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SYNOPSIS

The multivariate conditional maximum entropy (MCME) distribution is useful

when we estimate the occurrence probability of any variates given the occurrence

of the other variates, particularly in the area of scarce hydrological data. The
theoretical equation of the MCME distribution with the arbitrary function g_(*)
and the moments as the constraint conditions is derived from the multivariate
maximum entropy distribution. It is discussed that the maximum entropy distribu-
tion is based on the same level as the Pearson’s system of frequency-curves and the
Gram-Charlier’s series because some distributions are derived by this distribution
with the concrete g_(+) as the constraint condition. Finally, the MCME distribu~-
tion is applied to Ehe annual rainfall and annual maximum daily rainfall, and the
applicability of this distribution to the hydrological data is investigated in
detail.

INTRODUCTION

A conditional probability density function is necessary when we estimate the
occurrence probability of any variates given the occurrence of the other variates.
The conditional probability density functions are available for two-variate normal
distribution (Kanda and Fujita (5)) and two-variate gamma distribution (Nagao and
Kadoya (7,8)). They are one-variate conditional probability density function
given the occurrence of the other one variate. A multivariate probability density
function is necessary in order to derive a multivariate conditional probability
density function. But only a multivariate normal distribution (Takeuchi (18)) and
a multivariate gamma distribution (Krishnamoorthy and Partharathy (6)) have been
studied.

Though the multivariate gamma distribution corrects the defect of the multi-
variate normal distribution, which can express the only symmetrical shape, and
applies widely to the population of the non-symmetrical shape, it is difficult to
introduce it into the hydrologic frequency analysis because the identification
method of the parameters from data is not proved. Besides, it is difficult to
select the distribution we should adopt because in many cases hydrological data
are scarce.

This paper describes the MCME distribution and its characteristics in order
to overcome the problems of the application to the population of the non-symmet-

rical shape and the selection of distribution in the area of scarce hydrological
data.

Former Researches and Investigations

Sonuga (15) in 1972 introduced the concept of entropy into the hydrologic
frequency analysis, and proposed the method to estimate the probability demsity
function from the principle of maximum entropy. He derived the probability densi-
ty function p(x) of a variate x by maximizing the entropy H(x) to be defined in
eq. 1 preserving the first two moments of the given data.
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H(x)=-;p(x)lnp(x)dx 1)

The maximum entropy distribution itself doesn’t have the proper form and the form
of this distribution' depends on the constraint conditions (how to get the informa-
tion from data) under which eq. 1 is maximized. The introduction of this distri-
bution in hydrologic frequency analysis should, therefore, be highly evaluated
because it gave the theoretical validity to the adoption of distribution. He (16)
then derived one-variate maximum entropy distribution given the occurrence of the
other one variate by maximizing the mutural entropy H(x,y) to be defined in eq. 2
preserving the first two moments of the given data.

H(x,y)=-5;p(x,y) lnp(x,y)dxdy (2)

where p(x,y) is the joint probability density function of two variates x and y.
But it is very difficult to adopt more than three moments in his models.

We introduced Wragg and Dowson’s technique (19) which was developed in the
field of information theory, and studied the characteristics of one-variates maxi-
mum entropy distribution based on the arbitrary number of moments with the appli-
cability to hydrological data (Sogawa and Araki (11), Sogawa, Araki and Kobayashi
(14)). We then extended them to two-variate (Sogawa, Araki and Terashima (12))
and multivariate (Sogawa, Araki and Sato (13)) maximum entropy distributionms.

The Purpose and the Outline of This Paper

This paper describes the MCME distribution using the multivariate maximum
entropy distribution.

We show the theoretical equation given the arbitrary fumction gr(-) as the
constraint condition and develop the theory replacing them with moments. Besides,
some conditional distributions are derived from the MCME distributions, and the
level of the maximum entropy distribution is discussed in the field of the proba-
bility distribution. Finally, the applicability to hydrological data is investi-
gated in detail.

