65

Journal of Bydroscience and Hydraulic Engineering
Vol. 4, No. 1, April, 1986, pp.65-77.

PROBABILISTIC MODEL OF RAINFALL OF A SINGLE STORM
By

Takeharu Etoh

Kinki University, Higashi-Osaka, Osaka, Japan
and

Akira Murota

Osaka University, Suita, Osaka, Japan

SYNOPSIS

We propose a probabilistic model of rainfall of a single storm. Each rain-
fall event is represented in terms of three characteristic variables: duration,
maximum intensity, and total amount. A joint probability density function of the
variables and analytical expressions of the moments are derived, including
correlation coefficients among the variables. The validity of the proposed model
is verified through its application to observed rainfall events. The correlation
coefficients between (a) duration and maximum intensity, (b) duration and total
amount, and (c) maximum intensity and total amount, and shape indices of the
‘'variables, all obtained using this model, showed good agreement with values
calculated from historical observations. The distribution function of total rain-
fall of a single storm is theoretically derived, and is named "SQRT-K distribu-
tion," which is a generalized form of the Eagleson's derived distribution.

AIM

It is well known that occurrence and intensity of disasters caused by
floodings, debris flows, etc. are accounted for not only by peak rainfall
intensity, but also by other characteristic rainfall indices: durationm, total
depth, etc. A probabilistic model is presented to express the relationship among
these rainfall indices.

Eagleson (2) derived the probability distribution function of total depth of
a single storm assuming exponentially and independently distributed duration and
average intensity, which is a half of peak intensity when a triangular hyetograph
is assumed. However, in most cases, there exists a positive correlation between
duration and average (or peak) intensity. It may be considered low enough to be
negligible, but is of crucial importance for some problems. Codrdova and
Rodriguez-Iturbe (1) employed a bivariate exponential distribution which had been
originally presented by Izawa (4, 5) and applied to hydrology by Nagao and Kadoya
(6), and showed an important effect of the correlation on the probabilistic
structure of storm surface runoff. Izawa's bivariate Gamma distribution has a
significant property in that the regression relation between the two variates is
linear, It is unrealistic, however, to assume a linear relationship between peak
intensity and duration, since, when the duration of a storm increases, the peak
may increase on the average, but the rate of increase may decrease as shown in
Fig, 1.

This study aims at presenting a model which can account for both the non-
linearity and correlation, and still is simpler than the Izawa's distribution in
the expression, while the application of the presented model may be limited within
the analyses of the probabilistic structure of peak, duration, and total amount of
a hyetograph or a hydrograph.
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MODELLING CONCEPT

We shall denote the duration, the peak intensity, and the total depth of
rainfall of a single storm by x, y, and 2z, respectively. It is generally
observed that peak rainfall intensity y is weakly and nonlinearly correlated to
duration x. When the duration of a storm doubles, the average of the peak may
increase, but remains less than double. Thus, it may be reasonably assumed that,
with storms of longer duration, the average peak intensity increases and the rate
of increase gradually decreases.

We shall express the nonlinear regression between x and y by:

y=tz(x) (§>0,x>0) Q)]

where § is the expectation of y for a given value of x, and y distributes around
§. The function { is a monotonically-increasing function whose rate of increase
drops as x increases. We shall introduce a random variable n to express the
distribution of y. Then,

y=Fen=¢t¢(x) *n(>0 (2)

where n is independent of x, and E(n)=1.

It is convenient to employ the expression of the product of ¥ and n as
shown in Eq. 2 instead of the sum, because, like rainfall intensity, the product
is always positive. If we employ the sum, n which represents the deviation of y
from § should distribute both in positive and negative domains, since the
expectation must be zero. And if n is independent of x, y may take a negative
value for a smaller x. If n is conditioned to avoid the negative y corresponding
to the value of x, the assumption of independency between x and n does not hold,
which makes the following derivation complicated and intractable.

Fundamentally, the function of [(x) must be determined on the basis of the
probabilistic model of a rainfall intensity series during a single rain storm.

