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SYNOPSIS

Applications of weighted finite difference method (WFDM) to one- and two-
dimensional convective diffusion problems are discussed. There are two methods
of solving two-dimensional problems: one is by the use of two-dimensional WFDM and
the other one is by the application of one-dimensional WFDM in an ADI scheme(4),
which was introduced by Kanoh and Ueda(3), to two-dimensional convective diffusion.
In WFDM, a value of the desired point is represented as the sum of the
weighted values of the vicinity points, where the weights are obtained from the
individual degree polynomial that satisfies the given convective diffusion
equation. These methods <can obtain higher order accuracy than other finite
difference methods or finite element method for a particular transient convective
diffusion problem if appropriate mesh size and time step are chosen.

INTRODUCTION

Numerical analysis of transient one- or two-dimensional convective diffusion
equations is considered. TFinite difference method, finite element method,
boundary element method(6) and particle transfer method(2) are used for the
analysis. Among these methods, the finite difference method(FDM) is generally
used because it is easy to handle. In this method the analytical field is
discretised into a mesh(or grid or lattice) and each point value is obtained by
difference equations. In applying FDM to heat conduction equation, Watanabe(8)
decided the coefficient of FDM using the individual degree polynomial that
satisfies the governing equation. In this paper, we present the theoretical
background of this method and set up the convergent polynomials that satisfy the
transient convective diffusion equation. Furthermore, using these polynomials,
the coefficients (weights) of FDM are defined, and FDM is subsequently applied to
transient one- or two-dimensional convective diffusion problem. Finally we make
comparison among WFDM, exact solution and other methods regarding the accuracy.

DESCRIPTION OF WFDM
To simplify the description of the WFDM, we deal with one- dimensional
convective diffusion equation and present the procedure to decide the WFDM for
this equation.

Approach to WFDM
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If £,(X,T),f5(X,T),... denote the polynomials at position X, time T, that
satisfy a linear partial differential equation, then Eq. 1 also satisfies this
equation because of linearity

C(X,T) = ay£4(X,T) + apfr(X,T) + ... (1)

where a4, 85y +e. 8re coefficients to be decided from the boundary and
initial conditions. Generally in FDM the functional value of the point()(let its
coordinate be XO,TO) can be considered as the sum of weighted values of the

vicinity points(@D«@® (let their coordinates be Xi,T;~X,,Ty), as shown in Fig. 1,
i.e.,

C(XO’TO) = P1C(X1,T1) + P2C(X2,T2) + oo +PnC(XD’Tn) (2)
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Fig. 1 Lattice points

where Pi is the weight of point i, and P1,P2,...Pn are different in various FDM.
The method to decide these weights Pi is described below. Substituting Eq. 1 for

each term of Eq. 2, we have

8121 (K1Tg) + axf2(KrTg) + +-v + apfn(Xg,Tg) = Pqlagfy(Xy,Ty) +
8yfy(Xy,Ty) + ovn + & € (X1,T1)] + Polagfy (X5, Tp) + anfy(Xp,To)
toeee ta f(Xy,To)] + v + Polagf (X,,T,) + apfo (X, T )+ -t

+ anfy (Ko Tp)) (3)

Here a,,a5,...a, change with the boundary and initial conditions as stated
previously. So, in order that Eq. 3(i.e.,Eq. 2) can hold regardless of the values
of 89y 8py eee8p, the following expression must apply. Nemely, when the right
side of Eq. 3 1s arranged with respect to aq,a,,...a,, then the corresponding
terms of 89y 8pyee«, 8, must be equal, i.e.,

£4(Xg,Tg) = Pyfq(Xy,T) + Pofy(X5,Tp) + wuv + Ppfo(X,T))

£5(X9,Tg) = P1fa(Xy,Tq) + Pofp(X5,Ty) + euu + P £5(X ,T,) (4)

@ o o o e o e o e & & o o o 6 o o e e s e ° s o o o e o o

fn(xO,To) = P1fn(X1 ’T1) + szn(xZ,Tz) + o0 + Pnfn(X.n,Tn)

