=0) at river mouth and is

positive in the upstream direction;

Y1 .max = maximum value of y;;

Y2 .max = maximum value of y;;

Y = 2u/T, angular frequency;

§ = phase lag for each term included in y), and y,;
€ = Ag/(2hg);

6, 6> = phase constant;

u = hqgvg/(2S); and

w = (5/3)vq.



