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SYNOPSIS

The high accuracy of the two-point fourth-order Holly-Preissmann method for
numerical calculation of contaminant advection is obtained by treating the spatial
derivatives of concentration as dependent variables. 1In a split-operator approach
for dispersion modelling, diffusion of both the concentration and its spatial de-
rivatives must be computed, leading to a rather complicated algorithm in two dimen-
sions. Holly-Komatsu proposed the eight-point method as an alternative approach
which retains high accuracy but treats only the concentration as a dependent vari-
able. However, there were some practical difficulties in two-dimensional imple-
mentation of the eight-point scheme. This paper describes the search for an im-

~ proved approach which has almost the same accuracy but uses values of concentration
only at six points. Some treatments of boundary condition in one and two dimen-
sions are described in detail and their performance is demonstrated by application
to schematic test cases. It is found that the six-point scheme performs well,
being free of excessive numerical damping and oscillation.

INTRODUCTION

Mathematical modelling of the dispersion of passive contaminants in waterways
and coastal zones involves the numerical solution of a partial differential equa-
tion which contains two kinds of transport; advection and diffusion. The diffusive
transport can be computed accurately using a variety of finite difference and
finite element numerical schemes. However, it has been more difficult to attain
sufficient accuracy in numerical computation of advection.

The split-operator approach in which the advection and the diffusion are
computed independently over short time increments has been pursued because of its
advantage in allowing use of an accurate (but different) method for each process.
In particular, this has made it possible to exploit the hyperbolic nature of advec-
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tion to devise characteristics-based schemes which allow a natural treatment of

boundary conditions and provide a framework for simple development of high accuracy

methods.

Holly and Preissmann (2) proposed the two-point fourth-order method which
computes advection with high accuracy but at the expense of carrying not only the
concentration, but also its spatial derivatives, as dependent variables. These
derivatives must themselves be both advected and diffused, which in a one-dimen-
sional application is a straightforward , inexpensive procedure. However, in a
two-dimensional application these additional computations become more complicated
and expensive (Glass and Rodi (1), Holly and Usseglio-Polatera (4)).

Holly and Komatsu (3) reported the eight-point method as an alternative
approach which retains high accuracy but treats only concentration as a dependent
variable. However, there were some practical difficulties in more general imple-
mentation of the eight-point scheme as follows:

(1) ~ Each interpolation in a two-dimensional case is based on 64 adjacent
points, resulting in an overly cumbersome scheme.

(2) Concentration values at three points outside the boundary must be esti-
mated, so that the accuracy of computational results may be compromised.

(3) Non-uniform grids may destroy symmetry-based accuracy.

In this paper, we propose an improved approach which has almost the same
accuracy but uses values of concentration at only six points, and present some

treatments of boundary conditions which are selected as the best compromise between

accuracy and complexity. The six-point scheme is applied to one- and two-dimen-
sional test cases. The numerical error associated with non-uniform computational
grids or non-uniform flow fields is discussed in a one-dimensional case. The six-
point method is applied to a river confluence as a one-dimensional practical case.
In addition, the applications of this scheme to the pure advection of a concentra-
tion discontinuity and the dispersion of a Gaussian concentration distribution in
a corner flow are demonstrated as examples of two-dimensional applications.

DERIVATION OF A SIX~POINT METHOD
Review of Characteristics-Based Computation of Advection

The characteristics approach is most t
easily explained in a one-dimensional con-
text; its extension to multidimensions is
immediate. The one-dimensional advection
equation is written as: o

3C ac ' /

g T Ui =0 (1y )4

t - LYz

with C(x,t)= concentration of contaminant; X x X =
x=space coordinate; t=time; U(x,t)=water i-2 i-1 i xi+1
velocity. The left side of Eq. 1 is recog-

nized as a total derivative, so it can be Fig. 1 Finite Difference Grid

written as: in One Space Dimension

dc dx
& =0 along &= (2)

These ordinary differential equations state simply that the concentration must be
constant along the space-time trajectory defined by U(x,t). Implementation of
Eg. 2 in a mathematical model on the fixed Eulerian space-time grid of Fig. 1
implies that if the concentrations are known at all grid points at time level t,
the unknown concentration at any point at time level t,,1 is obtained from the
solution to Eq. 2:

n+i
¢i" = of ; (3)