THEORY
The Case of the Constraint of the Arbitrary Function gr(-)

Consider firstly a multivariate continuous probability density function in
which the variates x., Xys +eey X assume the values x,, X,, ..., X_Wwith proba-
bility p(x,,X,,...,X ). The entropy H(X;,X,,¢.e5%X_) o% th%s distriBution is de-
fined by 1°72 n 1°72 n

H(xl,xz,...,xn)=—;...;Ip(xl,xz,...,xn)lnp(xl,xz,...,xn)dxldxz...dxn
(3)

The expectations of this distribution of the arbitrary function g_(x,,X,5...,X )
. r 1’72 n
for r=1, 2, ..., M are defined by

;...;Igr(xl,xz,...,xn)p(xl,xz,...,xn)dxldxz...dxn=E[gr(xl,x2,...,xn)],
r=1,2,...,M (4)

where E[-] is the mathematical expectation operater. Eq. 1 contains the normali-
zation condition g (xl,xz,...,x )=1. By maximizing eq. 3 subject to eqs. 4 (the
principle of maximum éntr¥opy), Bhe multivariate maximum entropy distribution is
given by Sogawa, Araki and Sato (13) as

p(xl,xz,...,xn)=exp{-1-rglkrgr(x ,xz,...,xn)} (3)
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where \_ is the Lagrangian multiplier associated with the normalization and main

constraint conditionms. Eq. 5 is the general multivariate maximum entropy distri-

bution. We can give g _(.) the various concrete functions whose expectations exist.
From eq. 5 we see that the MCME distribution is simply of the form

p(xl,xz,...,x )
P (%

Xy Xge oo X Xm0t ¥p )= ;...;;p(xl,xz,...,x )dx ...dxn

m+l Xo+2

exp{-1- §1Argr(xl,x2,...,xn)

foo.grexp{-1- rglkrg (xl,xz,...,xn)}dxm+1dxm+2...dxn

eXp{-rgl)\rgr(xl’xZ""’xn)}

;...;;exp{—rgllrgr(xl,xz,...,xn)}dx

m+1dxm+2...dxn (6)

which is refered as the general MCME distribution,
The Case of the Constraint of Moments

Given variate x (0<xi<w), we calculate the moments about the origin M

, and put them into eq. 4, namely,

’

i

ai
2ua > o nuan’ ub1b2...bn

;f...;?;? xl p(xl,xz,...,xn)dxldxz...dx lual’ a;=1,2,...,Na;(7.1)
1?...;?;? xgzp(xl,xz,...,xn)dxldxz...dxn=2uaz, az=1,2,...,Naz(7.2)

as = =
;?...;?;? X p(xl,xz,...,xn)dxldxz...dxn—nuan, an=1,2,...,Nap(7.n)

bi_b2 bn =
Qe RIT Ky Ky e e Xy p(xl’XZ""’xn)dxldXZ"'dxn_ublbz...bn,

b1=0,1,...,Nb1, b2=0,1,...,Nb2, +¢¢, bn=0,1,...,Nby (7 .n+1)

where po =l expresses the normalization condition. Besides, we exclude the case
that b ?i—l 2,...,n) takes integer more than 1 and the other b, (j=1,2,...,i-1,
i+l,..v,n) takes O in eqs. 7.n+l because this information (constraint condition) is
contained in eqs. 7.1 - 7.n.

The multivariate maximum entropy distribution, subject to constraint condi-
tions 7.1 - 7.n+l can be determined by the principle of maximum entropy as

Na Na, Nap
a1 az _ an_
p(xl,xz,.,.,x )=exp{-1- -1 1Ya 1 azzl 2Ya2 2 tee anél nYanxn
Nbn Nb Np,
Toeen Lo Iy 6 b2 x PP} (8)
bn =0 b2=0 b1=0 "biba... bn 1 X2 n
where ooy Y are the Lagrangian mulipliers, They

6
are de%er&inedaﬁy the ugean iteraé én* meEhod (Sogawa, Araki and Sato (13)).
In the case with constraint of moments, eq. 6 becomes

pxlxz...x (x X412 m+2""’xn)
N Na N
exp(-, am+1 Y xomhl_ bl Y, xomi2_ ;n y. x20
1 =1 mtl'agy *ntl Tampt2=1 m+2 apto *mt2 T ap=l n'ap ' n
an Np, Nb,
m Teeee Lo L8 x1xP2,, xPm)
bn=0 b2=0 b=0 blbz...bn 1 %2

(b1+ba+. . .+bp%0)
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Nap4i Nap+2 Nap
[®e.. g0 exp(-_ I Y xomH_ Y xamb2_ 3 Y x2n
0 0’0 ag+1=l mHl 'apy) "l apge=1 m+2'aptr mi2 an=l n'ap'n
an Nbz  Nby b1 b2

b0 *b2Z0 5120 Sbiba...bp¥1 2 "%

(by+ba+. . .+bn*0)

bn
)dxm+1dxm+2...dxn 9)

Note that 60 is reduced here both in the numerator and the denominator because
it is not re?étég to integral.

