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SYNOPSIS

A density stratification with two distinct pycnoclines is generally produced
in large reservoirs by the combined actions of surface heat exchange and
substantial through-flows, or by the inflowing of suspended materials into the
reservoir. An experimental and theoretical investigation for a three-layer system
having two distinct interfaces is undertaken here to gain insight into the
characteristics of withdrawal flow fields in such practical systems. First, the
flow pattern and withdrawal characteristics 'in a two-layer system are examined.
Second, extending the work on the two-layer system to the case of three-layer one,
we devise an analytical method for evaluating the withdrawal ratio in each layer.
The proposed analysis is also applied to two examples of practical problems in real
reservoirs. One of them is the effective removal of turbid middle layer from a
reservoir. Another application of this study concerns the introduction of the
present analysis to our numerical model for the prediction of thermal fields in a
reservoir. From these results, we find the present work to be highly useful in
engineering aspects.

INTRODUCTION

The problem of selective withdrawal from stratified density fields is one of
practical importance. This problem is encountered in various engineering aspects,
such as condensor water intakes for industrial cooling-water systems from coastal
waters, irrigation water intakes, removal of turbid water from stratified
reservoirs, and similar applicatioms.

In most experimental and theoretical models on the selective withdrawal, the
ambient density stratification is represented as a two-layer system with a distinct
interface, or a continuously stratified system with a constant demnsity gradient
(2). Neither of these models, however, can precisely describe the water mass
behavior when two pycnoclines with steep local density gradients are formed due to
the combination of surface stirring and substantial through-flows in a reservoir.
Fig. 1 shows a typical example of such temperature fields observed in a pumped
storage reservoir. From May to September there exist two distinct thermoclines,
one near the water surface and the other in the lower regions. Due to the stirring
effect of successive pumping operation, a vertically uniform distribution of
temperature develops inside the intermediate layer between the two thermoclines.
After flood inflow transporting fine sediment or dissolved materials into some
intermediate level of neutral buoyancy in the reservoir, the internal density
fields also exhibit a typical three-layer structure, as shown in Fig. 2 (1). Two
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distinct density interfaces composed of heat and turbidity concentration are found
in this case. Between them a turbid middle layer is developed. Most of the
foregoing reservoir models adopt the theory of the linearly stratified system to
analyze withdrawal flow fields, even in such discretely stratified systems. These
models can reproduce the thermal fields with good accuracy neverthless they neglect
the local buoyancy effects within the thermocline. However, it seems unreasonable
that a several empirical parameters, e.g., depth and width of the flowing layer,
equivalent value of constant density gradient, eddy viscosity, critical densimetric
Froude number, etc., is introduced in such models so as to fit the prediction to
the observed data. Therefore, understanding the withdrawal characteristics of the
three-layer system is of practical importance, both in the modeling of water mass
behavior and in water quality management in reservoirs. Intending to gain insight
into dynamics of the withdrawal flow in such a system, the authors will carry out
fundamental laboratory experiments and devise a theory to evaluate the discharge
from each layer. The proposed theory is compared with experimental results.

The present work 1is also applied to the following two real reservoir
problems.
(a) Removal of turbid middle-layer water from stratified reservoirs

Since prolonged retension of some particulate matters in the reservoir often
results in crucial troubles in the hydrospheric environment, it is strongly desired
that turbid water must be removed as soon as possible. Based on our theory, we
show the optimum outlet level to selectively withdraw only the middle-layer fluid
from the three-layer system. According to our method, we can operate the selective
withdrawal equipments in the most effective way to remove the turbid water in the
middle layer from a reservoir.
(b) Prediction of thermal fields in reservoirs

A numerical model for the prediction of thermal stratification in a reservoir
is devised by extending the proposed analysis to a three-dimensional system. The
present analysis well describes the flow fields containing advective heat transport
in a reservoir. The predicted thermal structure well explains the annual cycles of
thermal fields observed in practical sites.

EXPERIMENTAL EQUIPMENT AND PROCEDURE

The experiments are carried out in the lucid plastic-walled tank shown in Fig.
3. The tank is 9.0m long, 0.3m wide and 1.0m maximum depth with a bottom slope of
1/10. A 2.0-meter-long vertical partition (1. in the figure) and a bottom plate
(2. or 2'. in the figure) are placed in order to obtain a uniform two-dimensional
flume of 0.lm wide and 2.0m long. This way makes possible to reduce the total
quantity of discharge and minimize the effects of the associated decrease in
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depth. A two-dimensional slot at the downstream vertical end of the tank consists
of a square section 10cm wide and 0.5cm high. This slot is connected to the
manifold hoses leading to the suction pump. Density stratification is produced by
filling the tank with one layer of fresh water and two layers of salt water, of
different concentrations, to determined layer depths. Fig. 4 represents an example
of density profiles measured with the conductivity probe, which shows that a
typical three-layered stratification with two distinct interfaces is formed. In
order to determine the flow rate from each layer by measuring the fluorescence
intensity of outflow, the middle layer is colored with fluorescent dye. Intake
flow-rates are measured with a float-type flow meter, downstream from the sink.

