73

Journal of Hydroscience and Hydraulic Engineering
Vol. 3, No. 2, November, 1985, pp.73-84.

FORMULATION OF THE JOINT RETURN PERIOD OF TWO HYDROLOGIC VARTATES
ASSOCTATED WITH A POISSON PROCESS

By

Michio Hashino

Professor, Department of Construction Engineering
The University of Tokushima, Tokushima 770, Japan

SYNOPSIS

This study aims to formulate the joint return period of two hydrologic
variates, which are defined to be two random variables (marks) correlated with
each other, associated with a single Poisson point process. Freund’s bivariate
exponential distribution is employed to describe the joint probability distri-
bution of the partial~duration series of the two marks. The theory is applied
to evaluate the joint return period of the peak rainfall intensity and the
maximum storm surge caused by a typhoon in Osaka, where it might take place with
quite high possibility that the flood following a heavy rainfall may move down
the tidal river in the lowlying urban area while the storm surge may run up the
river with a considerably short time lag.

INTRODUCTION

Rivers in lowlying urban basins generally consist of complicated channel
networks with tidal reaches. It is quite possible in such a tidal river basin
that the flood following a typhoon may travel downstream and the storm surge may
run upstream after only a very short time lag. We have quantitatively evaluated
this concurrent effect, and clarified the mechanism of interaction between flood
flow and storm surge through close analyses of the running=-up behavior of storm
surge (Hashino and Kanda (3)). It is also important that the joint probability
or joint return period of rainfall and storm surge is evaluated, for the plan-
ning and management of flood control system.

In this paper, the joint return period of two variates, the peak rainfall
intensity and the maximum storm surge due to a typhoon, is formulated by using
the theory of a marked point process, in which the two partial-duration series of
peak rainfall intensity and maximum storm surge follow Freund’s bivariate expo-
nential distribution (Freund (2)). An application of this model to the data at
osaka confirms its pertinence.

JOINT PROBABILITY OF TWO ANNUAL MAXIMUM VARIATES

Consider a single point process with an auxiliary variable, called a mark,
such as the maximum storm surge at a shore due to a typhoon. It satisfies the
following conditions: (i) The occurrences follow an inhomogeneous Poisson process;
and (ii) {n,} is a sequence of mutually independent random variables whose
distribution depends on their occurrence time ty of the i-th exceedance of a
fixed base level. .

From these two conditions, the distribution of the annual maximum Npax~
max N, can be derived (North (4)) as

P{nmax§Y] = eXP[“fzo{l—Ft(Y)}Xp(t)dt} @

where t = 365 days, Xp(t) = time~dependent rate of occurrence, and Ft(y) =
0
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distribution function of exceedances n, depending on occurrence time t,., It is
empirically known in this case that a gamma or an exponential distribution func~
tion may be appropriate for F_(y). In the light of simplicity and precision in
fitting the distribution to tﬁe data, a so-called combined exponential distribu~
tion, composed of two or three exponential distributions, has been developed.

For instance, a combined exponential distribution composed of three distributions
is given as

1 - exp[-),y] (0gy<y) (2a)
F () =] 1-expl-Ay(y-cy)] (y12y<y2) (2b)
1 - exp[-A3(y-c;)] (y25y ) - (20)

where y. (i=1,2,3) = constants related to the range of y in Egs. 2a - 2c,
respectively, and c;, €3 Ay, Ags Ag = parameters of the combined exponential
distribution. Constants y, (i=1,2,3) are decided from the visual inspection of
the distribution of y, plotted on exponential probability paper (semilogarithmic
paper) by Gringorten®’s formula: '

P, = (i-0.44) '/ (n+0.12) (3)
in which 1 (i=1,2,...,n) = serial number of the i-th largest in the sample, and
n = sample size.

The continuity conditions of F(y) for y=y:, y2 give the following equations
for ¢y and c¢,.

ey = {1“(A1/X2)}Y1§ cy = Ly Q-2 ) +ya(hs=25) 1A (&)

The use of the maximum likelihood method to estimate parameters Ay, A, and A3
leads to

/2, §1+(Zni/n1-l)y1; 1/As = yo-yi1tns(y2=y1)/n2

/A5 = y59, : ‘ (5)

where n,, vy, (i=1,2,3) = sample sizes and means of y for the ranges corres-
ponding to ﬁqs. 2a - 2c¢, respectively.