We express the distribution given by eq. 9 as EM(Na;,Naz,...,Nan;Nbl,sz,...,
Nbp) -

Derivation of Some Concrete Distribution

Various MCME distributions can be derived by eq. 6 assuming concrete function
for g_(-). The following are some conditional distributions derived from eq. 9
with Constraint of moments for different number of variates and moments.

2
1) lM(Nal,l;0,0)

exp(—zylxz)
- Y
;? exp( 2lez)dx2 2'1

le(xz) exp(-zylxz) (10)

where 2‘yl>0.

2
2) IM(Nalsl;lsl)

exp(=5¥1%p=811%1%))
p, (x,)=—7 — — (Y46, %, Jexp(~ Y. X, =6, X, X
x) 2 I exp( 2Y1%9 Gllxlxz)dx2 2'1° 7111 2717277117172

11)
where 2Y1+611x1>0 in all X
2
3) 1M(Na;,2;l,1)
exp(-,Y X, -, Y x2-6 X.X,)
PLmpY1%272Y2%27011%1%2

p, (x,))=
x 2 © exp(-,Y X,- x2-6 X, X,)dx

I SXPL=9Y1¥979Y2¥X37011%1 %2/ 9%y

2 2
o[22 expl= vy #8130 7/ (4g¥p) =5 %y =p Yo%) -8y 1%, %, )
=2y == (12)
™ erfc{(2Y1+611xl)/(2|6Y2)}
2 2
where erfc(z)=$?~12 exp(-t7)dt and 2Y2>0.
2
4) M(Na,,2;2,2)
2 2 2 2 2
SRR L) B A e Ul e A0 U B 1 o M
X172 1° exp(=,Y,Xo=,Y xz-G X X, =8 X Xo=8 xzx -6 x2x2)dx
0 27172 27272 T117172 127172 C217172 T227172 2

~ 2 2.2 2 2
=2 - - - -
\k2Y2+612x1+622x1)/" expl=(5Y;+8, 1% 48, X)) /LA (Y48, 53 +8,,%1 ) b=,y Xy =, Yo%)

) 2. 2 . 22 2 5
§11%1%9781 %1% =851 %)%y =8 %) X l/erfel (37 +8, X, 461 )%, +6,1 X1) /(257,48 5% 48, ,x1) }

(13)
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2
where 2Y2+612x1+622x1>0 in all Xy

5) n_;M(Na;,Naz,...,Nan_1,2;1,1,...,1)

<«——n—>
_ 2 by b2
pxlxz...xn_1(xn)—exP(_nylxn—nYZXn-bn-%=0"’bzio blio b 1ba...bpo1l¥1 X2 00
bn-1_bn S oy a2 bibz _bn-1 bnyy
Xno1 Xn /15 exP (- Y X~ Yoxy bn_%=0"'bzé0 b]éo 6b1bz...bn,1131 IR e
biby _bp_1,2 _ _
=2y Yo /T exP{'(nY1+bn_%=o°°'bzio b,io NN LB SETEL S AV CN PO LA LS
2 by b2 bp-1
nYan=bn_%=0'°'bzéO bléo Obyba.s.bpoil¥1 X2+t ¥pl1 xn}/

by_b2 bn-1
erfC{(nY1+bn_%=0"’bziO biEo 8y 1ba . bpo11¥1 X2 o Xpo1 M Gyfyp)} A4

where ny2>0.

6) n_‘Z’M(Nal,Naz,...,Nan_2,2,2;1,1,...,1)

< N—2>

!

2 2
pxlxz...xn_z(xn-l’xn)_exP(-n-llen-l-n-lYZXn-Z-nlen-nYZXn_bné0'"b2=0 b,io
by _ba bn _ _ 2 _ _ 2_
Sb1bs...bo*1 X2 ***%n X/G?f? exp () _1Y1%0-1"n-1Y2%n-1"n"1%n"nY2%n bniO"'bgiO b,go
bi_b2 . _bn
S ibzes.bg®L X2 ¢ Xy JdX,_dx)

2 2 bi_b>
=21 Yo/m exp (= g Yix g Y2xn-1-nY1xn-nY2xn-bn§0'"biéo blio Sbiba...bn®l X2 *°°

bn /t o _ 2 bi_b» bn-2
“n//tlo exP{-nlen,nYZXn-bn_§=0'"bzio bliO Sh1ba.sebgo201®1 X2 ** ¥no2 XptlMyt

by _ba bn-2_bn,2 +
bnéo bn_§=0"'bzio b1gO 8hibs.. bgorlbn®l X2t Enoz Xn ) /(i gYp) terfel( iy

by bs bpn-2_bp
bnéo bn-%=0"'bgio blio Sbybse. bnylbg®L X2t Xnog a0/ 2y _g¥p) Hdxy
(15)

where n_1Y2>0 and we exclude the case that bp-1=bp=0.
The Level of Maximum Entropy Distribution