. We shall employ the following approximate expression for total rainfall
depth of a single storm:

z2=E"(x)+y=E(x)n (3
where E£(x)=£7(x)+g(x) (see Fig. 2). Eq. 3 indicates that depth z can be

approximated by the product of the peak intensity and an appropriate function of
the duration. Then, x, y, and z are all expressed in terms of two independent



67

random variables, x and n. The model is less common in the respect that only two
random variables are involved to express the relation among three random variables.
Usually three random variables are required to express every random component of

a model with three original probabilistic variables. However, if the degree of
freedom (standard deviation) of z is sufficiently small under the condition that x
and y are fixed, it is practical to employ a probabilistic model with fewer random
variables, as in the present study. As shown in a later section, the correlation
coefficients between z and X, and z and y are relatively high, which implies less
freedom of z for fixed x and y; this can be the basis of a model with two inde-
pendent random variables. The simplification neglecting the residual random
component of z is considered justifiable since it makes the model much more
tractable both in the analyses and practical applications.

GENERAL EXPRESSIONS OF JOINT PROBABILITY DENSITIES AND MOMENTS

First, we shall deduce the general expression of the joint probability
density of duration and peak intensity in view of Fig. 3.

n n
| y=const.

\ z=const.

\{

X>x

Y>y

No y=const.

Xg
Fig. 3 The domain of integral to Fig. 4 The domain of integral to
derive the joint p.d.f. of derive the joint p.d.f. of
x and y y and z
Fs(x,y) = Prob{(Xs ) N (¥ s} =sF 7@ g1¢s)  £2(n) +ands (&)

where £1(¢) and f2(+) are the probability density functions (p.d.f.) of x and n,
and Fs (x, y) the joint cumulative distribution function (c.d.f.) of x and y.*
By partially differentiating Fs with respect to x and y,

£5(x,y) = 3%Fs(x,y)/9x3y = 1/5(x) * f1(x) * f2{y/0(x)) (5)
Similarly, the joint p.d.f. of duration and depth is derived as follows:

fe(x,2) = 1/g(x) « £f21(x) « £f2{2/E(x)} (6)

The derivation and the expression of the joint p.d.f. of peak and depth are
more complicated. We shall specialize the model to some extent to facilitate the
derivation by assuming the conditions shown in Fig. 4, i.e.,

(1) the curves representing y=const. and z=const. intersect just once on the x-n
plane, and
(2) zzy for x Sx9, or n 2ny,

* Subscripts 1, 2, 3, and 4, respectively designate properties of x, n, y, and z,
and subscripts 5, 6, and 7, stand for (x, y), (x, z), and (y, z).
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where (x¢, np) are the coordinates representing the intersection. Values xo and
no are calculated from Eqs. 2 and 3, supposing y and z to be comnstant values.
Then,

F7(y,2z) = Prob{(Ysy) N (2s52)}
=0 fg'/;(x)fl(X)%z(n)dndx
w17 ARy <5 (n)dnax Q)
Xo o
2
£20y,2) =2 F7002) o (a14n,) — (By+ By) "
dyodz
where
A == (3% £ o)}« SYTEO) g, (myan
dy 9z
) 1
Az =-3§£ £1(xo0) 'Zz;;sfz{ylg(XO)}
Ba ='—§'{3§2 fl(xo)}L:/E(XO)fz(n)dn
9z 9y
= 9%o 1
Bz . £1(xo) E(xo)fz{z/i(xo)]

The joint c.d.f. of all three variables, x, y, and z, can be derived through
a similar procedure based on the definition Prob{(Xsx) N (¥Ysy) N(Zsz)}, i.e.,
(1) for 0sxsxp, changing the upper bound of integral of the first term of the
righthand side of Eq. 7, x¢, to X, and eliminating the second term, and
(2) for x>xy, changing the upper bound of integral of the second term, = to X.
The general expression of the moments is quite simple as follows:

v(r,s,t) = [y Sy x5 +y% e z" £1(x) * £,(n)dxdn

Sy XTeLS(x) » EE(x)£1(x)dx + f, nS*Ef,(n)dn (8)

where v(r,s,t) is the r-th, s-th, and t-th joint moment around the origin with
respect to x, y, and z.

