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SYNOPSIS

The present paper intends to propose a evaluation method of the ground water
simulation by combining the kinematical and probabilistic approaches, For this
purpose, the variational formulation has been made on the ground water behaviors,
which gives us a useful tool to express the relationships among errors of parameter
estimation, boundary and initial conditions and the accuracy of the simulated result
in the whole region concerned. This relationship is combined with the probabilistic
concept and leads to the evaluation-index of the ground water simulation.

GENERAL REMARKS

The simulation technique has been widely used to investigate and estimate the
confined ground water behaviors in various regions. Based on the flow mechanism
and geophysical and geological information, usually the model structure is fixed
at first and then the model parameters are estimated through the identification
process, comparing the observed data with the caleulated data. Thereafter, the
model is applied to various purposes concerning with the ground water behaviors in
real regions for the given boundary and initial conditions, pumping intensity and
so forth., Even though the parameters are carefully identified, therefore, the accu-
racy of the simulated result depends greatly on the accuracy of the conditions and
input information. However, in the actual state, it is very difficult to estimate
the real states of the boundary and initial conditions etc. themselves.

Numerous research works have been promoted on the simulation technique, and
most of the efforts have been devoted to the calculation procedure or the identifi-
cation problems. However, it seems that we have lack of attention to the objective
evaluation of the simulated results themselves. The discretion itself by the
professional engineers or researchers in the field is, of course, one of the basic
evaluation of the results obtained through the simulation. The problem discussed
in the present paper is how to evaluate once more the simulated results, which were
made by the professional engineers based on the potential distributions, flow direc-
tions, flow regimes, geological information and so forth. The authors intend to
propose the evaluation method of the ground water simulation by combining the kine-
matical and probabilistic approaches. For this purpose, the variational formulation
is made on the ground water behaviors, which gives us a useful tool to express the
relationships among errors in the estimation of parameters, boundary and initial
conditions and also the errors or accuracy of the simulated result over the whole
region concerned. This relationship is combined with the probabilistic concept and
leads to the probabilistic evaluation of the final result of simulation,
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VARIATIONAL FORMULATION OF GROUND WATER BEHAVIORS

Two dimensional fundamental equation of the ground water flow through the con-
fined aquifer takes the following form, integrated the three-dimensional equation
over the aquifer with respect to the vertical direction,

oh 3 oh
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In this equation the symbols denote, %, the horizontal coordinates (i=1,2), t: time,
h: Piezometric head, r: vertical inflow flux (intensity) to the aquifer including
the recharge, leakage and pumping intensity per unit area, S: storage coefficient
and T=kb: transmissibility, i.e. the product of the permeability coefficient k and
the thickness of the aquifer b. ‘

We write here the piezometric head h as the summation of the real value h* and
the small arbitrary variation Sh around the real value h*, Both of them, i.e. h%
and ¢h are the functions of space coordinates as well as time; that is,

h(xi’ t) = h*(xi, t) + 6h(xi, t) (2)
[h¥(x;, £)[>>[oh(x,, t)] ‘ (3)

Multiplying the equation (1) by ¢h, we obtain the following equation with the help
of Eqs., (2) and (3),

36h _ oh*_ 1. 3h .2 3 .0h
SSh— = ~Soh- szz(aXi) + réh + zaxi{Taxiah} ’ (4)

The integration of this equation (4) over the whole region concerned G and also
the time results in
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where C is the boundary around the region G, s is the counterclockwise distance
along C, fdx, is the areal integration over the region G, i.e. ffdxldxz, and the
last term is the areal integral at the initial time.

For the real behaviors of ground water, since

BGeg, £) = hxGxy, ©) , ©

all over the region G, the equality in Eq.(5) should be satisfied. Moreover, since
Sh becomes zero at the boundary and initial states, provided the boundary and
initial conditions are correctly given, the line integral and the areal integral at
the initial time S dxi vanish. In this case, then, only the first term remains, and
we may write the fundamental equation of ground water as,

s [ L, dxgde =0 ’ (7
L =% 1T oh 2 1
L, =5t *53 Z(axi) <rh ; (8)

In this equation the variation should be taken with respect only to the quantity h,
keeping the real quantity h* fixed, according to the assumption of local equilibrium.
Thereafter, the principle (7) must be used with the subsidiary condition (6). The
assumption of local equilibrium is what we need to apply the variational principle
held only for the conservative system to the dissipative omne,

The variational principle (7) as introduced above is the equation which governs
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the ground water flow in the region G as a whole. Therefore, to solve the differen-
tial equation (1) for the given conditions is equivalent to the problem to find the
solution h* which satisfies the variational principle (7) for the conditions.

