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SYNOPSIS

At present we have many rainfall-runoff models available and their evaluation
has become an important problem because we must find an adequate model which fits
a specific hydrological problem. In this paper, a new method of evaluating
rainfall-runoff models is presented and applied to a simple overland flow process,

First, the basic principle of model evaluation is proposed. Second, the
properties of stochastic input—output transformation of a slope runoff system are
studied by using the kinematic wave model and a Monte Carlo simulation technique.
Subsequently, the so-called storage function models, which are regarded as those
obtained by simplifying the kinematic wave model, are evaluated considering whether
the models preserve the stochastic transformation properties of the system or not.
The method presented here is appropriate and useful because rainfall-runoff
phenomenon is essentially a physical and stochastic one.

INTRODUCTION

Various kinds of rainfall-~runoff models have been developed since the early
1930's. However, there are so many models that we cannot clearly identify which
model should be used for a specific hydrological problem. One of the reasons for
the 'flood of models' is that it is difficult to describe the system in which the
rainfall is transformed into discharge. Rainfall-runoff phenomenon is large scale
and quite complex; in practice, even a small catchment has a complicated structure,
Another important reason is that there is no efficient criterion to evaluate those
models. In the past, some attempts were made to evaluate rainfall-runoff models
by using the 'goodness of fit' criteria like the sum of the square errors between
observed and computed runoff discharges and so on (e.g., Nash and Sutcliffe (8),
Pilgrim (9) or WMO (14)). However, these attempts could not attain their desired
end because most models can only reproduce the actual hydrographs given for model
validation to a certain degree. Therefore, such criteria are not suitable for
model evaluation. )

As stated in the following chapter, rainfall-runoff phenomenon is a physical
and stochastic one., However, the stochasticity has rarely been taken into account
in conventional model evaluation. In this paper, we propose a new method of
evaluating rainfall-runoff models from the viewpoint of stochastic transformation
and show a typical application of the method.

A BASIC PRINCIPLE OF MODEL EVALUATION

A catchment is regarded as a system tranforming rainfall into discharge and
can be described by the following equation.

{Q}=F( {R}, Ho , A ) ' @

where {Q} = the sequence of system outputs (runoff discharges); {R} = the sequence
of system inputs (rainfall); Hp = the initial condition of the catchment at the
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beginning of the series of rainfall; and A= the condition of the catchment. Eq. 1
does not necessarily mean a deterministic transformation because {Q}, {R}, H, and A
change with time and space; and moreover, our recognition (or observation tech-
niques) cannot determine those values quantitatively,

Eq. 1 should essentially represent the physical and stochastic transformation
of rainfall-runoff. By using {6}, {R}, Hy and A, average quantities (or idealized
quantities), the average behavior of the system is often expressed as

{Q=£( {R}, Hy , &) (2)

In the conventional runoff analysis, researchers have been looking for an optimal
function f of {R}, H, and A; and in most cases, regarding the sequence of observed
discharges as {Q} in Eq. 1, they have tried to make {Q} conform to {Q}. TLet {e}
denote 'variation components' caused by replacing {Q}, {R}, Hy and A with 1Q}, (R},
Hy and A, respectively. We denote the system output obtained by considering the
variation components {c} in the model expressed by Eq. 2 as follows:

{Q}=£C (R}, H, , &, {e}) (3)

If the system description is appropriate, {Q} in Eq. 3 should agree with {Q} in
Eq. 1.

Deviations between the system outputs obtained by Eqs. 2 and 3 are caused by
{e}. Let {8} denote the deviations as

{6} ={q} - {Q} (4)

Let us now consider the simplification of the model f, In the same manner as
Eq. 2,

QM =g( {R}, Hy , &) (5)

where {QM} = the sequence of outputs of a simplified model g. If the simplification
is appropriate, {Q} and {QM} must agree well. Considering the variation components
{e} in the same manner as Eq. 3, we obtain

{QM} = g( {ﬁ}’ I—{-O E K 5 {5} ) (6)
The deviation between {QM} and {Q} is given by
{64} = {"} - {Q} (7

It is natural to regard {Q} as the reference output as in Egs. 4 and 7 because
the model output must agree with {Q} if the variation components {c} do not exist
in the system. In the conventional method of model evaluation, researchers paid
more attention to the magnitude of the deviation between {Q} and {QM} or between
{Q} and {QM}, without considering the variation components {e} as in Eq. 3 or
Eq. 6., From the viewpoint that rainfall-runoff phenomenon is both physical and
stochastic, we should take into consideration not only the magnitude of {§} or {§M}
but also their stochastic properties. The model in which the stochastic properties
of {6M} differ much from those of {8} is apparently inadequate. Therefore, the
properties of {8} and {6M} can be good criteria for model evaluation.