SPECIFIC EXPRESSIONS FOR SOME PRACTICAL ASSUMPTIONS
a) The joint and marginal distributions

We shall introduce the following three practical assumptions to advance the
derivation:
(1) x and n are Gamma-type distributed;
(2) the expectation of peak intensity is proportional to (duration)@; and
(3) the total depth is proportional to 1/2+(duration)-(peak intensity).
Assumptions 1 and 3 are empirically reasonable, while 2 stands to reason as long
as 0sas1, as shown in Fig. 1.

Then, both the random variables x and n have the following p.d.f.:

B® -1 _ -
£(s) = @ s le Bs 9)

where a and B are the shape and the scale parameters (o>0, B>0).
Structural Eqs. 1 and 3 are specified by the assumptions 2 and 3, as follows:

t(x) = k1x? (xk1>0, 0sas1) (10)
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z = % k2xy (k2 > 0) (11)
By substituting (2) and (10) to (11),

z = %-K3x1+an (12)
Then,

E() = 3 koxi*a (13)

where k3 = K1 K2.

By substituting (9) and (13) to (6),
-t ap-1 262
fe(x,2) = ¢ »x**™ exp(—B1x) + z°2  exp(- s xi*a z) (14)

where
ay a2
Bi~ ., B2" |

c = (K_a) . o) I‘(uz)’ ay = a1—og (1+a)

It is observed from Eq. 14 that the conditional distribution of z for fixed
x is the Gamma-type distribution with the same shape parameter as for n, i.e., az,
and the scale parameter 282/ (k3x**2), Therefore, the shape of the conditional
distribution of z is similar to that of n, regardless of x, and the range (and the
standard deviation) gets wider for larger x. The conditional distribution of x
for fixed z is not a Gamma-type, while the marginal distribution is originally
assumed to be so.

The integration of Eq. 14 with respect to x deduces the marginal distribution
of z.

£4(z) = fy fo(x,2)

- © 282
@271 Jo x741 exp(—B1 x———m'z)dx (15)

K3X
We shall specify Eq. 15 by putting a=0 and a2=1, which designate the case in

which x and y are independent and y is exponentially distributed. After some
mathematical manipulation,

£4(2) = '« (VBz) 'K, (VB2) (16)
where K, is the v-th order modified Bessel function of the second kind, i.e.,
1, (Byv® =V-1 s?
Ky (s) ey (—2') fo t exp (—t— H)dt 17)
and
c' = 2V71g/T(1-v); B = 8B1Ba/k3; V =—ay = 1—ay (18)

The assumptions a=0 and az=1, are not unrealistic approximations, since the
correlation between duration and peak intensity is low, and an exponentially
distributed peak intensity is reported in some literature. Then, the p.d.f. of
the total amount of rainfall of a single storm may be reasonably approximated by
Eq. 16. In view of the type of expression, we shall call the distribution
"SQRT-K distribution." It has two parameters, i.e., shape parameter v and scale
parameter 8.

Eagleson (2) derived the p.d.f. of the depth of a single rain storm,
assuming that both duration and average rainfall intensity distribute expo-
nentially. The p.d.f. is a special expression of Eq. 16 for v=0 (a1=1), and,
thus, with one parameter. He reported that the fitness of his derived distribu-
tion to observed data was much better than that of the exponential distribution,
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i.e. conventionally-used one-parameter distribution, and as good as that of the
Gamma distribution, which has two parameters. Therefore, the SQRT-K distribution,
which is a generalized expression of Eagleson's derived distribution, probably
better fits the frequency distribution of the depth of a single storm.

Through a similar procedure we can derive the joint p.d.f. of x and y, and
the marginal distribution of y. The joint p.d.f. of (y,z) and (x, y, z) are based
on Eq. 7'. It is possible to derive the specific expressions, but somewhat
complicated.

b) Moments and correlatiom coefficients
By substituting (9), (10), and (13) to (8),

v(r,s,t) = fy xTCS(x)EL(x) £y (x)dx » [y nS*EE,(n)dn
_.s. 1 .t g g3
TG T T

(-3 - -
oS5 xr+sa+t(1+a)+a1 1,-Bixgy

© +t+az-1 -
oS ns 2=l andn

- i+ (hrot iR S (19)
81 T(a1) B T(az)
For example,

E(x) = v(1,0,0) = a1/81 (20)
E(x?) = v(2,0,0) = (1+01)a1/Bf (21)
Var(x) = v(2,0,0)—v2(1,0,0) = a1/8} (22)
Cov(x, z) = v(1,0,1) —v(1,0,0) « v(0,0,1) (23)
o(x, z) = —Sov(x, 2) (24)

YVar(x) vYVar(z)

where Var, Cov, and p represent the variance, the covariance and the correlation
coefficient of the index variables.