In order to extend Eq. 1 to the case when two auxiliary variables (say, the
maximum storm surge and the peak rainfall intensity due to a typhoon) are asso-
ciated with a single point process, a third condition is added, namely, (iii) the
occurrences related to the second auxiliary variable can be also represented by
A_(t) in Eq. 1 and magnitude £, of the second mark is related to magnitude ny of

the first mark. Consequently, the joint probability of two maximum annual vari-
ates Emax and nmax can be given as )

PLE 00 Mo ] = expl=f {1, () A (£)de] (6)

where Ft(x,y) = time-dependent joint probability distribution function of Ei and
Nyo i :
i

FREUND’S BIVARTIATE EXPONENTIAL DISTRIBUTION AND ITS COMBINATION

} Consider a bivariate distribution, such as F_(x,y) in Eq. 6. The bivariate
exponential distribution, which is a special case of the well-known bivariate
gamma distribution, includes the zero-order modified Bessel function of the first
kind, so that it is impossible without the help of supplementary numerical tables
to estimate the value of X for given values of Y, and the conditional distribution
function F(X}Y) of X given Y, although the value of F(X[Y) for given values of X
and Y can be computed. On the other hand, Freund (1) proposed a quite different
type of bivariate exponential distribution. It includes only exponential func-
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tions, so that the value of X for given values of F(X]Y) and Y, as well as the
value of F(X[Y) for given X and Y, can be easily calculated.

We make use of Freund’s distribution as the bivariate exponentlal distribu~
tion in essentials. If the combination of two or three Freund’s distributions
yields a better fit to data, then a combined Freund’s distribution may be
employed. A combined density function f(X,Y) composed of two Freund’s distribu-
tions is defined as (Hashino and Sugi (2))

ajbsexp[~ba¥-(a1+b1-b2)X] (0<X<Y,X<u) (7a)

biasexp[~aX~(ai+bi1~a2)Y] (0<Y<X,Y<u) (7b)
£(X,¥) =

a1Bzexp[~B2 (Y~v)=(01+81~B2) (X~v) ] (u<x<Y) (7¢)

Brogexp[=op (X=v)~(c1+B1~02) (Y=v) ] (u<¥<x) (7d)

where ai,bi1,a2,b2501,B1,02,B2 = parameters for the lower class functions of X and
Y: Egs. 7a and 7b, and for the upper classes: Eqs. 7c¢ and 7d, v = constant, and

u = critical value of X and Y that classifies the combined Freund’s distribution
into the two regions shown in Eqs. 7a; 7b and 7c¢; 7d. In the case of u =w,

Eqs. 7a and 7b become the original Freund’s equations. From continuity conditions
of £(Y), F(X[Y), F(X) and F(Y) for X or Y = u, the following equations are
derived.,

by = B1; az = 023 v = [1-{(a1+b1)/(1+B1)}] u (8)

The marginal density and distribution functions of Y, denoted by £(Y) and F(Y),
the conditional distribution function F(X[Y) of X given Y, and the joint distri-
bution function F(X,Y) can be given as

_ 21bzexp(-b,Y)
£1(0) (a1+by-b3)

(a1+by) (b1-bz) e-(al+b1)Y
(a1t+bi1~b2)

(0<Y<u) (9a)
f(Y) =

fz(Y) _ al%;?ﬁ%f:gi§) {l_e—(31+b1"b2)u}
018 e—{(&1+81)(u-v)+82(Y~u)}
(a1+81 Bz2) (u<Y) (9b)
(a1+61)(61 B2) e"(u1+61)(Y~V)
(01+B81-B2)

ajexp(-b,Y)
(a1+b1-by)

= bi=by)  —(aytby)Y
(a;+bi-by)

Fi(Y) = 1-
(0<Y<u) (10a)

F(Y) =

_ - aiexp(~bpY) -(ai1+b;~bjy)u
P20 = 1= by O )

o1 e—{(a1+81)(U~V)+Bz(Y—U)}

" (01+81-B2) ‘ (u<y) (10b)