Although the detailed discussions are omitted here on the variational principle,
since the more comprehensive presentations on its physical significances and its
various applications have been already given by one of the authors (1)(2)(3), it
turned out that local potential L * in which the quantity h in L_is substituted by
the real water depth h*, is in thé following relationship betweel the loss of
kinematical energy AE_ per unit area and unit time, and the kinematical energy
carried into a unit aFea of ground water region by the flow, that is,

Lg* = —%AEg + (energy flux) ; : 9)
In other words, the variational principle may be considered as to be closely related
with the energy of flow in the aquifer., Moreover, it should be noted here, that the
left hand side of Eq.(5) corresponds to the (half times of) summation of square
errors over the whole region G concerned at the specified time, if we consider the
quantity Sh as the error between the quantity h and the real behaviors h¥*,

VARIOUS ERRORS INVOLVED IN THE SIMULATION

The errors which come into the simulation may be classified as Table 1. In the
table, the errors expressed as '"Model structure' are concerned with such the basic
problems as to whether the flow mechanism is correctly expressed in the mathematical
form, i.e. it is governed by Darcy's law or not and also whether the flow region of
ground water is appropriately estimated as the integral domain of the basic equation.

Table 1

Model structures
Parameters
Conditions

Numerical procedures

The next category "Parameters" implies the errors due to the over— and/or under-
estimations of parameters T and S. Bs the third category, if the initial and
boundary conditions including the recharge intensity and pumping intensity are not
correctly given, the simulation results will have the corresponding errors. At last,
some errors may arise in the "Numerical procedures'. Although we have to consider
all these problems in the general meaning, for the brief treatment in the present
paper we will treat only the 2nd the 3rd categories in the Table 1 and we assume

that the model structures are correctly formulated, besides the numerical proce-
dures are not considered.

Errors due to the estimation of the parameters

In this article at first we deal with such the case that the simulation is carried
out with the approximated parameters S snd T and all the other factors are cor—
rectly given. The simulation result ~with the parameters including errors, that
is, the approximated value of the potential distribution is written by the notation
ho(xi,t) and its error by the symbol with prime, namely

= ]

h(x, t) h Gx;, £) +h'Gsy, ) (10)
Moreover, for the other factors we write here the approximated values and the errors
by the subscripts o and prime, respectively,

(S/T) = (S/T)_ + (/D) 1/8) = (1/s), = (1/9)" an

In this simulation, the approximated value of the potential distribution h
corresponds to the solution ho* which satisfies the following variational principle
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s L, dxgdt =0 (12)
with the local potential
dh * oh 2
_ o 1T 0 1
Lgo Y ho + Z(S)oz(Bxi) (S]orho i a3

instead of the original equation (7) and (8). As easily understood, the variational
principle (12) should be treated with the subsidiary condition,

E L %
ho(xi, t) h (xi, t) (14)
Introducing the local potential Lgo, we may rewrite Eq.(7) in the following form

1 2 ‘
5 [ (sh) dxi=-<stg dxdt-é[(Lngo)dxdtzo (15)

In this equation, since the approximated solution h_satisfies Eq.(12), the error
distributions h' of the approximated solution should satisfy

? =
s f L,' dx;dt =0 (16)
L'=L ~-1L
g g 80
oh * terms which
— dh'w 1 .Te3h'y2 1 ., Tyv' o 3h' | vanish in the
Tt h' o+ 2 ZS{S 1J - Srh + Z(S) Sxi 9%, variational a7

procedure

In this step L__ is a definite known function of h *, because the approximated
solution h * 1§Oalready given and the treatment of%the variational calculus (16)
is same fot Egs. (8) and (12). It goes without saying that Euler-Lagrangian
condition of the variational principle (16) with help of the subsidiary condition
h' (x t)-h'*(x ,t) gives the following differential equation with respect to the
error h'.