On this basis, we try to evaluate rainfall-runoff models in this paper
according to the following procedure:

[1] Consider an ideal model, obtained by idealizing the rainfall-runoff system, as
a fundamental model and evaluate some models which are obtained by simplifying
the ideal model.

[2] Examine the properties of the stochastic transformation of the ideal model in
the case where {R}, Hy, A and {e} are given.

[3] Check the stochastic properties of {6M} obtained by using the simplified model
with {R}, Ho, A and {e}; then show that the model in which {6} preserves the
stochastic properties of {8} is a valuable one.
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IDEAL AND SIMPLIFIED MODELS FOR OVERLAND FLOW PROCESS

Regarding the kinematic wave model as an ideal one representing overland flow
process on a slope system, we try to evaluate three storage function models which
are obtained by simplifying the kinematic wave model.

Kinematic Wave Model

Runoff process is essentially the movement of rainwater in the catchment and
should be described by a physically-based model. Ishihara and Takasao (4) initi-
ated the research on the hydraulic mechanism of runoff process using the kinematic
wave model with a time-variant input given by an arbitrary function of time. After
their analytical research which gave fruitful results to the hydrologists and
engineers, the kinematic wave model is now often used for rainfall-runoff analysis.

The kinematic wave model for overland flow is given by:

oh 3

§E+§Y—;=r (0<t ; 0<x<2) (8)
w=oqah® (9
h(x,0) = 0 ; h(0,t) = 0 ' ' (10)

where t=time; x=distance from the upper edge of the slope; h=depth of flow;
w=discharge rate per unit width; r = effective rainfall (system input); % =slope
length; and o and m= the parameters defining the flow characteristics. Eq. 10
gives the initial and boundary conditions.

For simplicity, by using the following relationships

t=1t,T 3 x=x*X s h=hH ; w=w W ; r=r,R

Eqs. 8, 9 and 10 are made nondimensional as:

9H | oW _

Ttx R | an
W=gHD : (12) .
H(X,0) = 0 ; H(0,T) = 0 ‘ ‘ (13)

where the normalizing operators used are:

t, = (er"m/a)l/m (the time of concentration) ;
x*=k52, s hy=rty ; w*=och;“ =%r ;

r,=r  (the average effective rainfall intensity)

Storage Function Models

Kimura (6) first proposed the storage function model as:

d
=T - g (14)
s = KqP (15)

where s=water storage height; r=effective rainfall dintensity; q=runoff height;
and K, P and Ty =model parameters. The parameter Ty, which represents 'lag-time',
is introduced into the model so that s and q satisfy the one-valued relationship
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given by Eq. 15. This model is often used for the flood runoff calculation in a
basin with an area of less than five hundred square kilometers in Japan.

In this paper, the following models are considered as the ones obtained by
simplifying (or lumping) the nondimensional kinematic wave model (Egqs. 11 and 12):

Model-F S=K;Q P? (16)

Model-P S=K; Q1+ Kop g—% 17)
P2

Model~-H S=K; Q Py +Xag ;d;% (18)

where S=water storage; Q= discharge; and K;, K;p, Kz, P, and P, =model parameters.
Egqs. 16, 17 and 18 are called storage equations. For all the models, the continuity
equation is given by

as
& _r-q | (19)

From the theoretical solution of the kinematic wave model with constant
rainfall intensity (rectangular rainfall), K; and P; in Eq. 16 are given by

Ky = m/(m+l) P; = 1/m (20)

Fujita (1) showed that Eq. 20 can be used not only for rectangular rainfall but
also for triangular rainfall, Model~F is a special case of Kimura's model (Eqs. 14
and 15) with T, =0.