Similarly, the specific expressions of all other joint moments are easily
obtained by giving proper integers to r, s, and t in Eq. 19. Some of them are
tabulated in Table 1. It should be noted that a2=8; since E(n)=az/B2=1.

MODEL VERIFICATION WITH OBSERVED DATA

a) Characteristics of observed rainfall

Hashino (3) investigated characteristics of hourly rainfall series at Osaka
during the typhoon season, i.e., from June to October, in which severe rainfalls

Table 2 Means and correlation coefficients of observed rain storms

Mean (mm) Correlation coefficients Sample size
Month
X b Zz X-y X-2 y-z
6 21.7 9.4  40.2 | i0.273% 10.581! 10.789% | 121 (1941-1970)
7 21.0 10.1  40.9 | {0.437} [0.660: :0.660: | 163 (1926-1965)
8 19.5 9.3 39.2 50.5065 10.829; 10.742! 35 (1926-1965)
9 20.7 7.2 33.4 | {0.061} i0.630! |0.509: 91 (1926-1965)
10 20.5 5.1 29.3 ig;}}§j 10.237; :0.814: 111 (1926-1965)
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are expected. He defined a single rainfall as a rainy spell with preceding and
following dry spells of 4 hours or more, and chose rainy spells of durations equal
to or more than twelve hours. Some of the results are shown in Table 2 and Figs.

5 and 6, The averages of duration, peak, and depth, and their cross-correlation
coefficients, are tabulated in Table 2. The scatter diagrams are shown in the
figures.
z
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Fig. 5 An example of scatter diagram

Fig. 6
of duration x and total depth
z (Osaka, July, 1900-1965,

An example of scatter diagram
of peak intensity y and total
depth z (for the same conditions

data for %212 hours are
plotted. A rainy spell is
defined with preceding and
following 4-hour dry periods.)

as of Fig. 5)

The following characteristics are observed from Table 2.
(1) The sample correlation coefficient between duration and peak r(x, y) is small,
i.e., 0 to 0.5, and the average is about 0.3,
(2) the average of r(x, z) is about 0.67 for June through September, while the
correlation of October is singularly low, and
(3) r(y, z) ranges from 0.5 to 0.8, and the average is more than 0.7.
In Table 3, climate data of Denver and Bocond (Venezuela) are excerpted from
a paper of Cdérdova and Rodriguez-Iturbe (1). This table uses average intensity i
rather than peak intensity y. If we could assume triangular hyetographs, i=1/2y.
Then, the probabilistic distribution of i would be approximately the same as that
of y.
(1) The correlation coefficient between average intensity i and duration x is
0.043 to 0.12 for Denver, and 0.30 for Boconé.
(2) Shape indices of average intensity, duration, and total amount of Denver
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and Bocond are respectively 0.74 to 0.84, 0.63 to 1.21, and 0.32 to 0.38.

Table 3 Storm parameters for climatic data of Denver and Bocond
(after Cérdova and Rodriguez-Iturbe, 1985)

Denver Bocond
May 15 to May 15 to May 1 to
Climatic Aug. 15 June 15 Nov. 15
variable
Mean s.d. ?hape Mean s.d. §hape Mean s.d. ?hape
index index index
i 1.54 2,08 | 0.74 1.23 1.34 |1 0.84 0.81 0.89 | 0.83
X 3.58 4.64 | 0.66 5.75 7.26 | 0.63 4.16 | 3.78 1.21
2 5.93 10.46 | 0.32 8.28 13.60 | 0.37 4,39 | 7.08 | 0.38
r(x, i) 0.04 0.12 0.30
No. of 790 226 500
storms

b) Derived characteristics

The characteristic parameters of the proposed model are calculated by sub-
stituting proper values for the parameters in the derived expressions, and are
compared with those calculated using observed data. Duration x may have an
approximately exponential distribution, and the additional random variable n the
distribution slightly skewed from the exponential distribution toward the right-
hand side. Thus, we shall suppose that ci=1 and o251 to 2. Another parameter,
a, is defined in the range from 0 to 1, and may take a value around 0.5. The
parameters calculated based on the expressions in Table 1 are shown in Tables 4
and 5.