If the values of PyyPyy...P, obtained by solving this set of linear equations are

fed in Eq. 2, we can have the finite difference method which hold regardless of
the values of aq,a5,...a; « The number n of these superimposed polynomials equals

to that of the linear equations(Eq. 4), and also to the number of vicinity points
used.
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Determination of one-dimensional WFDM
The one-dimensional convective diffusion equation is given as

3¢ 3% aC

aT Dax2 ) (5)

where C is concentration, D is diffusion coefficient, V is velocity, X is position
and T is time. Here D and V are constants. For the generalization of the
phenomena, following scalar quantities which standardize Cy,Vy and D, are used.

c G/Co, v = V/VO, d D/Do,

T/Tg = /(Dy/Vo?) (6)

x = X/Xy = X/(Dy/Vg) s ¢

Substituting these quantities into Eq. 5, we have

¢ 32c ¢

Bt ‘ax Vax ™

We now consider the numerical analysis of Eq. 7. The polynomials composed of x,
t satisfying Eq. 7 are described by Eq. 8, where r in c!T) denotes the maximum
degree of x in the polynomials.

{9 (x,t) = 1 (8g)
M (x,t) = x - vt (8,)
¢(@)(x,t) = (x - vt)2/(21) + at (8,)
B3 (x,t) = (x - vt)3/(31) + (x - vt)at (85)
@) (x,8) = (x - v)4/(41) + (x - v8)2/(20)dt + (at)?/(21)  (8,)

e & ¢ o o ¢ o 2 o 6 & 8 e s e o e 0+ e e+ s e e o s e o o

Generally
e t) = E{z{ (x - vt)r_zi.(dt)i } (et o
0 =50 ez i1 y1: positive 1ntege€; )
T
Here we assume that ti equals 1 if t =1 = 0. Accordingly the infinite

progression(or polynomial progression) composed of superimposed polynomials in
Eq. 8 4is described as

r/2 (x - vt)r-Zi (dt)i

obat) = rﬁi[“r 150{ FETITRTRRR (%)

which correspond to Eq. 1.
Eq. 9 converges if a., (x-vt) and dt are finite, because lim (b%/n!) equals O for
an arbitrary b. fi-eo

Since Eq. 7 is composed merely of differential terms with respect to x,t, it does
not change its form even if the origin is moved to an arbitrary position.
Therefore if the origin is moved to a desired point, we consider that the FDM is
formulated mostly by very close points. Let Ax=h and At=k be the increments of
the variables x and t, and x,t be discretised as x=ph, t=qk, where p,q=0,11,
t2,... Hence p and q do not become 1large integers, because FDM 1is constituted
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by the points very close to () point as illustrated in Fig. 1.
As Eq. 7 is differentiated once and twice with respect to t and x respectively, we
have

k = Rh? (R : positive constant) (10)

hence t = qk = thz.
Subsequently if we set

F = vk/h = vRh and u = dk/h? = dR (1)

then Eq. 8, can be described as in Eq. 12. Here it is also assumed that qi
equals 1 if qg=i=0.

T2 (p - qF)T2 (qu)i

(r) = .
o'¥ 7 (ph,qk) = n¥ iz=o ey ) (12)

In case the vicinity points in the model( referred herein as center-scheme model)
shown in Fig. 2 are adopted, the weights P; are decided as given below.
Let the concentration of the desired point(ih,jk) be c(i,j) and the weight of
of c(i+p,j+q) be Pg , and hence the FDM is

c(1,3) = PO ci-1,3) + P9 c(i+1,5) + P27 c(i-1,3-1)

+ P51 e(1,5-1) + P77 c(i41,5-1) (13)
h| (o g 3 d? 9
k k
j-1 i-1 ?
-1 i 14 k
1 ] 1 - j=2
v
Fig. 2 Center-scheme i-1 i {41 l:>
@ :known point, (. ynknown point, L ! L -X

:disired point
©®:dis P Fig. 3 Upwind-scheme

Next the origin is moved to the desired point as described earlier, i.e., i=j=0 in
Eq. 13. And, if we substitute the ¢ values obtained from Eq. 12 (i.e., in five
instances of r=0,1,2,3,4) into Egq. 13, we obtain the following linear equations
(Eq. 14). These c¢ values correspond to the five vicinity points in Fig. 2.
Solving Eq. 14 we obtain the weight of each point.