X
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where superscript n denotes time level t,, subscript i denotes computational point
x;, and £ denotes the x-coordinate of the foot of the trajectory leading to the
point (x;,t,,;). The problem of the finding the 'new' concentration at point x;

at time t,,; reduces to the.problem of knowing the "old" concentration at § at time
t,. For that reason the accuracy of scheme is dependent on how accurately we esti-

n
mate CE'

The Six-Point Method

Fig. 2 shows a one-dimensional grid in an interior region, with no boundary
influence. i

Cn x
Fl ] 1 ] lgl 5 1 1
1 T
i-e Ciog G, S5y 8 S Gy G, i

Fig. 2 One-Dimensional Computational Grid
in an Interior Region

Expansions of C around x;_; in a Taylor series result in expressions for C;_,,
C;_5 and Ci~é as follows:

1 2 1 3

G, = C. ;- CXi_l(Ax) +§TCXXi_1(Ax) ~§TCXXXi_1(AX) e

C. =20 CX. . (20x) +—LCXX. . (28%)% - —CXRX. ,(26x)° +

io3 = Ciop — CR 1 LeBx) +o7LaRy (LefX 3 io1 see (W)

1
Ci, = C;_, - OX; ;(38x) +57CXX

2 1 3
i-1 -, (38%) -ycxxxi_lwax) oua

i
where Ax = grid spacing; CXX = 32¢/ax? and CXXX = 3%c/ax®. If terms in Eq. & of
order three or higher are neglected, three variables, that is, CX;_;, CXX;_ 4,
CXXX;_y, are left as unknowns. We can determine CX; 1, by solving Eq. 4 as a set
of simultaneous equations.

' Using concentrations at the seven points from x;_, to x; ,, four combinations
of the Taylor series expansions can be similarly constructed on successive four-
point sequences, i.e. (i-4 to i-1; i-3 to i; ...; i-1 to i+2). These combinations

are denoted by superscripts (1) to (4) and solved to obtain derivative estimates
at point Xy _y:

(1) _ n n n n ¢
CXj_i = £(C]_,, Cf_ 355 Cip» Ciy)

(2) _ n n n n (5)
CX;0) = £ 35 G55 Cyiys G5 )

and similarly for ngéi, CX§§%.
Denoting by superscripts (2) to (5) other combinations of the Taylor series
expansions around x; in the same way, derivative estimates at point x; are written

as follows:

(2) n n n n
Cx;°0 = £(Cj_3, Ci_ps G5q» O3 )
(3) n n n n
exi” = £(C{_ps Ci1s G5 s Ciuy)
. ; (6)

(5) _ n n n n
ox;?l = £(C 5 G,y Ciipo Ciug)

Final estimates of CX? and CX?_l are obtained as weighted averages of four
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series-expansion-~derived values,

- cx”

1 (1) e (2) oxl3) (&)
io1 = iffITT{CXi— + LCX. + 1-CX: + CX: '/}

1 i-1 1-1 i-1

(7

()

rex’?) 4 ex! (4)
1 1

+ 1-CX, (5)
1

n 1
% =3y t e

Use of these derivative estimates with Cg and C?_l in the original compact
method of Holly-Preissmann resulted in even less amplitude error, but generated
more phase error as seen in spatial oscillation and negative concentrations.
Through experimentation and intuitive reasoning it became apparent that the key to
reducing the phase error would lie, not in attempting to generate higher deriva-
tives, but in exploiting the known accuracy of CX estimates by generating an esti-
mate of CXj -4 then averaging two compact polynomials to obtain Cg Three of the
five Comblnatlons of series-expansions were adopted to estimate CX -3 at Xi_1s then
averaged to obtain:

n 1 2 3 b
Xy 1= {cx§_é + zwcxg_% + oxi*)y (8)

Optimum values for the weights 1 and m will be discussed later.
The final determination of Cj used a dlrect averaglng of two compact cublc
polynomlals, one constructed using C 1 CX 1 CX -1 and C the other using C!

i-1?
CX -1 CX and C

n+l n n n n n
Ci = Alci_l+ + A2ci~3 + ASCi—Z + Aécinl + A5Ci
n n n (9>
T A0 A0, + AgGY

with Ay, ..., Ag = cubic polynomials in a, involving weights 1 and m, where o =
(x;-8) /(% - X; ).