5h *
Sh' 3 (T oh'* 5 (T 1
ot “Zax.{()ax I Bt -R =0 (18)
1 i 1 1

As discussed above, in the case only the paremeters involve the errors, if
we obtain the estimated solution ho*, the summation of square errors all over the
region, that is, the error of the = simulation is conclusively written in the form

EY 2 - - ' - g 2
7 [ ()7 ax, § f L' dxgdt =B 20 (19)

Errors due to the estimation of the initial condition

In the case that only the initial condition involves a certain error, Eq.(5)
is written as

3 Jem? ax, = -6 | L, dx,de + 3 (em? ax, 2 0 (20)

Introducing the quantities h o? h', L o and L_' in the same way as in the last
article, we obtain & &

1 (T 1
o m i 13 Y - B, @
. _ 8h's 1 Ty dh'yZ . sh'% 3 1 OB
L' = M R G e bt o (Een) 2
1 1 1
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and Eq.(20) may be rewritten as follows.

20 (23)

1 2 _ . 1 \2 _
5 [ (60 dx, = -5 L' dxgdt +5 fI(Sh) dx; = E,

In this way, it may be concluded that the errors of the simulation over the whole
region G appears in the form E, of the above equation (23), if only the initial
condition is estimated with some errors.

Errors due to the estimation of the boundary conditions

We write the approximated solution as h_, which is given by the simulation in
such the situation that only the boundary conditions have a certain error and all
the other factors are correctly estimated. In this case we may deduce the following
equation

dx dx
Tyoh* ~72 . dh* 71
- v 2pent e ot &
s f L' dxgde + ¢ s{axl = ", B Jsh dsdt

= E, 20 (24)

I

1 2
5[ (en)” dx,

in which the local potential L '=L -L o and L o are of the same mathematical forms
as Eqs.(22) and (21), respecti%ely% 89 This & equation (24) gives the error
structure of the simulation for the approximated boundary conditions.

Error of stmulation

We have considered how the errors in various factors affect mathematically on
the error of simulation all over the region concerned. Although the error distri-
butions over the region G may be essentially obtained by the equation

1 P
§ f L' dxgde =0 (25)

to solve the equation we need the correct parameters involved in L ' and the cor-
rect boundary and initial conditions, If we know these parametersgand the condi-
tions, we do mot have to obtain the approximate solution, and actually it is im-
possible to express the real error distributions. To estimate the error of the
simulation we should then try the another approach as discussed later.

Anyway, the discussions made in this chapter implies that in the case that
errors of various factors are simultaneously involved in the simulation, the
synthetical error of simulated results as a whole may be expressed by the following
form and it is closely related with the energy of ground water flow.

-Zl-j (sn)? dx; =E 20 (26)

IDENTIFICATION AND ERROR OF SIMULATION

In the usual simulation procedure, the model parameters are identified so
that the calculated values of the potential become equal to the observed potentials
at several well positions as well as possible, In this identification process,
based on the considerations about the extent of the error, flow direction and the
time and spatial distributions of flow, the parameters are finally defined. While
some approaches have been tried so as to make this decision rational---for example,
such an approach minimizing the summation of square errors at each well point (&),
(5), (6). These approaches have been made from the statistical stand point. The
equations (5) and (25) introduced here suggest that such the identification ap-
proaches are rational. Moreover, identification of the parameters based on the
summation of the square errors is no more than to identify them in the energy
dimension in the kinematical meanings., In other words, the discussion in the last
chapter may clarify the kinematical significances of the evaluation standard based
on the minimization of square error.

Now we consider the limitation of the accuracy of the simulation., Assume that
we can completely fit the simulation results to the observed potentials, for
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example, at the three well positions
A, B and C in the region G as shown
in Fig. l-a., Considering the region
G' shown in Fig. 1-b, the region
surrounding the wells A, B and C be
infinitely small., Equation (5)
becomes then with respect to the
region G' as follows :

a b
Fig. 1 Schematic representstion of the
Domain
1 (em%ax, = -6 [ L dx, dt
2 GI 1 G! g

+-%~f om)? ax, + §+d+4+4§
) I * c' a b c
) + [ + + f + + [ +[ =00
! 'a - bb’ b'b cc' c'e

(27)

in which the integrands of the integral such as § f » «es are of the same form
as those of the boundary integral in Eq.(5).