Table 4 Correlation coefficients (theoretical estimates)

p(x, y) p(x, z) p(y, 2)
a
Y 0 1/2 1 0 1/2 1 0 1/2 1
1 |70 0.4027 o0.577 [{0.577 0.623 0.603 |{0.577 0.800} 0.870
2 {0 0.524; 0.707 |}{0.707 0.741}{ 0.707 |i0.5 | 0.801; 0.875
® 0 0.957 1 1 0.969 0.894 0 0.862 0.894

Table 5 Shape indices (theoretical estimates) p?/o?

X y z
a
o 0 1/2 1 0 1/2 1
O T I R N Vo SV B IV R WV R R VIY
2 il 1.099 | 1/2 i1/2 0.245 | 1/8
© 1 1 13.663 1 1 0.418 1/5

Tables 4 and 5 show correlation coefficients and shape indices. The shape
index is defined as the square of the inverse of the variation coefficient, u2/02,
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Fig. 7 An example of the comparison
of the joint p.d.f. of x and z
(Eq. 14) and the scatter diagram
(Fig. 5)
for a=1/4, ay=1, B3=1/10,

a2=B2=2, k3=1.6, unit: x10 °

since the shape parameter o of the Gamma

distribution is equal to u?/o?, and, the

relation between the value of a and the
shape of the distribution is well known,

i.e., for O<o<1, a=1, a>1 and o> 1, the

distributions respectively correspond to

the reversed-J, the exponential, the
skewed bell-shaped, and the normal dis-
tributions.

It is observed from Tables 4 and 5
that,

(1) for a=0 to 1/2 and a2=1 to 2, the
population cross-correlation co-
efficients are p(x, y)=0 to 0.52,
p(x, 2)=0.58 to 0.74, and
p(y, 2)=0.5 to 0.8, which agree well
with the sample statistics summarized
in the previous section,

(2) even if x and y are independent
(a=0), x and z or y and z are highly
correlated,

(3) the distribution of y is approxi-
mately exponential or a little more
skewed than that, since the shape
index, pzloz, is 0.67 to 1.1, and

(4) the distribution of z is much more
skewed than the exgonential distri-
bution, since u?/0%=0.17 to 0.5«1,
and for independently and exponen-
tially distributed x and n (a=0,
ai1=a2=1), the shape index of z is
equal to 1/3.

Theoretical estimates and observed
data are compared in Table 6. From this
comparison, it is concluded that the
proposed model explains quite well the
characteristics of observed rainfalls.
An example of the comparison between the
observed joint frequency distribution and
the derived one is shown in Fig. 7.

Table 6 Comparison of theoretically derived and observed characteristics

Shape indices Correlation coefficients
X y z x-y x-z y-2z
Theoretically 1 0.65-1.10 [ 0.17-0.50 | 0.0 -0.52 | 0.57-0.74 | 0.50-0.80
derived
Observed 0.63-1.21| 0.74-0.84 ) 0.32-0.38 | 0.06-0.51 | 0.24-0.83 | 0.51-0.81

Values for Bocond and Denver are calculated with average intensity i, instead of

peak intensity y.

FITTING PROCEDURE

The authors proposed a practical procedure to fit the derived joint distribu-

tion to observed data, and to estimate the parameters.

It is desirable to

estimate all parameters in the model at once by direct application of the maximum

likehood method to the joint probability distribution of x, y, and z.