"1 1 1 1 1 ) ’P?{ 17
11 F-1 F F+1 P? 0
-1
11 (F-1)%-2u F2-2u (F+1)2-2u | P2 0
(F-1)3 P> (F+1)3 o 4l =
-1 1 =6(F-1)u -6Fu  =6(F+1)u P, 0 (14)
(F-1)4 F4 (F+1)4 »
11 -12(F-1) u -121-*25 -12(F+1) P 0

+12u +12Y +12u
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Subsequently in case the vicinity points in the model(referred herein as upwind-
scheme model) shown in Fig. 3 are adopted, the FDM is

e(1,5) = Q% ci-1,1) + @ e(1+1,1) + @z c(1-1,5-1)
+ Qg0 eli,d-1) + Q22 c(i-1,j-2) (15)

Five weights QJ% ,...,Q:$ are decided from the following linear equations.

BREEE 1 RIOANER
11 FA F 2F-1 o 0
11 (F=1)%-2y F2-2u (2F-1)-4y Qj 0
(F-1)3 P k)3 |7 )7 (16)
-1 1 «-6(F-1)u -6Fu -12(2F-1)u Qo 0
(F-1 )4 FI’ (2F-1 )4 _
11 212(F=1)2 -12F%U -24(2F-1)2y| | Q3 0
122 2R +48 S I G

It can be séen from Eqs.14 and 16 that each weight is a non-linear and complicated
function of F and y, and the accuracy of the numerical analyses is also a function
of them. If the weights are obtained as mentioned above, the WFDM is therefore
formulated. By these methods the concentration at each nodal point is calculated
based on the boundary and initial conditions, similar to any other finite
difference method.

Determination of two-dimensional WFDM

We formulate the two-dimensional WFDM similar to the one-dimensional
WFDM discussed above. The governing equation, which is composed of scalar
quantities, is given as

3c 3%c a%c ac dc

—_— = — + ——— - — —
ot - N1 T2y T Vigg T V2, (17)

where d and vq,v, are diffusion coefficients and velocities in the x,y
coordinale system respectively. The polynomials composed of x,y,t satisfying
Eq. 17 are given as

£/2 (x = vqt +y - vot)TRL (4.t + dt)i
o xiy,t) = Z { 1(r-2i)! : ) 11! :

} (18)

The two-dimensional infinite polynomial progression composed of superimposed
polynomials in Eq. 18 is described below.

© fz (x-vt+y-v t)r-21 (4t + dyt)d

c(xy,8) = Llay L { =T = 11 (19)

Eq. 19 converges if x-v t+y-vot and dyt+dot are finite for the same reason given
for Eq. 9. Here discre isatlon is introduced in the same manner as in the one~
dimensional WFDM. Namely, when Ax=h, Ay=Gh and At=k are increments of x,y,t, we
have
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x = pih, y = pGh, t = thz(p1,p2,q:0,t1,i2...;G:positive constant)

(20)
Subseqently if we set
F, = vqk/h = v;Rh , Fy = vpk/Gh = V,Rh/G
ug = E/M2 = R, uy = dak/(Gh)2 = dR/G? (21)

then Eq. 18 is described as follows.