The maximum entropy distribution can express many types of distributioms which
are well-known in statistics. That is, the uniform distribution (Amari (1)), the
normal distribution, the logarithmic normal distribution, the exponential distribu-
tion (Takasao and Ikebuchi (17)), the Gumbel distribution (Jowitt (4)), and the
Cauchy distribution (Campenhout and Cover (2)) are derived by using the one-variate
maximum entropy distribution., And the uniform distribution, the normal distribu-
tion, and the exponential distribution with no correlation between variates are
derived by using the two-variate maximum entropy distribution (Sogawa, Araki and
Terashima (12)), and moreover the uniform distribution and the exponential distri-
bution with no correlation among variates are derived by using the multivariate
maximum entropy distribution (Sogawa, Araki and Sato (13)). In the same manner as
the above maximum entropy distribution, we can derive many distributioms which
contain six distributions described in former paragraph by using the MCME distribu-
tion. The kind of distribution which we can derive depends on only the function
g ().

- On the other hand, Pearson showed that many probability density functions

which are well-known in statistics were the solutions for the following differen-
tial equation,



1 dp(x) k0+x
(16)

px) dx 2
kl+k2x+k3x

where k., k., k2 and k., are the constants. The probability density function p(x)
is diviged %nto three main types and ten transition types, and they are called the
Pearson’s system of frequency-curves (Elderton and Johnson (3)). They contain J
type distribution, U type distribution, symmetric distribution, non-symmetric dis-
tribution and so on. There are the both side finite distributions, the one side
finite - the other side infinite distributions, and the both side infinite distri-
butions in them.

There are the Gram-Charlier’s series which are more general than the Pearson’s
system of frequency-curves in a sense (Sato (10)). This system of the distribution
does not compose the set of many different functions but infinite series whose
terms are the particular functions. They are given by

p(x)=i§0 Ai¢i(x) (17.1)
or
p(®)=expl E A0, () (17.2)

where A, is the coefficient and &,(x) is the function of x. The Charlier’s A type
series %as the normal distributiofi and its differentiated as &, (x) with continuous
variate x in eq. 14.1. The Charlier’s C type series has the Hermite polinomials as
®, (x) with continuous variate x eq. 14.2. The Charlier’s B type series has the
Poisson distribution and its differences with discrete variate x in eq. 14.1.

Considering now comparison among above three systems, the constraint condi-
tions of the maximum entropy distribution, that is, eqs. 4 are equivalent to the
relation among each constant in Pearson’s system of frequency-curves and to the
type of ®,(-) in the Gram-Charlier’s series. The maximum entropy distribution with
the constraints of the arbitrary functions g_(.), that is, eq. 5 and eq. 6 are
equivalent to the differntial equation eq. 16 in the Pearson’s system of frequency
-curves and to the infinite series eqs. 17.1 and 17.2 in the Gram-Charlier’s
series.

This shows that the maximum entropy distribution is based on the same level
as the Pearson’s system of frequency-curves and the Gram—-Charlier’s series. The
maximum entropy distribution with the concrete function g_(.) is equivalent to the
one of the distributions of the Pearson’s system of frequgncy-curves and to the one
of the Gram-Charlier’s series.

THE APPLICATION TO HYDROLOGICAL DATA AND DISCUSSION OF THEIR RESULTS

The Application to Annual Rainfall

We applied the MCME distribution to the annual rainfall at the four rainfall
gaging stations (Nagano, Matumoto, Ueda and Karuizawa in Nagano prefecture) in
Fig. 1.

We subtracted 500mm from the real annual rainfall so as to be identified the
Lagrangian multipliers and normalized it by using the expectation (Wragg and
Dowson (19)). When we illustrate the curve of the MCME distribution, we returned
it to the basical value. We identified the MCME distribution by changing the ob-
jective points in which the occurrence probabilities are estimated, the conditional
points in which the occurrence values are given as the condition, the conditional
number which is the number of the conditional points, and how of adoption of the
moments.

The whole term is divided into three terms as follows.
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Fig. 1 Four rainfall gaging stations in the Chikuma river

1) Term of identification : Identification means to identify the parameters
of the MCME distribution. This is the term in which there are both the objective
points data and the conditional points data, and they are utilized for the identi-
fication of the MCME distribution.

2) Term of checking : Checking means to compare the observation data with the
values obtained from the MCME distribution., This is the term in which there are
both the objective points data and the conditional points data, and they are uti-
lized for the checking of the MCME distribution.