Eq. 9 15 constructed using the eight C-values and is almost the same as the
eight-point method. The final goal of this study is to develop a more compact
method than the eighc~poin% method.n To do this, we must decreas he n?m?er of
C-values used in Eq. 9. C;_, and Cy,3 at both end? §ppear 1? ?X 1, respec-
tively. Detailed analysis of Eq. 9 showed that CX1—1 and CX; 3n Eq. %ayed
important roles in cancelling errors which were 1n% ?ded L CX -1 and CX respec-
tively. Therefore it should be avoided to drop CX;—ls X3 ln estlmatlng CX;_1,
CXj in order to decrease the number of C-values. Simple linear extrapolations are

adopted to estimate C;_4 and Cl+3.

-4 i-3 = Sy
' (10)
i+3 7 i+2 ivl

where C;nq anQ,C;+3 are the estimated values of C;_, and C;,3 respectively. Assu-
ming C;_, = C;nh, Ci,3 = C;+3 and rearranging Eq. 9 by substituting Eq. 10 into
Egs. 5 and 6, the following six-point method results:

6
n+l n
€0 = 2 bkeCiy ~ , (11)

with by(k= 1, ..., 6) = cubic polynomials in o.

The Taylor-series analysis of Eq. 11 reveals that the leading term of the
truncation error is the second one because of the linear extrapolations in Eq. 10,
i.e.
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2 2 3 3
3C  ,8C 2 °C (ax) 2 3°C (ax)
st Uge = (08107 + Bral ot (B - Bl

4 4
A
+ [t 268 +{-3+ 83}a2 + {2 = 83}a]j%§z ( Zz )

) 5 5
v 3°C (A
+ [ad = Srlég +1{ %?rl - Bh}&z + {-ry + BA}Q}J%QE'( ;3 +oees (12)

with

g o 1 o o 1 o, L Bl=36 o 5(-12) . _mi6  Ima34
L2300 > P2 = 0 P T3 0 e TR 0 T Tmez 2 T2 T 22

when u and 0% are constant. We evaluated the value of m so as to minimize the
artificial dispersion coefficient of the fifth order term by using the method of
least squares, 1.e.,

) i
SO{Sth order a.d.c.}zda = minimum,

yielding:
m= -11.23 (13)

where a.d.c. is an abbreviation of "artificial dispersion coefficient”. The second,
third and fourth order artificial dispersion coefficients all include the weight Z.
Since there is no unique solution which makes each of the squares of the second,
third and fourth a.d.c. minimum at the .same time, . cannot be determined theoreti-
cally. Experimental results suggest that I = 9.55 gives the best computational
results for the Gaussian model problem.

The above detailed procedures, whose descriptions serve to illustrate the rea-
soning behind the method, can be forgotten when implementing the final algebraic
expression which incorpolates them:

cf*h = b0l 5 + b0l , + byCl g + b, + bsCly + beCl, (14)
with b = -0.01806a3 - 0.0382862 + 0.05633a

b, = 0.25700% + 0.05276a2 — 0.3097a

by = -0.6806a% + 0.64800% + 1.033

b, = 0.6806a% - 1.394a2 - 0.286% + i

b, = 20.25706% + 0.8236a? - 0.5667a

by, = 0.01806a% - 0.09245a2 + 0.07439%

Demonstration and Evaluation of Method

One-Dimensional Case ;

The pure advection of a Gaussian concentration distribution in an infinitely
long channel of unit width and constant velocity 0.5m/s is the situation used here
to demonstrate the six-point scheme. The Gaussian distribution of standard devi-
ation 264m is defined on a regular grid of Ax = 200m. This initial distribution is
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transported downstream for 9,600s. Fig. 3 shows the exact solution and computed
ones with At = 100s using the six-point scheme (Eq. 14), the eight-point scheme,
Holly-Preissmann scheme and the first-order explicit upwind difference scheme de-
rived from Eq. 1. Using the same four methods and the same situation, Fig. 4 shows
the computed advection of a trapezoidal distribution.