Prasad (10) tried to represent the two-valued relationship between storage and
discharge by incorporating the term dQ/dT as in Eq. 17, On the basis of the
storage equation derived from the kinematic wave model with rectangular rainfall,
Hoshi and Yamaoka (3) showed that the parameter K,p in Eq. 17 depends on the
discharge Q and incorporated the new parameter P,. According to Hoshi and Yamaoka,
for the rectangular rainfall case,

Kog = 0.1m %2 Pp = m led (21)

and for the triangular rainfall case, K,y and P, are given as functions of m and
Ty/Ty, where Ty = the time when peak rainfall occurs and Ty = the rainfall duration,.

In the case of Prasad's model (Model-P), Kyp is not given quantitatively;
therefore, in this paper, we determine it by numerical experiments under the
assumption that K;p is given as a function of m, First, changing m with a 0.1
increment in the range of 1.0-2.0, we simulated the overland flow by using the
kinematic wave model (Eqs. 11-13); second, we optimized Kyp by the COMPLEX method
(a direct search method of maximum value of multi-variables and nonlinear function
under non-equal constraints; the objective function used was the sum of the square
errors between the dischrges simulated at time intervals AT = 0,05 by the kinematic
wave model and those by Prasad's model), Four patterns of temporal distribution
of rainfall are considered, namely, one rectangular and three triangular (Ta/Tr=
0.2, 0.5 and 0.8). The average rainfall intensity was 1.0 and the rainfall and
flood durations were set to 2.0 and 4.0, respectively. Fig. 1 shows the result of
the optimization. According to Fig. 1, we assumed the following relation between
Kep and m

Kop = exp( am+b ) (22)

and searched for the optimum values of a and b by the least squares method.
Table 1 shows the optimum values of a and b for all the cases,

After this, we assume that the overland flow obeys Manning's law, i.e., m=5/3.
Then the values of the parameters in Eqs. 16-18 are determined by Egqs. 20-22 as
shown in Table 2. " Fig. 2 shows the hydrographs obtained by using these parameter
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values., Computation was carried out by the

Lax-Wendroff scheme for the kinematic wave : 0
model and by the Runge-Kutta-Gill method for = ——-m———-~———J — K. W. Lo
storage function models. . :
K
2p Rainfall
A J Rectangular
l A Ty /T, = 0,
0.10 - AL QV — K. W, 1o
. 0 A& T3/Tp= 0.5 _ o0
. Q - O Ta/Ty= 0.8 : : ’ L3.0
4 A . 0 R
@ A N
]
] & a2 - g
0.05 - O a £ A A : Q — K. W. 1.0
O A A A 2.0
O o & A A 1.64 3.0
O o o R
P ‘ 0.8+
e
0.0 1: e e ]
1.0 1.5 2.0 .
. . Q — K. W. }t.0
Fig., 1 Relation between the parameters K;p A
and m in Prasad's model (Eq. 17) 20
3.0
Table 1 Fitted values a and b in Eq. 20 A
Rainfall (Ta/Tr) a b
4.0
Rectangular ~0.7790 -1.5235
Triangular (0.2) -0.9195 -1.3830
Triangular (0.5) -1.2564 -1.0462 Fig. 2 Hydrographs by the
Triangular (0.8) -1.,5148 -0.7878 kinematic wave model and

the storage function models

Table 2 Parameter values of the storage function models

Rainfall (Ta/Ty) K1 . P; Kop Kop Py

Rectangular 0.625 0.6 0.05950 0.,11076 0.4648
Triangular (0.2) 0,625 0.6 0.05418 0.07572 0.5537
Triangular (0.5) 0.625 0.6 0.04327 0.09608 0.4509
Triangular (0.8) 0.625 0.6 0.03643 0.10441 0.3586

STOCHASTIC RAINFALL-RUNOFF SIMULATION

Suppose that ‘the condition of the catchment does not change with time or
space, that is, the catchment slope has a constant gradient and uniform roughness.
The initial condition is that there is no rainwater on the slope. Therefore,
these conditions are given as:
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A=A Hy = Hy
where
A: m=5/3
Hp: H(X,0)=0 3 W(X,0)=0 for the kinematic wave model
S(0) =0 ; Q) =0 for the storage function models