*3) Term of estimation : Estimation means to obtain the values from the MCME
distribution where there are no observation data of the objective points. This is
the term in which there are no objective points data and there are the conditional
points data, and they are utilized for the estimation of the MCME distribution.

(a) Relation between the how of the adoption of moments and change of dis-
tribution

The explanation of the distributions in this section is shown in Table 1, and
the parameter values of these distributions, that is, the values of the Lagrangian
multipliers are shown in Table 2. The change of the distributions by how of the
adoption of moments is summarized as follows:

1) In the MCME distribution where Matumoto x, is the condition and Karuizawa
X, is the object, the how of the adoption of moments is as follows. Firstly, when
the first two moments in Karuizawa x, are adopted, no moment is adopted in MK1,
the first one moment is adopted in MﬁZ, the first two moments are adopted in MK3
and first three momgnt are adopted in MK4 in Matumoto x,. If we express the
product moments jx ¢ 2p(x ,xz)dxldx2 as (b,,b,), we adopted the two moments,
that is, (0,0) and {l,i). }he examplés of theseé distributions are shown in Fig. 2.
The MK2 is much similar to the MKl in the shape, the expectation and the standard
deviation, The MK3 is sharper than the MK2 and differs from the MK2 on the points
of the expectation and the standard deviation, The MK4 is similar to the MK3 not
only in the sharpness but also in the expectation and the standard deviation. If
we express the MCME distribution as "M(Na ,Na ,...,Nap;Np) (where Np is the number
f the product moments), the MK1-MK4Mare the distributions which are expressed as
M(Na;,2;2). Though the Lagrangian multipliers of the number of Na; to the condi-
%ion X, are therefore reduced both in the numerator and the denominator, the other
Lagrangian multipliers, which are identified here, are influenced considerably by
them. The shapes of the MCME distributions consequently have the differences
between themselves. Besides, we have known that the even-order moments were very



Table 1 The explanation of the symbol of the MCME distribution
applied to annual rainfall where Nb is the number of
product moment in ;M(Nal sNaz,...,Nan;Np)

(a) pxl(xz)

Symbol g?_‘:;on Object Distribution
Matumoto | Karui

MK 1 a(,‘j‘;‘)’ ° a‘[,‘::?”“’a 2 M(0,2;2)

MK 2 " " ?lM(l.Z;Z)

MK3 " " {M(Z,Z;Z)

MK 4 " " 2M(@3,2;2)

MK 5 " " tM(2,2:5)

N Mat t
L By Gy | IM@.2:i2)
NM2 " " tM(4,4;2)
(®) Py o, (%3)
Symbol Condition Object Distribution
Nagano, Matumoto | Karuizawa
NMK 1 (x.) (x..) (x.) IM(2,2,2;2)
1 2 3 2
NMK 2 " " IM(2,2,2;3)
Nagano, Ueda
NUK 1 (x) (%) " IM(2,2,2;2)
NUK 2 " " IM(2,2,2;3)
MUK 1 Matumoto, Ueda 3
(x]_) (xz) n 2 M (2 N 2 » 2 M 2)
MUK2 " " 32M(2!2!2;3)
(c) Pyoxoxs 4)
Symbol Condition Object Distribution
Nagano, Matumoto, Ueda Karuizawa
NMUK 1 (x,) ’ (x,) (x3) (x,) iM(@2,2,2,2;2)




Table 2 The Lagrangian multipliers of the MEME distribution

applied to annual rainfall

(@) b, (x)

87

* a
271 272 811 512 821 8§22
MK 1 -0. 15628E+02 0.72780E+01 0.94557E+00
MK 2 -0. 13070E+02 0.68602E+01 | -0.84153E+00
MK 3 -0.74173E+01 0.11697E+02 | -0.15988E+02
MK 4 -0.74153E+01 0.11895E+02 | -0.15885E+02
MKS -0.28850E+02 0.24760E+02 0.24837E+02 | -0.23047E+02 | -0.17072E+02 0.94557E+01
X2  First one moment 0.80885E+03 mm
271 172 273 274 811
NM1 -0.40860E+01 0.76815E+01 -0.11308E+02
NM2 -0.12286E+01 0.45097€+01 0.11862E+01 | -0.54487E-01 | -0.11381E+02
x;  First one moment  0.95488E+03 mm
®) Py, (5)
371 372 So11 8101 111