It is clear that the last scheme introduces an excessive artificial diffusion.
The six-point scheme retains almost the same accuracy as the eight-point method and
the Holly-Preissmann scheme, and its execution is much simpler for a two-dimen—
sional case, particularly when it is compared with the Holly-Preissmann scheme as
we will show in the following section.
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The Extension of the Method to Two-Dimensional Problems
Application of the six-point method to two dimensions is stralghtforward

Eq. 2 becomes:

dc : dx d
I = 0 along Fral v, ZL=v (15)

where V(x,y,t) is the y ~direction velocity, and now C = C(x,y,t) and U = U(x,y,t).
The solution is . i

{i.3)

n+l _ .n
€i,5 = Ce,n (16) ¢ s yd e e
7
/
where as shown in Fig. 5, j is the y- n+l i
direction index of grid points, and Y / .
(g,n) are the x-y coordinates of the n i '/I/ -~ J
intersection of the trajectory with the .
X~ 1 £ i - e i-1
y plane at time o tn. The interpo n S
lating polynomial for Cg is constructed i-2 i-1 £ i i+l X
by’suc?e551Ye uee OF Eq..lé along six Fig. 5 Finite Difference Grid in
grid lines in one direction, and one . X
Two Space Dimensions

final use in the perpendicular direction.
Formally the resulting scheme can be written

el 3
1, 7 p=

6 ,
n
1 sil bpsci+p—4,j+s»4 a7

i.e. it involves concentrations at 36 surrounding grid points.

The steady velocity field shown on Fig. 6 represents a rigid-body rotation at
an angular velocity of 2w radians in 12,000s. At the time t = Os four Gaussian
distributions of ¢y = o, = 200m are placed in each quadrant. Fig. 7 shows the
results produced by the characteristics advection calculation after a quarter tour
using At = 100s, Ax = Ay = 100m with the two-dimensional Holly-Preissmann result
(Holly, Usseglio-Polatera (4)) and the eight-point method's result shown for com-
parison. While Holly-Preissmann's error in peak concentration is 1.8%, the six-
point method's one is 1:1%. 1In case of the eight-point method, the error is 0.5%.
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BOUNDARY CONDITIONS IN ONE- AND TWO-DIMENSIONS

It was shown earlier that the six-point method was very useful in flow fields
where the boundary conditions were of no importance. In most practical situations,
however, the boundary conditions have direct effects upon the pollutant transport.
Some considerations are needed at the boundary to put the six-point scheme to use.
Therefore, we shall now discuss how to deal with the boundary conditions. Many
trials were discussed and examined, and the one described in detail in the sequel
was selected as the best compromise between accuracy and complexity.

One-Dimensional Case

Two types of computational domains are sketched in Figs. 8(a) and 8(b). 1In
Fig. 8(a), every chracteristic enters through the boundary of. the solution domain
and one boundary condition on concentration must be given. On the other hand, at
the boundary shown in Fig. 8(b) the characteristic goes out and no boundary condi-
tion is needed. 1In any case, application of the six-point scheme to the boundary
requires that two artificial points be created outside the boundary. A pure advec—
tion equation is adopted at the boundary to relate the time and spatial deriva-
tives.

t
| |
| i
i !
Cn+1‘_“--{"—" 7
7 A
t - 5 s ’L)...L
/
/4 g
o=
I x
t, o L L3 & T - S
S T T T ST T S Xjo3 Xn-2 Xno1 *n Xnan Xy.2
Fig. 8(a) The Boundary Which Every Fig. 8(b) The Boundary Which Every
Characteristic Enters through Characteristic Goes out of

We first consider the case shown in Fig. 8(a) when the boundary condition is
given. Since we use values G 1 CO to calculate Cz w1th the six-point scheme,
it is necessary to estimate them somehow. Expanding C" around %1 in the Taylor
series, C'y and C{ are expressed by:

¢’y =cf -2 cxlax + 2 exxjax? 4 ...
(18)
n n n 1 n, 2
Cp = 0y - CXybx *'?FCX&'AX + oeee

Assuming that the pure advection equation holds at the boundary to a good approxi-
mation, the following equation is obtained:

aC 3aC
atlxl + U(%I,E)E;]xl =0 (19)

which results in

3¢ .-t 3
3x Xt ulx,, t) ot Xt |
alc ~ 1 azcl . 1 ggl ac
3x2 Xyt T (U(xy, t,))2ac2 : (U(xy, t,))2 3¢ tnax Xpt, (20)
¥ n ¥
St 8 . 3C
T uxg, t,) x|, o, ¥x
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where 8U/8t|xy,t, , 8U/8x|x,,t, are known quantities, as the flow properties are
given. For simplicity, consider the case when the velocity U(x,t) is constant at
the boundary. Then Eq. 20 reduces to

(21)

n 1
X, =

Expan51ons of Cy around t, in the Taylor series result in the expressions for C?'l
and Cl as follows:

2

n-1 n 9C 1 93°C 2
Cl _Cl—at At+'2“'§“t7 At + ...