Flow velocity is measured by the hydrogen bubble method and metheylene blue dye as
well., Throughout the experiment, the salinity concentration and fluorescence
intensity of outflow are monitored by the conductivity probe and the fluoro
photometer, respectively, placed just downstream of the outlet. The flow discharge
from each layer can be simply determined from the records of salinity concentration

Fig. 3 Experimental equipment

and fluorescence intensity of outflow water, C, andf, . From the conservation of
volume and concentration, each layer discharge is related to C, and fo as:
q,~1(Com folfgCy)/C o fo/Tplay (1)
qufO/fB.qt (2)
qc=(co'f0/fB'CB)cO'qt (3)

where qp598s9¢ = discharges per unit width from the upper, middle and lower layers,
respectively; qt(=qA+qB+q ) = total intake flow rate per unit width; Cosfo
observed salinity concentgation and fluorescence intensity of the outflow water,
respectively; fb = predetermined fluorescence intensity of the middle-layer fluid,
and (g, C, = salinity concentration of the middle- and lower- layer fluids,
respectively.

The following two series of experiments are carried out.

(a) EXPERIMENT I H Two-layer system with the point sink at the bottom corner
(Fig. 5(a)).

(b) EXPERIMENT II ; Three-layer system with the point sink located at the
middle portion of the vertical boundary (Fig. 5(b)).

The system in EX. I has an analogous geometry to the upper and lower
subsystems in EX. II, subdivided by the horizontal plane through the sink. EX. I
is carried out to obtain fundamental information on the flow fields and withdrawal
characteristics. The obtained data are then applied to the analysis of the
three-layer system. Experimental conditions in each series are listed in Tables 1
and 2, respectively.
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Table 1 Experimental conditions Table 2 Experimental conditions
(EXPERIMENT-1I) (EXPERIMENT-I1I)
CASE | Ay () | hilem) | ex10 Fr e i 1 4
> (om0l e 107 ey | (e | (e

Al 5.0 5.0 a7 0.393~1.31

A2 7.0 8.0 5.1 0.427~1.36 B-1 5,05 | 9.79 | 9.0 5.0 | 16.7~50.7
A3 9.0 | 10.0 1.0 0.552~1.86 B2 | 495 | 4.87 | 9.0 5.0 | 16.7~50.0
A4 50 | 100 1.0 0.584~1.39 B3 [ 310 | 9.8 | 7.0 7.0 | 13.3~75.0
AS 5.0 6.0 9.9 0.543~1,30 B 5.0 | 1.89 | 6.0 12.0 | 16.7~66.7
A6 10.0 5.0 9.9 0.487~2.11 B5 | 28 | 10.2 | 9.0 5.0 | 16.7~50.0
A7 10.0 10.0 1.3 0.246~1.34 B.6 9.74 | 109 | 5.0 0.0 | 13.3~-38.3
A8 10.0 | 10,0 5.3 0.224~1.26 B.7 1.1 | 4.7 | 3.0 6.0 | 3.8~46.7
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WITHDRAWAL FROM A TWO-LAYER SYSTEM
Theory

As the first step of the present work, we consider a two-layer system with the
point sink at the bottom corner, as shown in Fig. 5(a). This system geometrically
corresponds to the upper or lower subdivision in the three-layer system shown in
Fig. 5(b), divided by the horizontal datum plane through the sink. The primary
purpose of the following analysis in this section is to obtain fundamental
information on the flow pattern, the critical condition for the incipient drawdown
of interface, and a withdrawal ratio between two layers to be applied to the
three-layer case.

The flow configuration under the study is schematically shown in Fig. 6. The
viscosity effect is assumed negligible and the flow irrotational as well as
two-dimensional. A point sink is located at the bottom corner of the rectangular
container in which two fluid strata of different densities extend to infinity in
the horizontal direction.

We assume that the flow has quasi-uniform velocity distributions in each
layer, and that the streamline curvature effects are negligible at the control
section A where the square sum of densimetric Froude numbers for the upper and
lower layers equals to unity, i.e. Eq. 5. A one-dimensional approach is applicable
for determining the discharge from two layers. The one-dimensional energy equation
is written between a point sufficiently upstream from the sink and control section
A, as follows:

1 2 2 1 2 2

Eplfula—ul) - Epz(uza-uz) =Apg(y-h,) (4)
where

Uia = 0,q,/(h +h~y), u,4 = 0,q,/Y, u, =q /b, u, =q,/h,

qQ; = discharges per unit width from each layer; <¢(=1,2) subscripts denoting the

upper or lower layer; Uz mean velocities in each layer far upstream;
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Ua® q)/ (hythy-y), u a” q2/¥ = mean velocities in. each layer at the
control section A; a; = velocity coefficients (ratio of the velocity at point on
the interface to the mean uniform velocity); hi = layer depths of uniform flow

region at the upstream; y = interface position at point A; p. = densities of the
fluids; Ap(= P, -_p1)== density differences between both flufds of the upper and

lower layers.
Differentiating Eq. 4 with respect to  , the following equation at the

control section is obtained.
u
i P 1Q pzuza =1 (5)
Bpg (b +hy-y) ~ bogy
Combining Eqs. 4 and 5, the relationship between withdrawal ratio 1ﬂ=q1/q2 and

the densimetric Froude number szqt/‘/Apg7iz!791 (q £ty t total = intake
discharge) are derived as follows:

_9;, P, 05 (1+m-mn)’m(3n-2-n/a2)
== ={_ 2 2 1/2 (6—1)
q, P, af (mn)3[1+3m-3mn-(1+m-mn)3/a3]

9t 1 1/2
F.= =[{ (1+m-nm) 3 (3n-2-n%/a2)}
r /Apghg/pl‘ [ a§m2 mm 2
p1 n®
* 5. aF (T+n=3m)-(T4m-m) 2/a?Y/2] [ {14m- (14m-mm) /a2 -m /a3 } /2 (6-2)
where n=y/h; = nondimensional depth at point A, treated as a dummy variable between

Eqs. 6-1 and 6-2, and m=hz/h1 = depth ratio.
Putting r=0 in Eq. 6-1, the critical discharge for selective withdrawal from

the lower layer, Q209 is given as follows:
538 3,.2
_ b 1+3m-3mn_-(1+m-mn ) °/a; 1/2
Fcz.ch__:,{E%, acz e —s'
vBoghl/p, 2 I#m-nm /o) - (1+m-rm ) * /o,

where F, = critical densimetric Froude number and Ne =@ solution for the equation
3né-2-né/o.§ =0 . The dummy variable n in Eq. 6 then varies within n,<n<1 .

)

Ezperimental Results and Discussion

(1) Velocity profiles

Fig. 7 represents the measured velocity profiles at several vertical
sections. The height 2z above the bottom and the horizontal coordinate x are
normalized by wusing the total depth Hy - The horizontal velocity U is
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Fig. 7 Normalized distribution profiles of observed horizontal velocity
in a two-layer system
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non-dimensionalized with respect to the vertical mean velocity U, =q./ . The
experimental data are varied with the densimetric Froude number, F,.=q./ p/Py

. To examine the buoyancy effects on the flow fields, solutions of homogeneous
potential flow are shown by the broken lines. The observed vertical profiles of
velocity in each layer is approximately wuniform in the wupstream region of
x/H>0.5. Since the control section is located at a further upstream of x/H>1.25,
it is justified to apply the one-dimensional flow analysis. As Fy decreases, the
velocity difference between the upper and lower layers increases due to the
increase of buoyancy at the interface. On the other hand, for large values of Ft ’
the flow behaves like the potential flow, as if no density effects are present.

(2) Critical condition for incipient drawdown of interface

To verify appropriateness of Eq. 7 representing the critical condition for
incipient withdrawal at the upper layer, the tests are executed. For small flow
rates there is no withdrawal from the upper layer. As the discharge increases, a
stagnant wedge-like region of intermediate-density fluid is formed at the upstream
side of the sink. The incipient drawdown of the upper layer takes place just after
the wedge disappears. This wedge-like region however tends to obscure the visual
indication of incipient withdrawal, and thus we must indirectly estimate the
critical condition from the relationship between the withdrawal ratio and the
Froude number, as follows.

1 | I I I
- o
£ 20— —
ta o Visudlly o/ °
g opserved
7 2 o % -
¢<= 00
05 10— ? Eq.(8) —
Fe
0 LUl % 1!) z!) 3'0 z.lo 50
B 1F2 3 h/D
Fig. 8 Determination of critical Fig. 9 Relationship between critical densi-
Froude number F, for incipient metric Froude number Fp. and non-dimensional
drawdown ¢ interfacial height above the sink #,/D

The specific withdrawal ratio is defined as\z(q,/q, ) (H/h, ) which is a more
universal expression than the withdrawal ratio r=ql/qzﬁiscussed later. Plotting
the relationship between )\ and the Froude number Fl,,:;quApghg/plas shown in Fig.
8, the critical densimetric Froude number F, for the incipient withdrawal can be
obtained by extrapolating the value of F,, corresponding toA=( .

The results are shown in Fig. 9. In this figure, to examine the effects of
the opening height of slot D upon the critical condition, a newly defined critical
Froude number, Fp, = (q, 'D)/»’Apghzs/pl, is plotted as a function of h,/D in the same
manner as for the skimmer wall. " Visually observed data are shown in the open

circles in the figure. By using Fc in Eq. 7, the critical condition can be written
as follows:
)

FDc = Fc-—D— (8)

Putting o3=1.4 in Eq. 7, Fc=0‘ 51 is obtained as the best fit value. Since D can be
eliminated from both sides of Eq. 8, we conclude that the critical condition for
the incipient withdrawal is independent of the opening size of the sink and that
intake can be treated as a two-dimensional point sink.