NMK 1} -0.14103E+02 0.80461E+01 -0.388639E+01

NMK 2 § -0.31574E+01 0.14546E+02 | -0.17014E+02 | -0.89181E+01

NUK 1 | -0.16082E+02 0.98308E+01 -0.35544E+01

NUK2 § -0.89208E+01 0.20148E+02 | -0.22456E+02 | -0.89176E+01

MUK 1 | -0.16808E+02 0. 10534E+02 -0.40041E+01

MUK 2 | -0.72122E+01 0.'233415002 -0.22456E+02 | -0.17013D+02

X3  First one moment 0.80885E+03 mm
() pxlxzx3 (xl;)
a7 ar2 1111 X4 First one moment
NMUK 1 | -0.14443E+02 0.72869E+01 -0.72989E+00 0.80685E+03 mm
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pxl(xz) pxl(xz)

x10°8 x10-3
4.0 4.0

3.8 p:Expectation 3.5
o:Standard deviation
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0.5 AN 0.5 N
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x10°3 Pry %27
6.0 x10°3
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3.5
3.5
3.0
3.0
2.5
2.5

1500 X2 2000 500 1000 1500 x2 2000
taa) taa)

Fig. 2 The change of distribution Py (x,) changing the how of
adoption of moments (Product homénts : (0,0), (1,1),
Condition : Matumoto X1 Object : Karuizawa XZ)

effective to improve the applicability to histograms in one-variate and two-variate
maximum entropy distribution. We could show here too that the second moment varied
pretty well the shapes of the MCME distribution.

2) The MK5 is the MCME distribution that adopts the first two moments of
Matumoto x, and Karuizawa x.,, respectively, and (0,0), (1,1), (1,2), (2,1), (2,2)
moments be%ween Matumoto X, and KaEuizawa X,. We show the ope example of the MK5
in Fig. 3. As compared the MK5 (= M(2,2;5)? with the MK3 (=1M(2,2;2)), when
Matumoto x, is less than about 100Umm, the MK5 is sharper than the MK3, and when
Matumoto x; is more than about 1000mm, the MK3 is sharper than the MK5. When
Matumoto x] is considerably small as shown in Fig, 3, the MK5 has the very sharp
shape.

3) We show the NM1l which has the first two moments of Nagano x, and Matumoto
X, respectively and the NM2 which has the first four moments of x, and x, respec-
tively in Fig. 4, where we adopted both (0,0) and (1,1) as the product moments.
Though both are similar generally, the NM2 is sharper than the NM1l when Xy is
larger than about 1300mm.

4) We obtained the NMKL and the NMK2 which have Nagano x, and Matumoto x, as
the conditions, the NUK1 and NUK2 which have Nagano x, and Ueéa x, as the con&i-
tions, and the MUKl and MUK2 which have Matumoto x, and Ueda x, as the congit%onﬁs
while Karuizawa x, is the object. When we express the product moment jj x lx2 Xg
p(xl,xz,x3)dxldxzax3 as (bl’bZ’b3)’ the NMK1, the NUK1l and the MUKl have (6,0,0)
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'pxl (x2)
X103

Ft 1926

500 1000 1500 X2 2000
tpa)

Fig. 3 The change of distribution p (x2) changing the how of
adoption of moments (Product homénts : (0,0), (1,1), (1,2),
(2,1), (2,2), Condition : Matumoto X;s Object : Karuizawa xz)

Py, (x2) Py, (x2)

X10°3 x10°3
.0 w0
3.5 3.5
3.0 1898 3.0 8

- 18
2.5 // 2.8 /1 ?
2.0 / 2.0 /" \
1.5 Nle 1.5 NMZI
10 AR 1o /5 §
0.5 / \ 0.5 /
,/ \\ _ /
° so0 1000 100 X2 z(ooc: ® s00 1000 1500 X2 2000

Fig., 4 The change of distribution P, (xz) changing the how of
adoption of moments (Product’homénts : (0,0), (1,1,
Condition : Nagano Xy Object : Matumoto x2)

and (1,1,1), and the NMK2, the NUK2 and MUK2 have (0,0,0), (1,0,1) and (0,1,1).
We show some examples og these distributions in Fig. 5. _As compared with each
other, we can see that _,M(2,2,2;3) is much sharper than 2M(2,2,2;2), and their
expectations and standard deviations are different considerably,

(b) The change of the distribution shape induced by the change of the number
of constraint conditions

We added the NMUK1 which has Nagano x., Matumotg X, and Ueda x, as the condi-
tions, and Karuizawa x, ag tge Bbjgct. Th}s is the M(§,2,2,2;2). When we express
the product moments yysx lx22x33x4"p(x1,x2,x ,xé)dxldx dx,dx, as (bl’bZ’b sb,), we
adopted (0,0,0,0) and (1,1,1,1) in this distz%bution. e show the ohe éxample of
the NMUKL in Fig. 6. We could not identify .M(2,2,2,2;4) which has (0,0,0,0), (1,
0,0,1), (0,1,0,1) and (0,0,1,1) in this research.