In addition to the slope conditions, we suppose that the rain comes down over the
slope uniformly. Consequently, only temporal variation of rainfall exists in the
assumed runoff system. , ~

The rainfall intensity changes with time at intervals of AT and takes a
constant value within the interval; and so {¢} is assumed to be a sequence changing
at intervals of AT, Let the system input be given by

AR} = {R} + {e}

_ In this study, the four types of rainfall shown in Fig. 2 are considered as
{R}. We consider various rainfall patterns because the result of the evaluation
may depend on the rainfall pattern. The sequence {e} is assumed to obey NID(0,0.%),
and Og is supposed to be 0.1, 0.5 or 1.0, while the average effective rainfall
R=1.0. The rainfall sequence {R} is generated by adding random numbers obeying
NID(0,0.%) to {R} which represents the average behavior of rainfall. When R(T) < 0,
R(T) is assumed to be zero.

STOCHASTIC TRANSFORMATION PROPERTY OF
THE KINEMATIC WAVE MODEL

The output {Q} of the kinematic wave model with the average input {R} is shown
in Fig, 2, When {e} is added to {R}, the output {Q} fluctuates owing to {e}. 1In
general, when stochastic components exist in the system, the system output must
fluctuate, In this chapter, we investigate the properties of stochastic transfor-—
mation of the kinematic wave model by numerical experiments.

In the same manner as in Fig. 2, we set the rainfall duration T,=2.0, the
flood duration Tf=4.0, and the unit time interval AT=0.05. Using the rainfall
added with the random numbers, we simulate runoff and obtain a sequence {8} at
intervals of AT. Since AT=0.05 for Tf=4.0, eighty 8's are obtained for each
hydrograph; the last thirty ¢'s are discarded because they are not significantly
influenced by the rainfall. The simulation is repeated a hundred times and we
obtain five thousand S8's. To analyze their stochastic properties, the correlogram
and histogram of &'s are drawn. '

Table 3 shows the mean ¢ and standard deviation 05 of §'s, 1In all cases where
O.=0.1, 0.5 and 1.0, 0g is about 20% of o,. ,

The fluctuation of the output of the kinematic wave model with a stochastic
input was investigated by Takasao and Shiiba (11) and Fujita et al. (2). Let us
compare the results obtained here with their results.

Rewrite Eq. 8 as follows:

By re) +v(e) (£20; 0sx=1) (23)

where r(t) =mean rainfall intensity given as a deterministic value; v(t) = the
stochastic component of rainfall; and the stochastic properties of v(t), which is
independent of the initial water depth h(x,0), are given as:

Efv(t)]=0

E[v(e)v(T) ]=V&(t=T) ; V>0 5 t,T>0 @4

where 8 (t) = the Dirac delta function; and E[*] denotes expectation. Note that
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Table 3 Statistics of the output residuals

Rectangular Rainfall Triangular (T5/T,=0.5)

Oc Model p -

J og § Og

K. W, 0.000282 0.02153 -0,000007 0.02185
0.1 F 0,015608 0.09177 0.024161 0.12684
° P ~0,005325 0.05952 0.005862 0.06501
H -0.005964 0.04477 0.001983 0.03567
K.W. -0.004090 - 0.10319 -0.018760 0.10090
0.5 F 0.011119 0.14387 0.004688 0.16226
° P ~0.009703 0.12194 ~-0.012802 0.11804
H -0.010188 0.11602 -0.017197 0.10774
K.W. -0.068590 0.19134" -0.092123 0.20157
1.0 F ~0.051834 0.21686 ~0.069251 0.24445
: P -0.075397 0.20197 -0.088143 0.21112
H -0.074789 0.20629 -0.091630 0.21208

the variables h, w and v in Eq. 23 are random variables; therefore, Eq. 23 is a
stochastic differential equation. In this case, the transition of the probability
distribution of water depth h(x,t) is obtained analytically by linearizing Eq. 23
in an appropriate manner under the condition that

h(x,0)=0 ; r(t) =T = constant

The variance th of the water depth at the lower end of the slope is given as
follows (see Takasao and Shiiba (7)):

op2= (t/a) MV /{T (2m-1)} ‘ (25)