The value of o, is considered to be an empirical coefficient including the
effects of non-uniformity of velocity distribution, and experimental érrors in the
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determination of critical conditions. From the fact that ¢, nearly equals unity
even in the region near the sink where the non-uniformity of velocity distribution
is large, we can again confirm that the one-dimensional analysis is available
within the present experimental conditions.

(3) Withdrawal ratio

Beyond the critical intake discharge, fluids in both layers start to move. In
this section, the theory for the withdrawal ratio discussed in the foregoing
section is verified by our experimental data.

As shown in Fig. 7, the flow asymptotically approaches homogeneous flow with
increased densimetric Froude numbers, as if no density effects were present. In
the flow fields of sufficiently largeF,, , the buoyancy effects become so small that
r=q1/q, approaches the limiting value r=h,/h,. Therefore, the specific withdrawal
ratio )\=(ql/qt) '(Ht/hr) defined in the last section is a more universal and useful
parameter than r to express the withdrawal ratio because A always approaches unity
with the increase of F,, independently of layer depth ratiom . A relates to r as
follows:

r
Fig. 10 shows the experimental and theoretical results of the relationships

bewteen A and F,. The author's experimental data are plotted in circles and
Huber's data (3) in triangles. Curves show the theoretical solutions obtained from

Eq. 6. T | l |

THEORY o

& A=qh/qh -
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Fig. 10 Specific withdrawal ratio as a function of
dimensionless total discharge F,,

—
-
(3]
N

Fr

Since the magnitude of o, and a, may significantly affect the theoretical
solution of Eq. 6, we must decide the wvalue of «; in a reasonable way by
considering the observed flow characteristics. For small discharges slightly
larger than the critical value, 0‘11=1'4 , which is obtained from the critical
condition (Fig. 9) may be appropriate. In this case, the control section is
located near the sink; the fluid flows radially towards the sink at the control
section. On the other hand, increasing the flow rate, the position of the control
section moves towards the upstream uniform flow region, and thus both @; and a, may
reduce to unity because of the decrease of deformation in the velocity profiles.
We see in the figure that the experimental data distribute between the chain and
dotted curves theoretically estimated by Eq. 6 with the values of a1=az=1.4 and
ay=ax=l.1, respectively. Based on these considerations, we relate the velocity
coefficients with the non-dimensional depth of virtual control section,n , as
follows:

n-n
a2 = ol = (0p-a,) exp[ -E’ﬁ] * o, (10)
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where, 0,=1.4 and 0y=1.0.
Putting B=3,0 in Eq. 10, the theoretical solutions shown in the solid curves
best fit the experiments for any depth ratio m.

Comparison of The Present Analysis with Other Theories and Experiments

Fig. 11 regresents the relationship between the square of_ the ratio of the
Froude numbers r°=F,;/F, and the sum of two F,+F,, where F,=q,/ Veghi, Fo=qa/ eghs
and €=Ap/p. Solid circles denoting the experimental data by Huber and Reid (3) are
also plotted.

Jirka's theoretical solution fér the skimmer wall (5) (chain line in the
figure) gives the values of »? considerably larger than the experimental results
because his analysis does not comsider the approaching velocity head at the far
upstream region.

Huber (4) has developed a potential flow analysis in the two-layer system
applying a relaxation technique based on an assumption of the interfacial shape and
stream function values. It may be seen in the figure that his numerical solution
(broken line) is considerably lower than not only our data but his own experimental
data (3). This discrepancy may arise from the fact that his analysis were
performed under the supercritical flow condition, 1i.e. Ff+F§; 1. Such
supercritical condition may seldom happen in practical withdrawal system,
therefore, application of this theory shall be extremely limited.

On the other hand, our proposed one-dimensional analysis considering the
upstream approaching velocity head exhibits good quantitative agreement with his
experiment either when the velocity coefficients are fixed (dotted line) or when
they are varied with n (solid line).

AVJ
| ! o' ° ° r = Upper
fi Z u A h Hei Layer
i?: 7 Qu=Qa*0ay g & ! (A)

S 3 w7 ////b(d/,é/ z™

= 1
Q5 H, .._f.'_.D.QEEn_PlP.ie.._.;_. ,_.‘é.._zé Middle
goinl """" ) A £ L(ag?'

ink aAdzl . ld,

4 /// h,’{ /s Hy
0% 7 Q @ Lower
: ® . Lower
n'A

Fig. 11 Comparison of theoreti- //@& //ML_ ©

cal curves for F3/F2 versus F,+
F, with other experimental data Fig. 12 Schematic of a three-layer system
and theories under the study

WITHDRAWAL FROM A THREE-LAYER SYSTEM

Theory

Consider the case of a three-layer system with a point sink at the vertical
wall, as in Fig. 12. Let a fictious datum plane be taken at the level same to the
sink. Each of the upper and lower two-layer subsystems divided by this plane then
becomes geometrically analogous to a two-layer system with a sink at the bottom
corner. Extending the theory discussed in the last section to the present systen,
we develop an analysis to evaluate the outflow discharge from each layer.