Xq,t X.,t

L : (22)

2
c]? = ¢} 2-24? At+2‘%§—l ae? 4 L.
Xl’tn xlxn

If higher order terms than the second order in Eq. 22 are neglected, two variables,
that is, 3C/3t|xy,t, , 3 20/ 5t 2 Ixq,t , are left as unknowns. We can determine these
variables by solving Eq. 22 as a set of simultaneous equations:

3C n-2 n-1 n

Fre L = §E€(C - 4Gy + 301)
. 1*%n 1 (23)

n-2 n-1 n

37 = Zzy(cl - 2CY + Cp)

xi’tn

Substituting the results obtained by eliminating 3C/3t and aZC/st2 from Egqs. 21 and
23 into Eq. 18, we obtain:

n a+ZCn—2 4(0+1) n-1 (a+1)(a+2) n

Cy = PY A ___7“" 1 _"—"“7”“- 1
(24)
oo o+l n-2 2a+1cn_1 (2a+1)(a+1)
0 T 921 T T vy F 702 o

Thus the values of C" 1 and CD can be estimated, as C B Cn_1 and Cl are all known.

The two values CN+1’ CN+2 at the artificial p01nts in Fig. 8(b) are estimated
in the same way; the final expressions are:

n_ =(o=1) n-2  20-1 _n-1
G T T Gt T G S B
(2& 1) (a-1) 1074 - 7
o , .
202 CN 87 Y,
1)
(25) 4
on _ =(a-2) on-2 4(0-1) 4 7
N+2 T T o2 Y N 27 7
(a 1)(a-2) 04 ' .
al N o 1550 2900 3900 x(m)

Fig. 9 Calculations of One-
Dimensional Advection Using Two
Treatments of Boundary Condition

When the velocities U(xy,t), U(xy,t) at the
boundaries are not constant, we must use Eq.
20 instead of Eq. 21. 1In order to inspect
the validity of Eqs. 24 and 25, the advection of a Gaussian concentration distribu-
tion is computed in two ways as is shown in Fig. 9. The flow conditions are the
same as those described earlier.
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Fig. 10 The Boundary Condition Fig. 11 1Influence of Errors in

Given When the Boundary
is Situated at x=2,900m

Treatments of Boundary
Condition

First, in case the upstream boundary of domain is situated at x = Om, the treatment
of boundary conditions has little effect on the computational results. Alterna-
tively, when the boundary condition which corresponds to the previous case is given
at x = 2,900m by the time-dependent concentration shown in Fig. 10, the accuracy of
computation depends strongly on that of Eq. 24. Fig. 11 shows the results of both
cases at t = 4,700s and the exact solution. There is a little damping in the
computational results compared with the exact solution, but no remarkable differ-
ence between the two cases is evident. It means that Eqs. 24 and 25 are valid in
estimating the concentration values outside the boundary.

Though the use of Eq. 24 or Eq. 25 requires the concentration values at a few
time step before the initial condition, we can assume them to be equal to the
initial condition. Tt is expected that the inconsistensies introduced by this
assumption will have minor influence on the results.

TIME STEP = n
Two-Dimensional Case Pl

B

§
. i
jHl

The boundary of a two-dimensional

computation domain is shown in Fig. 12. i e~e-
On applying the six-point method to the . !

boundary in two dimensions, it is also job -=d-
necessary to create two artificial points —l

outside the boundary. Using a Taylor
series development, we can find the

i-1

i

1 i+41 342 143 144

values of ¢ ., ¢f .3 .
1-2,j7 Yi-1,j Fig. 12 Finite Difference

Grid in Two Space Dimensions

¢l . =c¢" . 8x2C

-2, i, ] 2 x> i + e
26
¢l = ¢" - Axgg o
i"lqj 1,5 3% ) + e e s
i,j,n

Assuming again here that the pure-advection equation holds approximately at the

boundary, the following equation is given:

3C

at|.