(r) rréz (Py +Gpp -a(Fy#GF))T2E q(u, + GPup)
¢ (phypolhyqi) = 7,4, { (r - 21)1 ) it

]
(22)
a) Cross center-scheme
In case the vicinity points in the model(referred herein as cross center-scheme
model) shown in Fig. 4 are adopted, the FDM is
o(1,a,3) = P2y qeli-T,g,d) + Po ge(itl,g,j) + Py c(i,g=1,§-1)
185J -1,0 181d 1,0 185) 0,-1 181y

- -1
+ P0:o°(i’g’3“1) + Po’1c(i,g+1,j-1) (23)

Where Pg,s is the weight of c¢(i+p,g+s,j+q).

At,]i
X, 1
3
3 o / e /
y,8 @ @ k
7 7t
i-1 | ) .
|

@

»x,1
v g-1
y,8 g ﬁ
///4i) ///;;1 Gh

i-1 i i+l

w7 w7

Fig. 4 Cross center-scheme

Next the origin is moved to the desired point, i.e., i=g=j=0 in Eq. 23. And if w
substitute the ¢ values obtained from Eq. 22(i.e., in five instances o
r=0,1,2,3,4) into Eq. 23, we obtain the following linear equations(Eq. 24). Thes
¢ values correspond to the five vicinity points in Fig. 4. Solving Eq. 24, w
obtain the weight of each point.
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~ 11 1 1 1 N rP?»"o\ 1 3
-1 1 Fy—-1 Fsu Fy+1 P?,O 0
2 -1
11 (Fe=1)2-215 Fe-2us  (Fet1)2-2u4 P21,0 0
(F*-1)3 Fz (F*+1)3 : -1 = (24)
-1 1 —6(F*—1 )]J* —6F*u* —6(F*+1 )Ll* PO,O 0
(Fe-1)4  FR 5 (Fyt)) »
11 -12(Fys1)2uy —12Fai My —12(F*+1) el | Py o 0
+1ZU*2 +12U* “"12“ N ’ |

Where Fy = Fy + GFy , My =My + quy.

b) Angle upwind-scheme
In case the vicinity points in the model(referred herein as angle upwind-scheme
model(a)) shown in Fig. 5 are adopted, the FDM is
. . 0 . 0 - -1 : :
c(i,g,j) = Q_1’OC(1‘1’8yj) + Qo,_1c(1;g—1’j) + Q_1’00(1-1yg,3'1)
-1 -1
* Qp,0c(i,g,§-1) + Q gelitl,g,j-1) (25)

0
Five weights Q-1,O""’Q{3O are decided from the following linear equations.

- N d 0 N ~ N
1 1 1 1 1 Q1,0 1
-1 -G Fy-1 Fy Fyet1 Qg,_1 0
2 -1
1 G2 (Fa-1)2-2, Foe-2l (Fet1)2-20, Q1,0 0
=12 Fm @3 T [T (26)
-1 -G3 =6(Fy=1)uy —6F iy =6(Fyt1)uy Qo’o 0
(Pe-)b 7% (Fat1)h p
1G4 -12(Fus1)?us -121-‘*1:5 -12(Fy1)?| Q7 o 0
§ +12p,° RPCEETPIIC I Gk B O
|
™ i
J / @/7( yi
Y8 @ @ k
7 7
-1 ! - x,i
1
| La-)
@ @ fh
ﬂ 7i %l Gh
g+l
1+l
/‘-———1rﬁ-—-—*7’
h n

Fig. 5 Angle upwind-scheme(a) Fig. 6 Angle upwind-scheme(b)
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Subsequently in case the vicinity points in the model(referred herein as angle
upwind-scheme model(b)) shown in Fig. 6 are adopted, the FDM is

_ .0 0 . -1
c(i,g,j) = R—l,O c(i-1,g,j) + RO,-l c(i,g-1,3) + RO,-l c(i,g-1,3-1)
-1 . -1 .
+ RO,O c(i,g,j-1) + RO,l c(i,g+l,j-1) (27)

] -1
Five weights R_1’0,....,R0’1 are decided from the following linear equations.