__(B1=82) _ ~(0u#B1) (¥-v) .
(a1+B1-R2)

_ _ajbaexp(~byY)
G = oy e

"(81+b1-b2)X}

(0<X<Y<u) (11a)
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F(X|Y) =

F(X,Y) =

b ~{asX+(ai+bi~ar)Y} ‘
Fz(XiY) = 1 flty) az ai 1=an (0<Y<u,Y<X) (llb)
F3(X|Y) = FiX|Y)e£1(Y)/f2(¥) (0<X<u<y) (11c)
1D - 1o RG] g o8B
+(d1+81)(81—82)6_(a1+61_82)(Y—V)} (1)
(u<x<y)
_Fs(X]Y) = 1— ffty) e"'{ (O"I+Bl)(Y"V)+O('2<X_Y)} (116)
(u<Y<X)
(F1(X,Y) = Fi(X)~-F1 (X|¥)=f1(Y) /by (0<X<Y,X<u) (12a)
Fa(X,Y) = Fl(Y’)" M{be"(azigzzg} (12b)
»Y<u)
- - _ (B1-82) =(a1+81) (Y-v)
fa(XaY) FZ(X)+F2(Y) 1+ (u1+61”82)
o1 ~{(a14B1) Z=v)+B2 (Y-X) }
* BB © (exer) (120)
_ (a1=-02) ~(o1+B1) (X-v)
| Fu (X,Y) = Fo (X)+F2 (V) -1+ T&;;g;:g;y e
Bi ={(a1+81) (Y-v) 402 (X-Y) }
+ (124)
-(@1+B1~&2) (u<Y<x)

where £1(Y), Fi1(Y); £2(Y), F2(Y) = density and distribution functions of Y for
0<Y<u and u<Y, respectively, and F;(X), Fo(X) = distribution functions of X for
0<X<u and u<X, respectively, which can be easily obtained by replacing Y,a,b,q

and B with X,b,a,8 and o, respectively.
of ai1tbi¥by and ci1+B1%¥B2.

Equations for other cases are omitted herefrom.

Equations 9 through 12 hold for the case

Under

the continuity conditions shown in Eq. 8, independent variables of the combined
Freund density function in Eq. 7 are the parameters: a;, bz, 01, 81, Oy and Bs.
These six parameters can be estimated by the maximum likelihood method as

l/al

1/by

1/01

1/B1

1/c2

1/82

Ny
{ z

1

1

<11> Nip <p2>
X, + L Y. + Nou }/Nll
i 9
J
<11> <11>
Y, - X, N
i 4 )/N11
<21>  Nzp <a22>
X, + Z Yj - Nou }/Noi
i
(13)
N21/(N2201)
N22 <g2> <322”>
r (X, - Y. )/Na»
j=1 3 3
<p1> <21>
Y, - X, )/N
( i g )/N21
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<11> <11> <12> <12> <z21> <21> <22> <22>
where Np = Npi1+Na22, ( X, , Y. ), (X, Y. ), (X, Y. ), (X, Y. ) = samples
of the bivariate (X,Y) %atls%ylng th% reg{ons (OQX<Y %<u), (02Y<X %<u), (u<Z<Y)
and (u<¥<X), respectively, and Ni1i, Ni2, Nz1, Nzz = sample sizes for these four
regions, The correlation coefficient p of X and Y for the upper class-density
function shown in Eqs. 7c and 7d can be expressed in terms of the corresponding
parameters: 01, B1, O2 and B2 as

o = (0aB2-01B1) / v (a3+201B1#B7) (Bo+2a1B 1707 (14)

It is easily found from Eq. 14 that the correlation coefficient varies within the
domain: ~1/3 < p < 1.

In practice, the original blvarlate (x,y) should be transformed to the
following nondimentional bivariate (X,Y):

_.m N !
X'X/me’,Y y/aym (15)

in wh%ch g 4, 0 = standard deviations of the m~th power-transformed variates X
and y of X and’y, respectively.