We use the distribution which has Matumoto as one of conditions and Karuizawa
as the object in investigating the change of the distribution shape induced by the
change of number of conditions. We divide now these distributions into two groups
by the how of the adoption of the product moments.
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1) 1st group : MK3, NMKl, MUK1, NMUK1l

This group contains the distributions whose product moments are composed by
(0,0,...,0) and (1,1,...,1). The distributions become gradually flat with the in-
crease of the number of conditioms, that is, from 1 condition (MK3) to 2 conditionms
(NMK1 and MUK1) and from 2 conditions to 3 conditions (NMUKl). We think that the
shapes of the distributions have the tendency to disperse in increasing of the num-
ber of conditions because of the how of above adoption of the product moments.

2) 2nd group : MK3, NMK2, MUK2

This group contains the distributions whose product moments are composed by
(0,0,...,0) and the combination of (0,...,0,1,0,...,0,1) as the correlation be-
tween the one of conditions and the object. The distributions become gradually
sharp by the increase of the number of conditions, that is, from 1 condition (MK3)
to two conditions (NMK2 and MUK2). We think that this is why the information of
the correlation between variates is adopted well by using the combination of prod-
uct moment (0,...,0,1,0,...,0,1), We think that the MUK2 is sharper than the NMK2
because the correlation between Karuizawa and Ueda is larger than the correlation
between Karuizawa and Nagano.

Finally, we show the expectation u and p+0 (0:standard deviation) given by the
MK3 with the real annual rainfall of Karuizawa in Fig. 7. The accuracy of the con-
formity between the term of identification and the term of checking is almost the
same. This tendency is kept in the values which are obtained from the other dis-
tributions.

The Application to Annual Maximum Daily Rainfall

It is very impotant to obtain the probable hydrologic variate of annual maxi-
mum daily rainfall to make a flood control plan. If the number of existing data
are not enough to obtain the probable hydrologic variate, it is necessary to sup-
ply the data by using the suitable method, We estimate here the annual maximum
daily rainfall in Matumoto given the occurrence of daily rainfall in Nagano.

(a) The estimation of annual maximum daily rainfall under assumed simultane-
ous occurrence

Assuming the simultaneous occurrence between Nagano and Matumoto on the annual
maximum daily rainfall, we estimated the daily rainfall in Matumoto. We obtained
the MCME distribution "M(2,2;2) which has the annual maximum daily rainfall in
Nagano as the conditioii x, and the daily rainfall of that day in Matumoto as the
object x,. We adopted here (0,0) and (1,1) as the product moments.

The data relates to a 20-yr. annual maximum daily rainfall for the period
1965-1984 in the term of identification and a 9-yr, annual maximum daily rainfall
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for the period 1956-1964 in o u:Expectation
(nq) M
e Ayl “yto (o:Stantera deviation
b
this distribution in Table 3, © Observation value

and some examples of the ooo H ‘l’

shapes of this distribution in ]

term of checking in Fig. 8. 1500

We can see that the shapes of P

this distribution are flat in

general, o becomes large be-

cause of it and the width of oo |1

p+0 becomes large. Though

the expectations don’t always

have good agreement to the

observation values, the accu-

racy of the conformity in the - ]

term of checking doesn’t de- 1943 - 1982 (the term of identification)

crease comparing with one in tear

the term of identification. 2000
We show the Thomas plot

of values of annual maximum

daily rainfall in Matumoto

given by annual maximum daily

rainfall in Nagano as the con- e l [ l { { l l
-]

500

ditions on log normal curve
paper in Fig. 9. Fig. 10 is
the Thomas plot of the obser-
vation values of annual maxi- 1600
mum daily rainfall in Matumoto

in the same manner as Fig. 9.

Though we assumed the
simultaneous occurrence of 500
annual maximum daily rainfall 1926 - 1942 (the term of checking)
in Nagano and Matumoto, it
didn’t occur practically and (ao)
the values obtained from the 2000
MCME distribution are smaller
than the observation values. 1 l

(b) The estimation of l ][ ll l l l ]
annual maximum daily rainfall
by usimg simulation ra}nfall

We obtained here M(2,2;

2) which has the daily rain-

fall over 25mm in Nagano as s00
the condition x, and the 1898 - 1925 (the term of estimation)
simultaneous da}ly rainfall

in Matumoto as the object
X,. We adopted here (0,0)
and (1,1) as the product
moments.