) 3 ro
1 1
1 1 1 R ol |2
16 F,-G F, F, 4G R | |0
1 6 (5mcy? 2 2 -1
" ) =2y, F-2p,  (F 4G) -2y, R0 -1 0
RO S (RS = (28)
3 -
-1 -6 -6(F,-G)u,  -6Fu, —6(F, 4G, ReY | |0
4
(F,~G) F4 (F,+0)"
R e R ORTREST AT LICR L I B el I
H
412y, 2 wzp,% 12,2 ]

In a two-dimensional angle upwind-scheme, the c values at time(t+ At) are
obtained by the model given by Eq. 25(described in Fig. 5), at time(t+24t) by the
model given by Eq. =27(depicted in Fig. 6), at time(t+3At) again by Eq. 25, at
time(t+4 At) again by Eq. 27, and so on. Hence these two models are wused
alternately so that the two-dimensional wupwind WFDM can satisfy all the
boundary conditions.

From Eqs. 24, 26 and 28, each weight is a non-linear function of Fy and s,

i. e., & function of F,, Fy,ux,uy and G(=Ay/Ax). And the accuracy of two-

dimensional numerical analysis is a non-linear and complicated function of these

terms. ‘
If the weights are obtained from Eqs. 24, 26 and 28, the two-dimensional WFDM

is therefore formulated.

The problem where the velocities change in space(or further in time) especially
arouse interest in two-dimensional convective diffusion problem.

To apply WFDM to this problem, it is necessary that linear equations be solved and
weights be defined on each mesh point. This additional work is easily
performed by electronic computers, since the number of the linear equations is
only five.

COMPARISON AMONG EXACT SOLUTION, WFDM AND OTHER METHODS
One-dimensional analysis

(1) Exact solution
When the following initial and boundary conditions are considered,

c(x,t=0) = exp(-x/¥d) , c(x=0,t) = exp[ (1+v//d)t] , c(x=w,t) =0
(29)

an exact solution of Eq. 7 is given as

clx,t) = expl-x/vVd + (1 + v//d)t) (30)
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(2) Numerical solutions
a) WFDM solution

The one-dimensional domain is giscretised by x=ih,t=jk. We set the various
quantities as : h=0.2, R=1/4, k=Rh“=0.01, i,j= 0 ~ 50. We obtain the initial
condition by setting t=0 and the boundary conditions by setting x=O(at one end of
the domain) and x=50h(at the other end of the domain) in Eq. 30. The accuracy is
estimated by the relative error E(= (|exact solution - solution)|/ exact solution).
Two cases are investigated. First in the case of F=vRh=0.31 and u=dR=0.05 with
v=6.2 and d=0.2, the exact and WFDM solutions are shown in Table 1. And second
in the case of F=0 ~ 1 and M =0.01~1, the WFDM solutions are shown in Figs. 7
and 8. The zhaded portions on these figures are the regions where E . is
less than h%(=0.0016). Here Epgx 1is the maximum among the relative errors
obtained from one combination of F and u values. In this method the maximum
degree of polynomials is four, so the truncation error can be regarded as almost
in the order of h-. 2hen we may consider that the relative error becomes
approximately less than h%.

0.1 0.5 —*F 1.0 0.1 0.5 —»F 1.0

[7 . 4 . = ="
0‘1- : Emax é h .
0.5 1

T ———

1.0 ///

Fig. 7 1-dim. WFDM(Center-scheme) Fig. 8 1-dim. WFDM(Upwind-scheme)

b) Solution by Crank-Nicolson method(5)
This method, which is shown by the same scheme presented in Fig. 2, is
described below.

c(i,j) = [(2u+F)/4(1+1) Je(i-1,3) + [(2u-F)/4(1+u)]c(i+1,])
+ [(2u+F)/4(14+1) Je(i-1,3-1) + [(1-p)/(1+W))e(i,j-1)
+ [(2u-F)/4(1+u)Je(i+1,j-1) (31)

The calculated result by this method is shown jin Table. 1; the shaded portion in
Fig. 9 is the region where Ejax 18 less than h%.