If we assume that the fluid in each layer flows parallel to the horizontal
plane and has vertically uniform velocity distribution, we can treat the datum
plane as one of streamlines in the middle layer. Dividing the middle layer into
two regions by this streamline, the ratio of discharges in the two subdivided
regions qu/qu becomes
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]

qu/qu dl/dZ

where d, and d,
satisfy

(11)
layer depths divided the middle layer, and g, and qu must

dg = dp, * 9p, (12)

Next, expressing the functional relationship of Eq. 6 as r=func.(F,,m) and
applying it to the two-layer subsystems above and below the datum plane,
respectively, the following equation is obtained:

rj = fune. (Fp; , my) (4=1,2) o

where J (=1,2)= subscripts denoting the quatities in the upper and lower
subsystems, respectively; r;=qs/qp , rz-.qc/qB = discharge ratios for the upper and

lower two-layer subsystems; ms ==d = depth ratios; F, =4t / €. = the
densimetric Froude number; el—(pz-'g )%3,, €,=(p,- pz)/p g relative density
differences, and q sq9gsqp = discharges per unit width in the upper, middle and
lower layers, respectively, which must satisfy the following relationships;

gt = (14ry)qp,
#here ey 29, = partial intake discharges for the upper and lower two-layer

subsystems, respectively.
Defining the ratio as r-qt /qt » the total discharge is written by r as

s = (1+r)qt2 = (1+r)/1r~.qt1

(15)
combining Eqs. 11 and 14, the following relationship is derived.
ry+1 d,
1"2+1 dz (16)

‘o obtain the correct withdrawal ratios r, and r, satisfying all of Eqs. 13, 14 and
.5, an iteration technique is used. Computatlon procedures are as follows:
a) Assume ro as an initial guess of r for a given total discharge q and compute
the partial discharges g, and 9y from Eq. 15.
b) Calculate r; corresponding to g4 %y using Eq. 13.
c) Substituting r; into Eq. 16, the value of ? is then obtained.
d) Check to deteijmlne if r—r}, is satisfied. If not, substitute r into Po and
iterate the same procedures from (i) to (iv).
Once the computation is accumulated, a set of discharges, q,, qg and q,, can
e calculated by using the correct values of ¥ and r; . Fig. 143 shows the flow
hart of the above computation procedures.

zperimental Results and Discussion
1) General description of flow fields

Variation in flow pattern with increasing intake discharge are shown
chematically in Fig. 14. For small intake discharge, both the upper and lower
aterfaces are kept horizontal, and only the middle-layer fluid is in motion (Fig.
4(a)). 1In this stage, two wedge-like stagnant regions with intermediate density
dpear just upstream of the sink. As the discharge increases, one of the stagnant
2gions is removed and the first critical condition is achieved (Fig. 14(b)).
fter the first incipient drawdown (or drawup), two-layer fluids flow towards the
itake and only one stagnant region remains (Fig. 14(c)). With further increasing
Lscharge, the second incipient drawdown (or drawup) of another interface occurs
1st after the disappearance of the last stagnant wedge (Fig. 14(d)). In the final
:age, all three layers of fluids flow (Fig. 14(e)).
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The velocity distribution profiles in each stage are shown in Fig. 15, where
the horizontal distance from the sink,x , and the vertical location, 2z are
normalized with respect to the depths of the flowing layer in each stage.
Horizontal velocity U is presented in dimensionless form by means of average
velocity scale U, defined from ¢, and the depth of the current in each stage. For
the purpose of comparison, the analytical solutions for the homogeneous potential
flow are shown by dotted curves. The results are summarised as follows:

(a) In the first stage, where only the fluid in the middle layer flows (Fig.
15(a)), the velocities defect in the upper and lower stagnant wedge regions
near by the intake. On the other hand, the velocity far upstream has an
approximately uniform vertical distribution like that in the potential flow.

(b) When the fluids in the two layers are in motion (Fig. 15(b)), the one velocity
defect is observed only in the lower side of the middle layer at the
downstream end.

(c) After all layer fluids start to move, there are no velocity defects (Fig.
15(b)).

Throughout all three stages, the uniformity of the velocity in the upstream
region where the control section is located is always maintained within each
layer. It is confirmed from these results that the one-dimensional energy equation
can accurately be applied to the present three layer system, as it is so to the
two-layer system.