In the nondimensional form as Egqs. 11-13, setting ¥=1 and 00=1 in Eq. 25, the
variance GHZ of the water depth at the lower end of the slope H(l,t) is given by

o> =V/(2m =~ 1) (26)

Though v(t) in Eq. 23 is defined in continuous time, the variation components {e}
is a discrete sequence at intervals of AT. Then the variance V of v(t) and the
variance 682 of ¢ have the following relationship :

V= 0.%AT (27)

By linearizing Eq. 12 about H=1 and using Egs. 26 and 27, the variance sz of the
discharge rate at the lower end of the slope is given as

) :
2 AT (28)

2 - 2. 2
oy’ = mPog’= = O
Since m=5/3 and AT= 0.05,
oy = mvY AT/ (2m~1) Og = 0.244 o (29)

As 0g mentioned above corresponds to Oy, the result agrees with the relationship
given by Eq. 29. Fig. 3, in which the correlogram of {8} is shown, indicates that
the sequence {8} is highly autocorrelated. The results in Table 3 and Fig. 3 show
superficial results of the stochastic properties of {§}. Let us see the charac-
teristics of {8} along the time horizon. Table 4 shows the mean and standard
deviation of {8} at T=0.5, 1.0, 1.5, 2.0 and 2.5, The variance (standard devia-
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tion) of {8} at T=1,0, which corresponds to the time of concentration, is greater
than that of the other cases regardless of the rainfall pattern and the magnitude
of Oge This result is the same as that shown by Fujita et aql. (2). Therefore,

we must pay attention to such temporal variation of §'s.

EVALUATION OF THE STORAGE FUNCTION MODELS

Three storage function models are evaluated considering whether they preserve
the stochastic transformation properties of the ideal model or not.

In the same manner as in the case of the kinematic wave model, we obtained
the output residual sequences {8F}, {8F} and {6H} of the storage function models
Model-F, Model-P and Model-H, respectively. Fig. 3 shows their correlograms as

- well as that of the kinematic wave model. Except for the case of Oc=0.1 the
correlograms are similar; therefore, it is impossible to discuss their merits and
demerits on the basis of this result. :

Tables 3 and 4 show the statistics (the mean and standard deviation) of the
residual sequences of the storage function models as well as those of the kine-
matic wave model. Fig. 4 shows the histograms of the sequences. From these
results, in all cases, the stochastic transformation properties of Model-H are
most similar to those of the kinematic wave model; so that Model-H can be said to
be better than the others from the viewpoint of stochastic trnsformation.

A few hydrographs in the case where the stochastic variation {e} is considered
are shown in Fig. 5, which supports the evaluation made above according to the
results in Table 3 and Fig. 4 because Model-H reproduces the behavior of the kine-
matic wave model better than the others.

Table 4 Statistics of the output residuals at some
points of the time horizon

. Storage Function Models
G Time KeWs
€ T Model F p -

o.5 | Mean -0.0099 ~0.1705 ~0.0864 ~0.0057
. s.D. 0.0770 0.1028 0.0848 0.0895
Lo | Mean 0.0131 0.1538 0.1318 0.0593
: S.D. 0.1498 0.1289 0.1274 0.1373
s | 15 | Mean ~0.0267 0.0145 ~0.0244 ~0.4258
0. . S.D. 0.1229 0.1299 0.1293 0.1287
20 | Mean -0.0136 0.0087 -0.0232 ~0.0197
. S.D. 0.1330 0.1453 0.1354 0.1356
, s | Mean 0.0020 0.0738 0.0639 0.0329
. S.D. 0.0477 0.0327 0.0468 0.0446
0.5 | Mean ~0.0409 ~0.1986 ~0.1275 ~0.0506
: S.D. 0.1285 0.1718 0.1361 0.1445
) Mean -0.0778 0.0671 0.0394 ~0.0398
U P 0.2700 0.2603 0.2330 0.2503
Ls | Mean -0.0916 ~0.0411 -0.1016 -0.1100
1.0 . S.D. 0.2459 0.2410 0.2713 0.2661
Mean ~0.0782 -0.0661 ~0.0846 -0.0820
20 1 5.p, 0.2319 0.2426 0.2429 0.2467
,.5 | Mean -0.0147 0.0591 0.0489 0.0180
: S.D. 0.0749 0.0524 0.0753 0.0697
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CONCLUSIONS