JOINT RETURN PERIOD OF TWO ANNUAL MAXIMA
The joint exceedance probability P[E___>x, n XZy] of the bivariate

- ) can be expressed in terms of e 301n% non-exceedance probability
P[ga <x,n x~y] and the marginal probabilities P[g <x] and P{nmax=y} as

Pl gy ] = 1-PLE ] <]

; (16)
+P[gmax—g{’nmax-—{y]
The inverses of exceedance probabilities P[E. __>x1, Pln__ >y], P[E__ >x,n >y]
. ax= "> ax= max=_" max=
and P[§ x[n X_y] are defined as the return periods s T_, s an s
max= x° Ty’ “xy x|y<

namely, :

Tx = l/P[gmaXig} = l/{l—P[gmaxég]} (17a)

T, = 1/RIn,2v] = 1/{1-Pln,  <y1} o anm

Txy = l/P{gmaxix’ maxiy] (17¢)

Txiy< = 1/P[gmaxZ?{Inmaxsy]

(174)
= VAP L g Ny V1
Substitution of Eq. 17 into Eq. 16 gives
‘ - K -1

T (o) = LT /T, DT (1= (T /T )] (18)
The right-hand side of Eq. 18 is designated by K, so that

T = KeT T (19)

Xy Xy
and
= - -1
K = [(Tx/Tny<)+Ty{l T/ Ty 1 (20)
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It follows from Eqs. 1 and 17b that
1-1/T = exp[-/0{1-F ()} _(£)dt] | (21)
y 0 t P ' ;
in which replacement of y into x gives
- = ~rtorq_ ’
1 1/TX expl fo {1 Ft(x)}xp(t)dt] (22)

Combining Egs. 1 and 5 with Eq. 17d gives

1-1/T = PE__<x,n__<y}/Pln__ <v]

X ] < max= max= max=

it

[ expl-/ " {F (-F )i, ()dE]  (px0)
(23)

1-1/1, (p=0)
Combining Eqs. 22 with 23 for the case of px0 yields

A-1/T )/ A=/ 0 ) = explf PL1-F (O=F, (NHF, (70} (0)de]

(oo

exp[—f';"{f:fy £ (x,y)dxdy A (0)de]

<1 (24)

where ft(x,y) = bivariate joint density function of % and y. Assuming 1<<TX
and T » Eq. 24 gives
x| y<
T_<T
x= x|

< (25)

S or
K= T /(T,T) <1 (26)

in which the sign of equality holds for the case of p=0. Tt should be noted
from Eq. 26 that the joint return period T _ for Ip]>0 is always smaller than the
product of the univariate return periods ™ and T , namely, T __ for p=0.

In summary, the joint return period T  can be estimated™¥s follows. K is
first calculated using Egs. 20 through 23,in which the marginal probability
distributions of x and y derived from the bivariate probability distribution
Ft(x,y) of x and y are adopted as F_(x) and F_(y). Besides K, T and T are re-
quired to give T in Eq. 19. We can calcula%e these values of T and ¥ using
probability dist¥butions different from the marginal probabilityxdistrigutions
F_(x) and Ft(y) of x and y, that is, using univariate probability distributions
of x and v, denoted by G(x) and H(y), by which Ft(x) and Ft(y) in Egs. 21 and 22,
respectively, are replaced and used for estimation of T_ and T_. This method may
result in better fitting of TX and Ty to the data. y

APPLICATION

The theory is developed to evaluate the joint return period of two concurrent
variates: peak rainfall intensity £ . and maximum storm surge ., which occur
almost simultaneously when a typhoon attacks the Osaka district. 117 typhoons
brought storm surges with peak n, over 26cm at Osaka Port for the 80-year period
1900~-1980. All (seven) cases of typhoons bringing peak surges over 1.5m passed
to the west of the apse line of Osaka Bay, and occurred in September. The fre-
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quency of the range of occurrence
time lag, -2V2 hours between 7, and
peak rainfall intensity £,, is about
40 percent, and time lags for almost
all typhoons causing 1, over lm are
in this range. The upper observed
limits of Ei against ni are due to
typhoons with the time lag -1Vl hour,
for a wide range of n,.

Figure 1 shows the monthly esti-
mates of occurrence rate A_(t) suppo-
sing an inhomogeneous Poisson process,
of whlch the hypotheses were accepted
by the X test at a signicance level
of 5% for each month.