(2) Experimental verification of the proposed analysis

Fig. 16 shows experimental and analytical results of the relationship between
the discharge in each layer and the total intake discharge. The abscissa denotes
the dimensionless total discharge, F =q. /elg which is a sort of Froude number,
normalized by the entire depth H, as well as relative difference of density €. The
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ordinate denotes the normalized discharges from each layer,
(I’,Fb,ﬁ')=(q ,qB,qu//slgﬂi. The figure shows quatitatively good agreement
between the eoretical curves and the experimental data in every case, which
suggests the appropriateness of the present analysis.
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APPLICATION TO PRACTICAL PROBLEMS (I) --- EFFECTIVE REMOVAL
OF MIDDLE-LAYER FLUID FROM A THREE-LAYER SYSTEM

A three-layer density stratification due to turbidity and temperature complex
is often produced after the inflow of fine sediment particles into the thermally
stratified reservoir, as shown in Fig. 2. One of the most effective methods of
reducing the long retardation of turbid materials in a reservoir is the selective
withdrawal of suspended material. 1In addition, by removing the suspended sediment
as soon as possible we can avoid the reduction in the useful life of the reservoir
resulting from sedimentation. Although selective withdrawal equipments are
installed in most of the: recently constructed reservoirs, they have been operated
only in rather empirical way to remove turbidity. If the hydraulic behavior of the
withdrawal flow fields in such a system is sufficiently understood, the withdrawal
equipments can be more efficiently operated.
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In this section, we focus our attention on this problem, and propose an
optimum intake height for the removal of turbid fluid in the middle layer, based on
the above discussed theory.

As examples, we consider nine cases of three-layer systems with various
hydraulic conditions, as shown in Table 3. By using the present analysis, we
obtain the relationship among the total discharge, the intake height, and the

Table 3 Computational conditions for 0 ) 0-?5 T Ft . 0.
three~layer systems
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5 3
e./e,
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0 005 Fy 01

SR 2 0
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Fig. 17 Relationships among dimensionless
total discharge Fy, location of outlet d,/d
0 (or d,/d), and withdrawal ratio for each
"0 005 Fg 01 layer q,/q;s qg/q,s and q;/q,

(c) CASE C-3
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0
005 Ft 01
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Fig. 17 Realationships among dimen-
sionless discharge Fy, location of
outlet d,/d (or d,/d), and withdrawal
ratio for each layer q,/q;, qp/q:, and

/9,

(continued)

(h) CASE C-8
outflow discharge from each layer in each case. The calculated results are
presented in Fig. 17, where the abscissa denotes F;y and the ordinate, the
non-dimensional intake height d,/d (ord,/d). The chain, solid, and dotted lines
correspond to the equi-value curves of the withdrawal ratios in the upper, middle,
and lower layers, qq/q s g /qt and q,/q,, respectively. The shaded region

represents the area within which only the middle-layer fluid can be removed, i.e.
qB/qt=1. We will call this "the selective withdrawal area for the middle layer".
From the critical condition for the incipient withdrawal Eq.7, an analytical
expression for this area can be written in the following form:

B
te
v/ elgﬂi

where qé% = critical intake discharge for selectively withdrawing .only the middle
layer; pgz = non—-dimensional form of q#%; and Min.(a,b) = smaller value of a and

= . Uu A
F3 = = Min. (Fte,Fto) (17)

Féé and Fgé in the above formula are defined by the following equations:

FU = F (__(_1_ )3/2( d1)1/2
te e Ht d (18)
/A d .3/2,. d,1/2 -1/2

Ftcch(H_t) (1"7) (El/ez)

By using Eqs. 17 and 18, the outer edge of the selective withdrawal area for
the middle layer can be caluculated as indicated in Fig. 17. 1In order to remove
only the middle-layer fluid as much as possible, the outlet may be placed at the
level same to point A where ng takes the maximum value. At this point, the
incipient drawdown takes place simultaneously at the upper and lower interfaces,
gnd its level, denoted by (dl/d)g?RE}Eal » can be derived by putting £¥é= gé in

q.18 as follows:

double
critical

(d,/d) = 1/(1+€,/€2) 19)
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This is shown by the thick chain line in Fig. 17.

For large discharge beyond the critical value, the fluids in two or all of the
three layers start to flow, and thus the optimum height (d /d) » which gives the
maximum withdrawal ratio of the middle layer, (qp/qtlpgy. s vaé%es with increasing
Fy. The thick solid curves in Fig. 17 show the functional relationship bewteen
(dy/d),pt, and Fp. From the figures, we can see the effects of the hydraulic
conditions of stratified systems upon the optimum outlet 1level that gives the
maximum withdrawal flow rate of middle-layer fluid.

Although the discussion is restricted to the two-dimensional system in this
section, the present procedures can be also applied to three-dimensional systems as
discussed in the next section. In practical reservoirs we can optimize operation
of the selective withdrawal equipments for the removal of turbid water and gain the
maximum flow rate of the middle-layer by setting the outlet at the desired level,
(di/d)opt.. In addition, the present theory enables us to evaluate the outflow
turbidity from the reservoir.

APPLICATION TO PRACTICAL PROBLEMS (II) --— ANALYSIS
ON FLOW FIELDS IN THERMALLY STRATIFIED RESERVOIRS

Extending the above discussed analysis to the three-dimensional thermally
stratified reservoirs, in this section, thermal structure in a reservoir affected
by the three-dimensional withdrawal flow-fileds is predicted.