It corresponds to make the first term in the right hand side of Eq.(27) zero
that we solve the ground water behaviors within the region. (although actually the
factor concerning with L_' remains)., And since the simulation expresses the poten—
tials at the three wells® completely without errors, 6h=0 at the neighbourhoods of
the wells.

o= by = b= 0 @)
Moreover,
faav = - fa'a (29)

s seew

Therefore, Eq.(27) is rewritten as

1 2 - - ‘
5 [ ()7 dx, s f L' dx;dt
dx
shx 9% gnx 9%y
+§ 5l T " ok, T5 J0h dsdt
1 2
1 2 ~ ,
+5 [ 6 dx; = E (30)

The left hand side is the error of the simulation over the region and the
right hand side is the summation of the errors of boundary and initial conditions
and —6fL 'dx.dt 20. In other words, even though we have identified with error zero
at the wgll—positions, if we have some errors in the boundary and initial con-
ditions and so forth, the errors are distributed all over the region in the
simulation. That is, Eq.(30) shows that "the accuracy of the simulation can not
be much more than the error of the boundary and initial conditions etc.' This
is quite in the nature of things.

PROBABILITY OF ERROR IN THE REGION CONCERNED

As already shown in Eq.(26), the errors due to the various factors are distri-
buted all over the region G. Of course, in the rigorous meaning, the distributions
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of the error should be governed by such the equation as (25), however, in the actual
situation since we have lack of the knowledge on the correct errors of the factors,
we cannot help dealing with the probabilistic concepts in the discussions on the
error distributions. In this chapter, we will discuss the statistical structure of
the error of simulation over the whole region G,

Error probability in a small cell region

At first, we assume here the error E as known and decompose the concerned total
region G into N-small cell regions with same area g=G/N. Then, the equation intro-
duced in the previous chapter (26) may be rewritten as

2o ) (em?ax =E=0 (31)
g4 1

If we assume the errors in the individual cell regions are mutually independent,
then the problem results in such the problem that the total error E is distributed
to N-cell regions., Moreover, it is also assumed here that the errors in the indivi-
dual regions have only the discrete values, Write the number of cell regions as nj,
in which the value of error is given by

1 2 1,12
5 fg (6h)" dx; = 5(6h)%g = e (32)

then the following relationships hold.

= N =
In, =N, Lem; =E (33)
The probability of error €. in a specified cell region is obtained as follows

(7), if the error €y is distributed to the n, cell regions, €, to n,, €q LO Ngyeees

n,
_E
N

£f =1 exp(—Bei)

- i1 -
p(si. E) = =7 exp ( Bei)

(34)

in which the value B is defined by the condition (33). This expression (34) gives
the probability of the event that a certain cell region has the error of €i»
provided the total error E is known.

Measure of ervor and parameter B

We will make some reference to the parameter B. Differentiating the partition
function f with respect to B, we obtain

3£
9B

Then the mean value of error € is written as

=~ 3 eiexp(~B€i) (35)

b} siexp(-Bai)

--E. E) =AM 2
e =3 h eip(ei.E) = 7 aB/f =~ 3%

log £(B) (36)

If we write the unit measure to observe the error as ¢ the error can take only
O’
the discrete values such as
0, €0s 280, 380, 460, eosevsns

In such the case, f(B) may be expressed

it

£(B) b exp(—Bei) =1+ exp(—BEo) + exp(-ZBSO) + seeees

1/{1 - exp(—Bso)} (37)

that is,
log £(B) = - log{l - exp(—ﬁeo)} : (38)
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This equation gives the following expression of the parameter B, with help of Egs,
(36) and (38) !
1 e
8 == log {1 + =} ‘ (39)
o €

This is the equation which gives the parameter B in terms oOf the unit measure ¢ and
the mean error Z=E/N.

ERROR PROBABILITY OF SIMULATED RESULT

In the actual simulation, the parameters S and T are identified by comparing
the simulated values and the observed values at gauging wells in the concerned
region G. In this chapter we evaluate the error probability involved in the final
simulation results given through the identification and the various discretion.