Univariate Distributions of the
Exceedance and Maximum Exceedance

As mentioned above, the proba-
bility distributions of the two ex—
ceedances gi and n; seem to be time-
dependent, and the spatial distribu-
tion of typhoon locations when 7,
occurred depends on the typhoon
course, east or west of Osaka. Tak-
ing account of these characteristics
of £, and ny would be troublesome
even if possible; for convenience,
we may assume distributions G(x) and
H(y) of £ and n. as univariates,
respectlvely, to be time-independent
and represented by combined exponen-
tial distributions, say, Eq. 2.

Figure 2 shows the fitting of
G(x) and H(y) to the empirical dis-
tributions of peak rainfall intensity
x=£i(mm/hr) and peak storm surge
y=n,-26(cm) on semilogarithmic paper.
In this case, the univariate distri-
butions G(x) and H(y) are composed
of two and three exponential distri-
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Fig. 2 Fitting of the combined expo-
nential distribution functions
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butions, respectively, because it is clearly seen in Fig. 2 that for each case of
G(x) and H(y), single exponential distributions can not give good fits to the
empirical distributions plotted by Gringorten’s formula.

Figure 3 shows the univariate theoretical distributions of the annual maxima
gmax and n using the above-mentioned distributions of G(x) and H(y), respec-—
tively, as t(y) in Eq. 1. Good fits of these distributions in Fig. 3 confirm
that the assumptions of the time-independence of G(x) and H(y) are acceptable in
this case. )

Combined Freund’s Bivariate Distribution and Iso~Probability Curve

The use of Freund’s bivariate exponential distribution requires the trans-
formation of the original data of x and y to the nondimensional values X and Y,
as shown in Eq. 15. As the values of the exponent m in Eq. 15, m=1/2, 3/4, 4/5,
and 1 were set up, and combined Freund distributions shown in Eq. 7 were fitted
to the transformed data X and Y. Comparing these four distribution functions,
the best fit is by the combined Freund distribution in the case of m=3/5, of
which the marginal distribution functions F(X) and F(Y) are shown in Fig. 4.
These marginal distributions F(X) and F(Y) seem to have not as good fits as the
univariate distributions G(x) and H(y) as shown in Fig. 2. The estimated values
of parameters in the case of m=3/4 are also shown in Fig. 4. Substitution of
these estimates into Eq. 14 gives the correlation coefficient p=-0.02 of X and Y.

Since we also have to consider the relationship between the two variates X
and Y, we must examine the joint and the conditional probability distributions
F(X,Y) and F(X[Y) for goodness of fit. Figure 5 shows the joint and the condi-
tional iso-probability curves of F(X,Y) and F(X{Y), which are defined as contour
lines connecting points of equal probability, F(X,Y) and F(X]Y). It is found in
Fig. 5 that all data lies inside the iso-probability curves of F(X,Y)=0.90 and
F(X|Y)=0.995. Therefore, we could confirm that the combined Freund distribution
is appropriate to the bivariate which consists of two exceedances correlated
each other.
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Fig. 4 Marginal distribution functions Fig., 5 Iso-probability curves of
F(X) and F(Y) of the combined F(X,Y) and F(X|Y)

Freund bivariate distribution
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Joint Return Period of Two Annual Maxima

In Eq. 19, which gives the joint return period T__, K is calculated using
F(Y), F(X), and F(X,Y) in place of F_(y), F_(x), and fy(x,y), respectively, in
Eqs. 21, 22, and 23, while T_ and T_ in Eq.I9, and not in Egs. 21 and 22, are
estimated by replacing Ft(y)yand Ft%x) with H(y) and G(x) in Eqs. 21 and 22,
respectively. )

Figure 6 shows contour lines connecting the points of equal joint return
period of T and T «T for p=-0.02 and p=0, respectively. The past three typhoons
which give the largestyvalues of TXy and TX-Ty, are listed in Table 1.

0 100 200 300 y(cm)

Fig. 6 Contour lines connecting the points of equal joint return period
of TX and T_»T_ for p=-0.02 and p=0, respectively (Symbols x and
o defidte typﬁoogs passing east and west of Osaka, respectively.)