As shown in Fig. 1, the stratified fields in reservoirs during spring to
summer are often divided into three fairly-well-mixed layers by two distinct
thermoclines. In order to analytically describe the thermal structure, one must
model two main process, one of which is vertical mixing across the thermocline due
to surface-stirring, and the other the advective transport resulting from river
flow or pumping as well as power generation. Details of the modeling of the former
process may be refered in another paper (6). The discussion herein focuses on the
modeling of the latter process.

Since the analysis presented in the foregoing section is restricted to the
two-dimensional system, it must be modified so that it can describe flow patterns
in three-dimensional systems. Consider now the three-dimensional withdrawal from a
two-layer fluid system towards a point sink (see Fig. 18). Let us assume that the
flow direction is radially towards the sink, and that the interface is defined by
an angle ¢ and a radial distance from the sink s. Just as for the two-dimensional
case, the difference of Bernoulli's sums across the density interface may be
written as follows:

o 27 o 2
_Z_p - 2Qz }__pl{ . lQl } —
22 0(6,+6) 271g 86, +4)

bpg (Y-rsing) (20)

Where © = angle between the vertical walls; eu = angle between the datum plane and
the upper wall; 6; = angle between the datum plane and the lower wall; Y= height
of the interface above the datum, and the system is assumed to have spherically
symmetrical velocity fields.

Differentiating the above equation with respect tos , we have

AvJ
S k3
P, ~— |t u [
Lif: b -
. —lgrel— e 1 -
Q. -
P, e— [h2 4 [
a, -
-

Fig.1l8 A schematic of simplified flow fields Fig. 19 Axisymmetric assumption in
near the sink in a three-dimensional system a two-dimensional system
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(-sF3-sF2+ s cos¢)% -2(ez+¢)F§+z(eu-¢)F§+sin¢ =0 (21)
where 22
-~ P azQz ~ OzazQz
F} = 1172 and F3 =
1 Apg8592 (eu_¢)3 2 Apgssez (ez+¢)3

are the locally defined Froude numbers.
To satisfy the above equation independently of d¢/ds, we get the following two

equations (8):
F2-F3-cos¢= 0 (22)
g(eu_¢)?";-2(ez+¢)E§+sin¢ =0 (23)

Combining Eqs. 20, 22, and 23, and then simplifying them, the formulae
describing the relationship between withdrawal ratio R and total discharge @, are

derived as:

= _ /P2 op fBy-¢) {(By+d)cos-1/4 - sin ¢}
F2a P1 “l/{;z-¢)3{(ez+¢)cos¢+1/4- sin ¢} (24-1)
~ _ &1+, Q

F.,= =

T Vbog¥S/p, Ybog¥S/o,

ys S 0(0u=6)%/2 / (81+0)cosd —(1/4)8ind
8'1:n¢ o1 ez'f'eu

= (

0(0740)%/2 /T8,~0)coa+(1/4) sin b
Q2 91+6u
Giving the intake discharge @., the outflow discharges in each layer Ql and @,
are computed from Eq. 24 in which ¢ is treated as a dummy variable, such as in Eq.

6.

' Before we apply the theory to the practical reservoir, we examine
appropriateness of the assumption of axisymmetric flow fields in the two-layer
model system. Since the analyses on the axisymmetric flow are almost identical to
the three-dimensional analyses, except that the later has no lateral spread, we now
introduce for convenience a two-dimensional system, as shown in Fig. 19. The
details of the analysis for the two-dimensional system are referred in our paper
(7), the solution of which has a final form analogous to Eq. 24. The laboratory
experiments under the corresponding conditions have been carried out by us, and are

(24-2)
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Fig. 20 Critical Froude number Fpo,  Fig. 21 Total dimensionless discharge Qt/Qc
versus non-dimensional interface as a function of specific withdrawal ratio
height above the sink %/D in the hy/hy q,/q, in the two-dimensional system
two-dimensional system shown in shown in Fig. 19

Fig.19



4 6 8 10 12 2 4
{month)
Fig. 22 Comparison between the predicted thermocline location and
the observed temperature isopleth in a pumped storage reservoir

compared with the theory as shown in Figs.20 and 21, Fig. 20 shows the results on
the critical condition for incipient withdrawal. Fig. 21 shows the relationship
between the specific withdrawal ratio and the total discharge. Although the
experimental data scatter, a most satisfactory agreement between the theory and
experiments is discerned. Therefore, it is concluded that the assumption on the
axisymmetric flow field appears to be justified.

Returning to the arguments on the three-dimensional case, our numerical model
for the prediction of the thermal structure in a reservoir 1is summarized as
follows.