Given that rainfall~runoff phenomenon is a physical and stochastic one, we
have proposed a new method of evaluating rainfall-runoff models. As a typical
application of the method, we dealt with overland flow process on a simple slope
system., The stochastic transformation
properties of the system, in which only
temporal variation of rainfall exists
as variation component, were clarified
by using the kinematic wave model and
a Monte Carlo simulation technique.
Three storage function models were con-
sidered as simplified models of the
kinematic wave model and were evaluated
by this method. Consequently, Model-H
was evaluated as the best one. When
the kinematic wave model should be
replaced with a storage function model,
the result obtained can be used effec~
tively.

This approach is directly applica-
ble to a natural system if the catch-
ment slope is not covered with a highly
permeable surface stratum through which
the penetrated water flows downstream.
In such a system, surface runoff (or
overland flow) is the main component
and the fundamental (ideal) model used
'is the kinematic wave model. However,

1.0+
0.6+

when the slope is covered with a highly ~0.6- 95% C.L. 0. =1.0
permeable surface stratum, not only -1 0“ ) € ’
surface runoff but also sub-surface o i é % 4 é
runoff (or interflow) must be consider-

ed. In this case, the kinematic wave time tag k (At=0.05-)
model containing a sub-surface component

proposed by Ishihara and Takasao (5) or —&— K.W. <@ F
other models (see e.g., Kirkby (7)) are

the fundamental models that could be o P -=4-- H
used.

Fig. 3 Correlograms of the

This kind of study represent a new output residuals

approach and we will have to try to

construct better models by solving the following important problems:

[1] appropriate temporal and spatial scales of the rainfall-runoff field;

[2] stochastic properties of the field, the input and the initial conditions;

[3] quantities of the various stochastic components contained in actual input-~
output data.

Even considering the limitation of our model, we believe that the methodology
presented here is plausible and can be used for specific hydrological problems.
Furthermore, in the case where an ideal model must be replaced with a simplified
one, the framework as presented here will play a significant role in evaluating
models of a certain stochastic system.

This paper is the revised edition of the authors’ previous paper (12) and the
application of this approach to a slope-channel system is presented in another
paper (13).
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Fig. 5 Examples of the hydrographs with the stochastic input
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The following symbols

A, A =
E[-] =
f, g =
h, H =
He, Hy =

K, K1, Kop, Ko =
2 =
m =
NID(u,02) =
P, P;, P, =
q, Q =
{o), 1a} =
{QM}, {4} =
r, R =
{r}, {R} =
t, T =
T, =
Trs T =

v, V =

w, W =

X, X =

o : =

{6}, {M =

AT =
{e} =
Gh, OH, Oy =
08> O¢ =

~ APPENDIX ~ NOTATION
are used in this paper:

catchment condition and its ideal form;

expectation operator;

functions representing ideal and simplified models;

flow depth and its nondimensional form;

initial catchment condition and its ideal form;

parameters in the storage function models (see Egs. 15-18);
slope length;

parameter defining the flow characteristics;

normal independent distribution with mean Y and variance o?;
parameters in the storage function models (see Egs. 15-18);
runoff height and its nondimensional form (see Eqs. 14-19);
sequences of outputs of an ideal model (see Eqs. 2~3);
sequences of outputs of a simplified model (see Eqs. 5-6);
effective rainfall intensity and its nondimensional form;
sequences of rainfall and its average (or ideal) quantity;
time and its nondimensional form;

time when peak rainfall occurs;

rainfall duration and flood duration;

stochastic component of rainfall and its statistic (see Egs,
23=24);

discharge rate per unit width and its nondimensional form;
distance along the slope axis, positive in downstream
direction and its nondimensional form;

parameter defining the flow characteristics;

sequences of output residuals obtained by ideal and simpli-
fied models (see Egqs. 4 and 7);

unit computation time interval in nondimensional domaing
sequence of the stochastic ¢omponents existing in the system;
standard deviations of h, H and W; and

standard deviations of §'s and e€'s, respectively.