In the previous chapter, the total error of the simulation E has been assumed
as known, however, the value E itself is unknown in the actual simulation. In
other words, the evaluation of simulation is nothing less than evaluating the value
E. Moreover, as a clue to do so we have only the information of the observed and
calculated values of potential at the gauging well points. Therefore, our task
in this chapter is to evaluate the total error E in terms of those errors at the
gauging points.

Here we consider such the situation that in the total region G consist of N-
cell regions exist the three gauging wells J, K and L, of which observed potentials
represent those in the each cell region including the wells. We write the each
error in those well points as ej, & and €15 that is,

%(éh)zg =5 g &) (40)
and the simultaneous event of these errors as e, .. If the total error E=E is
given, then, the probability of this simultaneots event is written by Eq. (?4).

~B(e. +e, +e,) :
p(ejkl: Em) = e ikl / f3 (41)

Use the symbol p(E ) for the probability of the event E=E , then "the proba-
bility of such the event that total error E= E and moreover the simultaneous event
€l in the wells J, K and L occur" may be glven by p(e. kl.Em)p(E ). Therefore,
p%OVOdEd the total error has the possibility to have a¥ ~its value the discrete
M values E., Ez, esoe E , then the posterior probability p(E :8 ) of the event

E=Em under the condition of the event ejkl is obtained by Bayse t%eory as follows.

m

: p(E Jp(e., ,: E )
PES e0) T TIES (ikl )
w1 PAE{/PRE 1 By

(42)

In this equation is involved the prior probability p(E_) but at this stage
we have no knowledge on the event E=E , except its possibil?ty to have M discrete
values E, (i=1,2,...,M). In other wotds, p(E ) is unknown quantity. For this
problem, however, provided we have no knowledge on the event E - the most rational
evaluation is to give the same probability 1/M to each M event E Then we come
conclusively to the following mathematical form

Plegyy ¢ B

p(E ¢ g.,,) = - (43)
m’ “ikl 3 p(sjkl. )

This is what gives the probabilistic evaluation of the total simulation error
E over the region concerned, based on the information of appearance of the simul-
taneous error event g, at the three gauging stations. As will be easily under-
stood, in this_pquatién ple. k1’ :E, ) is given by Eq.(41) with 8= B defined by Eq.(39)
for the value ¢ =Ei/N'



o7

In this equation the probability is defined for the total error E over the
region, but if we substitute the values El and E in the equation by el—E /N and
am—E /N, respectively, the error probability is expressed in terms of “the mean
error € .

m .

Moreover, if we have k observation wells jl, j2, ..., jk and in those points
the errors are observed as ¢, 1, jZ’ seaes €jk’ (the simulataneous event Ele...k)’
then we obtain
P(esiy, 1P o)

ple,: €jl;z..k) Ve T,
~ Pi®512,.%x° %1

i
-Be. € k
(1-e ™ O)k exp(~B_<Xe. )
- m g is ; 44)
M -B.¢€ K K . (
io
:Eé (1-e ) eXP(—Bi'ESZejS)
in which
8. =L 1og {149 (45)
i € %8 o 7. )
o i

As described above, we have obtained '"the probabilistic index which evaluates
the simulation error E or its mean value € all over the region based on the errors
€. between the observed and simulated values"

NUMERICAL EXAMPLES AND DISCUSSION

Figure 2 shows a numerical examples of the probability p(e: e, ,) in the case
of three gauging well points. Although the probability is essentié&%y defined only
for the discrete values e=¢, (=ie , i=1,2.,.M), it is shown here in the figure as
the continuous curve for thé unit measure ¢ -O 5 and 0.25 in Figs. 2-a and 2-b,
respecrively. The probabilities appear very different in its values in Figs. 2 -a
and 2-b, but this difference depends on the fact that the probabilities are defined
for e,=0.5, 1.0, 1.5,.... for Fig., 2-a and for €,=0.25, 0.5, 0.75,... for Fig. 2-b.
While“the dimension of the unit measure & is L4" (c.f. Eq.(22)), Be is nondimen=-
sional, since the area of the cell region g is involved in the quantity €, € and
o

8 (c.f. Eq.(39)).