¢) Solution by D.A.Bella method(1)

In this method the convection term is expressed by the explicit backward
space difference of first order and the diffusion term by implicit center space
difference of second order. The pseudo-dispersion is corrected by using the
numerical dispersion coefficient D,, where Dn is converted to a dimensionless
quantity. Hence c¢(i,j) can be described as,

eli,§) = [1/(1+2u-2D ) 1 [ (u-Dy)e(i-1,5) + (u-Dy)e(i+1,])
+ Fec(i-1,§-1) + (1-F)e(i,j-1)) (32)
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The calculated result by
where Emax is less than h%.

d) FEM solution by implicit scheme

The one- dimensional domain is divided into 50 linear elements.

application of the Galerkin method(7) to Eq.
differencial term with backward finite difference result in

aAci=Bci-1 +p

zhis method is shown in Table. 1, and there is no region

Then the

7 and the replacement of the time

(33)

where CJ is the vector of cj(=c of time j) and A, B and D are the coefficient

matrices composed of F,
this method is shown in Table.

where Emax is less than h*.

U and the boundary conditions.

The calculated result by

1, and the shaded portion in Fig. 10 is the region

—y F

0.1 0.5 l.p
0.1
0.54
. 4
| (22 By
u ///
1.0

Fig. 9 Crank-Nicolson method

Table.l Solutions and Errors of Exact,WFDM,FDM and FEM solution
(F=0.31,u=0.05,h=0.2,k=0.01) ,E:relative error. (for ex. 5.2:+.E-4= 5.2"'x10—4)

0.1 0.5 —»F 1.0
L/
/
4
4
4
] Fig. 10 FEM

soluti

Exact

WFDM

Bella's FDM

Crank-Nicolson

FEM

analysis

E

analysis

E

analysis

E

analysis

5.2226E-4

5.2207E-4

3.7E-4

5.6824E-4

0.09

5.3025E-4

0.01

5.2801E-4

0.01

6.8145E~-8

6.8120E-8

3.7E-4

7.4145E-8

0.09

6.9189E-8

0.02

6.8896E-8

0.01

9.0268E-4

9.0225E-4

4.7E-4

1.0787E-3

0.20

9.3211E-4

0.04

9.2520E-4

0.03

1.1778E-7

1.1773E-7

4.7E-4

1.4075E-7

0.20

1.2162E-7

0.03

1.2072E-7

0.03

40k

2.6967E-3

2.6958E-3

3.4E-4

3.8873E-3

0.44

2.8803E-3

0.07

2.8407E-3

0.05

3.5188E-7

3.5176E-7

3.4E-4

5.0723E-7

0.44

3.7583E-7

0.07

3.7066E-7

0.05

Two-dimensional analysis
(1) Exact solution
When the following initial and boundary conditions are considered
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c(x,y,t=0) = exp(-x/Vd; - y/Vd,) ,
c(x=0,y,t) = expl-y/Vd, +(2 + vq/Vd; + Vz/v/d_z)t] (34)
c(x,y=0,t) = expl-x/Vd; +(2 + vy/Vd; + vp/Vdy)t]

C(X=°°,}’,t) = c(x,F“’:t) =0

an exact solution of Eq. 17 is given as

o(x,y,) = expl-x/VA; - yNay +(2 + vi/Va; + vp/fay)t] (35)
0.1 0.5 —=F, 1.0 0.1 0.5 —=F, 1.0

/] E 4
max =

0.1

/ vy =(1/4"~ 4)v1

v, =(1/44)v
= 0 or vy, = 0 2 1

v
2 v, =0orv, =0

/ 2 1
1.0

7ig. 11 2-dim.WFDM(Cross center-scheme) Fig. 12 2-dim.WFDM(Angle upwind-scheme)

0.5 Fy 1.0

YA .
1 s
4(or 1/4)V

1 L
/—--—— V,=0o0rV, = 0/
s s s s
Fig. 13 ADI solution Fig. 14 ADI solution
(by 1-dim. Center-scheme) (by 1-dim.Upwind-scheme)