The data relate to
a 20-yr. daily rainfall for the period 1965-1984 (147 rainfalls) in the term of
identification and a 9-yr. daily rainfall for the period 1956-1964 (74 rainfalls)
in the term of checking. We show the Lagrangian multipliers of this distribution

in Table 4, and the shapes of this distribution in 1959 (4 rainfalls) in Fig. 11.
These show the shape of the exponential distribution and the shape of the flat

This is why the obtained
values shifts to left side to 1500

the observation values in Fig. ! l
10. l l

1000

Fig. 7 The annual rainfall obtained by using the
MK3 distribution



Table 3 The Lagrangian multipliers of the MCME distribution p_ (x,)
applied to annual maximum daily rainfall asuming simuftanfous

occurrence
I
271 272 811 X2 First one moment

0.30977E+01 0.43992E+00 | -0.30430E+01 0.46500E+02mm
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e o
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Fig. 8 The MCME distribution Py (x2) of annual maximum daily
rainfall assumed simult&@neous occurrence (Condition H
Nagano X1 Object : Matumoto xz)
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Table 4 Lagrangian multipliers of the MCME distribution p (xz) applied
to annual maximum daily rainfall by using simulat¥dn fainfall

‘ﬂ“
271 272 611 X2 First one moment
-0.19152E+01 0.35428E+00 | -0.18308E+01 0.32684E+02mm
normal distributiom. 9]
The simulation rainfalls are generated »r
by the obtained MCME distribution as follows: .
1) The uniform random number R is gen- i o
erated over the interval [0,1]. 9o N
2) %., which has the R as the cumulative X M
probabilify, is obtained by the above distri- X r
bution with the condition x,. - f
3) %, is regarded as t%e simulation o !
rainfall. I ¥ 4
It is not desirable to generate the i o
uniform random number over the interval o’
{0,1] because they contain the abnormally 1% N

large values and small values. We gener-
ated therefore the random numbers over the

interval [a,1-0] being based on the proba- e =,
bility of exceedance 0=1/(n+l) of Thomas (az)
plot related to the maximum value of sample

size n (Nagao and Kadoya (9)). The above Fig. 12 The Thomas plot of esti-

interval is [0.005,0.995] to 221 rainfalls
for the period 1956-1984.

We show the Thomas plot of annual
maximum daily rainfalls in Matumoto, which
are the maximum values of these simulation
rainfalls in each year, in Fig. 12, The
plot points in Fig. 12 expand on both sides comparing with Fig. 10. This is why
the shape of the MCME distribution becomes flat because the correlation between
the daily rainfalls over 25mm in Nagano and the daily rainfalls generated simul-
taniously in Matumoto is low, and the number of occurrance rainfalls is small.

mation values of annual
maximum daily rainfall
in Matumoto given by
simulation rainfall

CONCLUSION

This paper describes the theory of the MCME distribution, its characteristics
and the application of that distribution to hydrological data. We summarize the
result of this research as follows.

1) We could derive the theory of the MCME distribution with the arbitrary
function g_(-) and arbitrary order moments as the constraint conditioms..

2) We'could derive some distributions by giving the number of variates and
moments in the MCME distribution with the moments as the constraint conditions.

3) We discussed that the maximum entropy distribution was based on the same
level as the Pearson’s system of frequency-curves and the Gram-Charlier’s series
by using 2).

4) Applying the MCME distribution to annual rainfall, we investigated the
change of the distribution shape induced by the how of the adoption of moments and
the change of the number of conditions.

5) Applying the MCME distribution to annual maximum daily rainfall, we ob-
tained the annual maximum daily rainfall of the objective point in assumption of
the simultaneous occurrence between two points and in use of simulation rainfall.

In the near future we wish to ‘increase the number of applications to_hydro-
logical data and to investigate the conformity of the MCME distribution to well-
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known distributions in statistics.
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APPENDIX - NOTATION

The following symbols are used in this paper:

Ai = constant of the Gram-Charlier’s series;
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arbitrary function;

constant of the Pearson’s differential equation;
number of arbitrary function gr(-);

number of variate x5

maximum order of moment related with x:i;

maximum order of product moment related with xgi;
probability density function;

conditional probability density function;

variate;

Lagrangian multiplier with the constraint of moments;
Lagrangian multiplier with the constraint of aibitrary func-
tion gr(-); and

a function or the function derived by a function in the

Gram-Charlier’s series.