Substituting Eq. 24 into Eq. 13 and performing the same procedures in the
two-dimensional case in Fig. 13, one obtain the solutions for the outflow discharge
from each layer in the three-dimensional three-layer system. The inflow properties
due to river and pumping discharges are easy to obtain; we assume that the inflow
enters the layer at which the density is just greater than or equal to the inflow
density. Combining the flow field analysis presented herein with another
subroutine on the vertical mixing process, our model is completed. Fig. 22 shows
an example of results computed by our proposed model (shown in the thick solid
curves) with the observed temperature isopleth. During spring to summer, the
advectivée heat transport process due to inflow and outflow dominates the thermal
behavior. On the other hand, the effects of another process, i.e. vertical mixing
across the thermocline, are negligibly small. We conclude from the figure that the
present analysis is useful for the evaluation of flow patterns not only in
laboratory experiments, but in the practical reservoir.

CONCLUDING REMARKS

Intending to analyze the flow fields in the stratified reservoir, a
fundamental study of the withdrawal flow in the three-layer system is performed.
The analytical results coincide well with our experimental data as well as other
researchers', Applying this theory to the problem of the long retardation of
turbidity in stratified reservoirs, we propose a basic idea for the effective
removal of turbid middle layer. By operating the selective withdrawal equipments
according to our proposed idea, we can not only reduce the long retardation of
turbidity but also avoid the reduction of the useful time of a reservoir due to
sedimentation. The present analysis is also introduced into our numerical model
for the prediction of thermal fields in a reservoir. Although the system is
simplified, this model can accurately reproduce the observed thermal structure.
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APPENDIX - NOTATION

The following symbols are used in this paper:

observed salinity concentration of the outflow water;
salinity concentration of the middle-layer fluid;
thickness of the middle-layer;

vertical distance between the upper density interface
and the fictious datum plane;

vertical distance bewteen the lower density interface
and the fictious datum plane;

value of(dl/d) to simultaneously occur the incipient
drawdown at the upper and lower interfaces;

value of (d,/d) so as to obtain the maximum discharge
from middle layer;

opening height of slot;

observed fluorescence intensity;

fluorescence intensity of the middle-layer fluid;
densimetric Froude numbers for the upper and lower
layers, respectively, in a two-layer system;
non-dimensional discharges per unit width of the
Froude type for the upper, middle, and lower layers,
respectively;

critical densimetric Froude number defined by using
0}

critical densimetric number defined by using D;
non-dimensional total discharge of the Froude type
for a two-layer system;

densimetric Froude number for the upper and lower
two-layer subsystems divided by the datum plane;
non-dimensional total discharge of Froude type for a
three-layer systém;

non-dimensional critical discharge for selectively
withdrawing the middle-layer fluid;

densimetric Froude number for the upper layer in a
three-dimensional two-layer system;

densimetric Froude number for the lower layer in a
three-dimensional two-layer system;

total discharge of the Froude type in a
three-dimensional system;

acceleration of gravity;

upper-

and lower-layer depths, respectively, in a
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two-layer system;
total depth;
total depths for the upper and lower subsystems

divided by the datum plane in a three layer system;

subscript denoting the upper or lower layer;

subscript denoting the upper or lower subsystem
divided by the datum plane, respectively, in a three
layer system;

layer depth ratio in a two-layer system;

layer depth ratio in the upper and lower two-layer
subsystems in a three-layer system;

discharges per unit width in the upper and lower
layers, respectively, in a two-layer system;
discharges per unit width in the upper, middle, and
lower layers, respectively, in a three-layer system;
total intake discharge per unit width;

critical intake discharge from the lower layer in a
two-layer system;

subdivided discharges per unit width in the middle
layer corresponding to the wupper and lower
subsystems, respectively;

total discharges per unit width for the upper and
lower subsystems;

critical total intake discharge per unit width for
selectively withdrawing from the middle layer;
discharges in the upper and lower 1layers,
respectively, in a three-dimensional two-layer
system;

total discharge in a three-dimensional system;
withdrawal ratio in a two-dimensional two-layer
system;

withdrawal ratios for the upper and lower subsystems
in a three-layer system;

discharge ratios between the total discharges per
unit width in the upper and lower subsystems in a
three~layer system;

initial guess for ;;

withdrawal ratio for a three-dimensional two-layer
system;

radial distance from the point sink;

mean velocities in the upper and lower layers far
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upstream in a two-dimensional two-layer system;

mean velocities in the upper and lower layers at the
control section in a two-dimensional two-layer
system;

observed horizontal velocity;

velocity scale defined from g and the depth of the
current in each stage;

horizontal distance from the sink;

vertical distance between a point on the interface
and the sink;

vertical distance between the interface and the sink
far upstream in a three-dimensional system;

vertical coordinate;

empirical coefficients in Eq. 10;

velocity coefficients in the upper and lower layers,
respectively;

specific density difference across the interface in a
two-layer system;

specific density differences at the upper and lower
density interfaces in a three-layer system;
normalized value for y and treated as a dummy
variable in Eq. 6;

angle between the vertical walls;

angle between the datum plane and the upper wall;
angle between the datum plane and the lower wall;
specific withdrawal ratio;

fluid density in each layer;

density difference at the interface and

angle measured from datum through sink to point on

interface.