'2) Numerical solution
We discretise the two-dimensional domain by x=ih, y=gGh and t=jk and set the
rarious quantities as: h=0.2, G=1 or 3/4, R=1/4, k=Rh<=0.01, dq=d,, v2=(1/4'\/4)~
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vy, 1i=g=0 ~ 8,j=0 v 50. We obtain the initial condition by setting t=0 and the
boundary conditions by setting x=0 and x=8h and y=0 and y=8Gh at +the horizontal
and vertical ends of the domain respectively in Eq. 35.

a) Two-dimensional WFDM solution

In the case of Fyu=0 ~ 1,u3=0.01 ~ 1, the two-dimensional WFDM solutions are
shown in Figs. 11 and 12, where the shaded portion is the region in which Eax 18
less than h%. We also tried other models using two-dimensional WFDM. However
the resulting shaded portions are smaller than the ones shown in Figs. 11 and 12.
b) ADI solution(8) applying one-dimensional WFDM

In this method, the two-dimensional convective diffusion equation(Eq. 17) is
analyzed by applying twice the one-dimensional WFDM(Eq. 13 or 15), first on the x-
direction and then on the y-direction.
The ADI solutions are shown in Figs. 13 and 14 for the case of Fy=0~1, U x=0.01
é; 1. hAThe shaded portions on these figures are the regions where Elnax is less

an .

CONCLUSION

Numerical analysis of a particular transient one- and two-dimensional
convective diffusion problems is discussed. In this WFDM, the analytical field is
discretised into a mesh and a value of the desired point is represented as the sum
of the weighted values of the vicinity points. The weights are obtained from the
individual degree polynomial that satisfies the governing equation.

And its application to two-dimensional problem through the use of the ADI method
is discussed in this paper. The two-dimensional WFDM is also presented.

The following conclusions are obtained:

1. This method can obtain accuracy approximately two order higher than other
methods can get, particularly on one-dimensional convective diffusion problem, if
appropriate mesh size and time step are chosen.

2. WFDM has advantage over D.A.Bella FDM method, Crank-Nicolson method and FEM
in the range of accuracy. Especially the center-scheme model and upwind-scheme
model of the one-dimensional WFDM and the cross center-scheme model and the
angle upwind-scheme model of the two-dimensional WFDM are performed well.

3. Each weight of the one-dimensional WFDM is a non-linear function of F and M

and that of the two-dimensional WFDM is a non-linear function of Fx , Fy ,uy ,Uy

(Eq. 21) and G(=Ay/Ax). In other words, each weight of WFDM can correspond to
changes in velocity, diffusion coefficient, mesh size and time increment which are
related to F, U and G. This considers the reason why WFDM can give high accuracy.
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Ax,Ay, At
n=dAt/Ax?
Uy=dqAt/Ax?
uy=dpAt/Ay?
u*=ux+62uy

APPENDIX - NOTATION

The following symbols are used in this paper:
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coefficient matrices composed of F, Ul and the boundary conditions

in FEM;

dimensionless concentration;

concentration;

vector of cj(= ¢ at time j);

dimensionless diffusion coefficient;

dimensionless diffusion coefficients along x and y;
diffusion coefficient;

dimensionless form of numerical dispersion coefficient;
relative error

the maximum among the relative errors obtained from
combination of F and U values;

dimensionless form of velocity(or Courant number)
dimensionless form of velocity along x;

dimensionless form of velocity along y;

two-dimensional Courant number;

ratio of Ay to Ax;

mesh size along x;

time increment;

weight of the point at position (i+p)ax, time (j+q)At;

one

weights of the point at position (i+p)Ax and (g+s)Ay, time (j+q)e

At

positive constant;

time;

dimensionless velocity;

dimensionless velocities along x and y;
velocity;

increments of x,y and t;

diffusion number;

diffusion number along x;

diffusion number along y; and

two-dimensional diffusion number.