However,
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since the expression of the joint distribution is complicated and the model has

six independent parameters, o1, Bi, a2(=B2), K1, K3, and a, it is quite difficult

to stably estimate them by the direct maximum likelihood method. The alternative

procedure is presented as follows:

(1) estimate a1 and B1, to maximize the logarithmic likelihood function %1 of the
marginal distribution of x, i.e.,

n
1 fl(xl) = i§1

(2) then, estimate @2, K1, k3 and a to maximize the following quasi-logarithmic
likelihood function %2:

21 = logg ii loge fi(xi) - max (25)

22 = loge iﬁ1 {fs(xi, yi)* felxi, 2zi)}
= % loge {£s(xi, yi) * £s(xi, 2i)} + max (26)
i=1 e

Several effective maximizing techniques and their standard computer programs
have been published, such as Powell's method (7) which is utilized by the
authors.

It is recommended to apply this technique to the data which are treated
beforehand as follows:

(1) subtract a small threshold value, e.g., 1mm/hr, from the original data and set
the negative data at zero, to eliminate the effect of negligibly small
rainfall data, and,

(2) if hourly rainfall data is analyzed, subtract x; from the duration of each
rainfall, where xx=0.5, since the rainy spells whose duration is seemingly n
hours actually have a duration of (n-1) to n hours.

Rainfall of a single storm is practically defined as a rainy spell with
preceding and following n dry periods, where n is somewhat arbitrary. The rainy
spells are sampled from data treated in step (1).

The application of the above estimating procedure to data observed in Osaka
so far have suggested that a=0.5, ai=1, and a2=1 to 2.

ADDITIONAL COMMENTS

In the present paper, the expressions (10) and (11) are assumed for the
structural Eqs. 1 and 3. Eq. 1 is a fundamental equation to relate the micro
characteristics of the rainfall time sequence, observed in a short time interval,
e.g., hourly rainfall sequence within a single storm, to the macro character-
istics of rainfall of a single storm. Therefore, the specific expression of Eq. 1
should be determined based on the probabilistic model of rainfall within a single
storm. This important process may adjust the relation between the probabilistic
models of rainfall of and within a single storm. Taking account of this role of
Eq. 1, the authors call Eq. 1 or Eqs. 1 and 3 the structural equationms.

Employing expressions other than Eqs. 10 and 11 in 1 and 3 will change the
subsequent equations. Even in this case, analysis can proceed along the analyt-
ical process presented here, and Eqs. 1 to 8 can be used for the fundamental
equations.

CONCLUSIONS

A probabilistic model of rainfall of a single storm is presented. Each
rainfall event is represented in terms of three characteristic variables, i.e.,
duration, maximum intensity, and total amount. A joint probability density
function of the variables and analytical expressions of the moments are derived,
including correlation coefficients among the variables. The validity of the
proposed model is verified through its application to observed rainfall events.
For example, the model gives correlation coefficients between (a) duration and
maximum intensity, (b) duration and total amount, and (c) maximum intensity and
total amount, are 0 to 0.5, 0.6 to 0.75, and 0.5 to 0.8, respectively.

The derived shape indices are 1, 0.65 to 1.1, and 0.17 to 0.5 for duration,
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maximum intensity, and total amount, respectively. As summarized in Table 6,
these theoretical estimates using the proposed model agree well with historical
observations. Further, the distribution function of total rainfall of a single
storm is theoretically derived, and is named "SQRT-K distributiom," which is a
generalized form of the Eagleson's derived distribution.
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APPENDIX - NOTATION
The following symbols are used in this paper:

a = exponent of duration x to express the nonlinear regression between

duration x and peak intensity y

Cov = covariance of index variables

E = expectation of index variable

£ = probability density function

F = cumulative distribution function

i = average intensity of a single storm

) = logarithmic likelihood

T = sample correlation coefficient

Var = variance of index variable

X = duration of a single storm

y = peak intensity of a single storm

z = total depth of a single storm

a = shape parameter of Gamma distribution

B = scale parameter

4 = function to express regression of peak intensity y to duration x

n = random component of peak intensity y for fixed duration x

K = constant

n = mean

v = shape parameter of SQRT-K distribution, joint moment of duratiom, peak
intensity and total depth

£ = function to express regression of total depth z to duration x

= population correlation coefficient; and

c = standard deviation.