Table 1 Joint return periods of the three largest typhoons

E.=x |n.=y+26 | T T T
Typhoon | Date |yl tem | D | G
Muroto 21/09/34 6.8 292 215 485
Jane 03/09/501} 19,8 237 240 560
T 7916 30/09/79 | 64.5 107 338 785

It is clarified from Fig. 6 and Table 1 that taking the cross-correlation co-
efficient(=-0.02) into account somewhat reduces the joint return period; i.e., the
assumption of an uncorrelation between two variates may lead to an overestimation
of the joint return period. For instance, values of T for the great typhoons
Muroto and Jane, which attacked in 1934 and 1950 respc%gvely, are 215 and 240
years, while the values of T_°T_ are 485 and 560 years, respectively. Typhoon
T7916, which attacked in 197§, ¥s, however, found to have the largest value of

the joint return period: TX =338, with x=64.5mm/hr and y=8lcm. Figure 6 can be
used to estimate the joint grobability for the combination of a given peak rain-
fall and a given peak storm surge that may occurr in the future, as well as evalu-
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ate the joint return period for a given past typhoon.

CONCLUDING REMARKS

It might take place with quite high possibility that the flood following
heavy rainfall may flow down the tidal river in the lowlying urban area while the
storm surge may run up the river after only a short time lag.

The joint probability of two variates, peak rainfall intensity and maximum
storm surge, is formulated by using the theory of a marked point process, in which
the two variates are supposed to follow a combined Freund distribution. The esti-
mation technique of the joint return period is developed and demonstrated using
the data at Osaka. It was found that the combined exponential and the combined
Freund distributions are useful for univariate and bivariate probability distri-
butions, respectively.

Taking the cross-correlation between two variates into accont by means of the
combined Freund distribution somewhat reduces the joint return period, while the
assumption of independence may lead to an overestimation of the joint return pe-
riod. The three largest values of the joint return periods due to past typhoons |
at Osaka may be evaluated as T__ =338, 240, and 215 years, due to typhoon T7916 in
1979, Jane in 1950, and Muroto In 1934, respectively.
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APPENDIX - NOTATION

The following symbols are used in this paper:

ay, by, az, by - = parameters of the lower class Freund distribu-
tiong

C1s C2 = parameters of combined exponential distribution;

£(e) = marginal probability density function of argu-
ment;

f(A,B) = joint probability density function of A and B;

F(e) = marginal probability distribution function of

k argument ;

F(A,B) = joint probability distribution function of A
and Bj;

F(AIB) = conditional probability distribution function

A given B;
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denéity and distribution functions of Y for
K¥<v and wy, respecﬁively;

distribution functions of exceedances Ei and
Nys respectively; ‘

bivariate joint density function of x and y;
univariate probability distribution functions
of x and y, respectively;

ratio of Txy to TX'Ty;

exponent in Eq. 15;

sample size;

sample sizes for the ranges'of y corresponding
to Egs. 2a through 2c¢, respectively;

sample sizes of bivariate (X,Y) satisfying
regions : (O<XY,X<u), (o<Y<X,¥<u), (u<X<Y) and
(u<Y<X), respectively;

No1+Np o

sample size;

probability of argument;

joint probability of A and Bj;
conditional probability of A given Bj;
empirical exceedance probability of i-th
largest in the sample;

occurrence time of i-th exceedance;

365 days

fundamental period;

return periods of x and y;

joint return period of x and y;

conditional return period of x given y;

event magnitudes or variates equal to Ei and
(ni—26), respectively;

nondimentional event magnitudes of x and y;
constants;

sample means of y for the ranges corresponding

to Egqs. 2a through 2c¢, respectively;
<po> <pp>

R Yj ), ( Xj" Yj ) = samples of bivariate
(X,Y) satisfying the regioms: (0<X<Y,X<u),
(0<Y<X,Y<u), (u<X<¥) and (u<¥<X), respectively;
critical value of X and Y that classifies the
combined Freund distribution into Egqs. 7a, 7b
and 7c, 7d;

constant;

parameters of the upper class Freund’s distri-

bution;
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nmax’ gmax

A1y Az, As
A
p(T:)

0., 0
xm® “ym

variates or marks associated with single Poisson

point process;

annual maximum exceedances of n; and gi;
parameters of combined exponential distribution;
time-dependent rate of occurrence;
cross—correlation coefficient; and

standard deviations of m~th power transformed

variates %" and ym of x and y, respectively.