Because Eq.(44) gives the same value for the same value of e.+¢ then
Fig., 2 is shown with the parameter e.,+¢ +e . According to the pr baglllty theory
it is a matter of course that the prgbaglllty has its peak value at the value ¢ =

(€J+€k+€ )/3. TFrom the figure the sharp distribution is found for the smaller value

g, 8.

g. Number of wells 3 o Number of wells 3

= € 05 2+ € 025
M 100 ]

585- §+E06 8] M 200
] (@)
g“%'; 3‘-—\.8:
S 2
ag] oy |
5] 3
- i
S 2]
8.‘ 4
8 g

00 50 100 1BO 200 250 310 350 400 450 500 00 50 100 BO ZOO 200350 400 450 500

Fig. 2 Probability of Simulated error
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of €.+e +e. and we can judge approximately
how Jmuch “the error of the final simulation
for the region concerned is, On the other
hand, larger the value €.+ak+el, lower the
peak of probability, andJthén it becomes
rather difficult to evaluate even whether the
simulation has large or small error.

How the probability p(e: e, 2 k) depends
on the number of observation weiis'ﬁ, by which
the accuracy of simulation is evaluated, is
shown in Fig. 3. 1In the figure, for the
easier understanding, the probability is
calculated for the case of R L e
eee€..= 3.0, From the figure% Je J
it may be concluded that we can judge much
more accurately the accuracy (or error) of
the final simulation of ground water behavi-
ors, based on the information at increasing Fig. 3 Probability of Simulated
number of gauging wells, error

In the evaluation of simulation result
-by the approach discussed above, there still remains very important problem whether
we should judge a certain final simulation as "very good" or "bad" by the probabi-

. 1lity here introduced. In the real problem this is the most important one, but the
standard of this judgement should be essentially left to the other problem, In
other words, the judgement must be made concerning with the original object of the
simulation., The accuracy required for the simulation result should be decided
depending on the aims as to whether the simulation is carried out in order to be
served for the something like a master planning, to discuss the detailed flow
behaviors concerning with an actual construction works, moreover in physical
meanings, to discuss only the potential distributions and so forth. Therefore, the
error probability introduced here should be applied, considering whether the simu-
lation comes up to the expectations required.

pEEKL-) +107
030 040 030 060 070 080

000 010 020

00 30 80 80 120 150_180 210 240 270 300
€

CONCLUSIONS

The methodology how we should evaluate the simulation of ground water behavior
has been discussed, and the conclusions obtained through the present paper are
summarized as follows. X
(1) Through the variational formulation of ground water behaviors, it has been

clarified, that in what form of mathematical structure the errors involved

in the parameters, boundary and initial conditions affect on the total error

of the simulation result., Moreover, it has been demonstrated that the iden—

tification process based on the square error of the potential corresponds to
that in terms of the energy dimension.

(2) Based on the mathematical and physical structure mentioned above, the proba-
bility has been derived which can be served to evaluate the accuracy of final
simulation as a whole with help of the information on the potential errors at
some observation-wells in the region concerned.

This research work is still at the first step to evaluate the simulation
result. "The probability demonstrated here is to estimate the simulation error only
at a certain time and not evaluate it in the time evolution. These problems are
now under the discussion. However, what we want to emphasize here is that the
extention of this research may become a clue to discuss the objective evaluation
of simulation technique and also the better field-observation-system concerning
with the aims of the investigation of ground water behaviors.

'If we use enough large number M, the probability given by Eq.(44) may be consi-
dered as independent on M.
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APPENDIX - NOTATION

The following notations are used in this paper:

Lo I S V- B R o ]

by

>w

™

o |

ZHﬂt“WS‘rG‘)m!—hMOU‘

thickness of the aquifer;

= boundary around the region G;

= error in total region Gj

= I exp(—Bei)

= area of cell region (=G/N)

= total area concerned and its area;

= pilezometric head of ground water;

= permeability coefficient, or number of observational wells;
= Jlocal potential;

= number of cell region g in which error €; occurs;

= number of cell regions in total region G;

= vertical inflow flux (intensity) to the aquifer;

= counterclockwise distance along C;

= storage coefficient;

= time;

= transmissibility (=kb);

= horizontal coordinates, X and EH
= parameter expressing distributions of simulation error;
= error in cell region g

= mean error of the simulation (=E/N).