+ U(Xi’ V., € )39
i, j,n

J n’ax

i,j,n

=0 - (27)
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Expanding C; : around t = t, in the Taylor series, we obtain expressions for Cn L
C? jo in whlcﬂ terms higher than the second order are neglected. We can determlne
ac/acll,j’n, a°c/at?]; i,j,n solving the expressions for Cg'l and C?:% as a set of

rJ
simultaneous equations. As a result,

3c _ 1 n n-t -2
se|. . = 3acCi,y ~ 4G5t G ) ) (28)
i,],n
is given. Then, we adopt a central difference to discretize BC/ayIi jont
o1 S g "
ayl, . T 28y Ci,je1 = G5, 51 (29)
I!J’

By substituting Egqs. 28 and 29 into Eq. 27 and then subétituting the result into
Eq. 26, the following equations are given as expressions for estimating the concen-
trations outside the boundary:

n = ~ n-1 n-2 v n n
Ci2,5 = o <3C1 it TR U D ( i501 ~ CiL o) 0
(30)
n _oMxp 1 n-1 n-2 n n n
R A I R I ol CHRTRTE R SP) I

When the boundary of the computational domain is situated along the x-axis, a simi-
lar treatment can be given.

In order to examine the validity of Eq. 30, we now apply the six-point scheme
to a model problem of two-dimensional pure advection in which the treatment of
boundary conditions is important. The steady velocity field shown on Fig. 13
represents rigid-body rotation at an angular velocity of 2w radians in 12,000s.

At time t = Os four Gaussian distributions of o, = o, = 200m are placed on each
axis at distances *600m far from the origin. As the computational domain is re-
stricted to a square of which the side is 1,400m long, the boundary conditions have
significant values as shown on Fig. 14. The mesh size is a uniform Ax = Ay = 100m
and the time step is At = 100s. In this flow the Gaussian should undergo no defor-
mation due to advection. Fig. 14 shows the concentration distribution after 1/4-
turn of rotation using the six—point scheme and Eq. 30. The obtained result is
consistent with the initial distribution and the error in peak concentration is
1.0%. Therefore, Eq. 30 would appear to be valid.
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Fig. 13 Steady Velocity Field with Fig. 14 Computed Result after

a Two-Dimensional Circular Advection after 1/4—turn of Rotation
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EXTENSIONS OF SIX-POINT METHOD
Non-Constant Velocity

Let us consider the effects of non-constant velocity and non-uniform computa-
tional grid on the calculated results. First, suppose the non-constant velocity
flow field shown in Fig. 15 where the velocity is 1.0m/s in the region of x = 3,200
~ 4,400m and 0.5m/s in the other regions. The initial condition and the computa-
tional grid are the same as those described earlier. On applying the six-point
scheme to a non-constant velocity flow, the a-value (=U(x,t)e*At/Ax) is variable
and depends on the velocity. The result obtained at t = 7,200s is shown in Fig. 16
with the constant-velocity result (U = 0.5m/s, t = 7,200s) for comparison. No sig-
nificant distortion of curves is apparent in Fig. 16.

Non-Uniform Computational Grid

In practical situations, a variable computational mesh is routinely used to
save computer time and cost. Since the six-point scheme is formulated on the basis
of a uniform grid, some of its accuracy will be lost when it is applied to a vari-
able grid. However, it is expected that this scheme should perform fairly well
even on a non-uniform grid, as long as grid-size variations are not too abrupt.

Consider the computational domain where the grid distance is 100m in the re-
gion of x = 3,200 - 4,400m, and 200m in the other regions. The velocity is con-
stant throughout the flow field, U = 0.5m/s and the other conditions are the same
as those in the previous section. The computed result is coincidentally the same
as the previous one shown in Fig. 16 because of the same variation of a. In Fig.
16, each x-coordinate is shifted so that each peak of computed concentration
occupies the same point for comparison. It would appear that the six-point scheme
is useful even on a non-uniform computational mesh.

. EXACT SOLUTION
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0.5 4

2

o 1400 3200 4400 5700 x(m) 0 + s T v v v Gy

Fig. 15 Calculation of One-Dimen- *-DIRECTION GRID POINTS(8x=200(m))

sional Advection through Zone of Fig. 16 Effect of Non-Constant
Non-Constant Velocity Velocity or Non-Uniform

The River Confluence Computational Grid

The confluence and branching of a river are important and practical problems of
one-dimensional pollutant transport. ‘We now consider the application of the six-
point scheme to a river confluence. Suppose that the river (1) with the cross-sec-
tion Sy; velocity Uy; diffusivity Dy and the river (2) with S,; Uy; D, meet to
start the river(3) with S3; Usz; D3 as shown in Figs. 17 and 18. The boundary con-
ditions of concentration are given at the upstream boundaries of the rivers (1) and
(2), so that the six-point scheme is easily applied to the rivers(l) and (2) using
Eqs. 24 and 25. As for the river (3), a boundary condition of concentration at the
confluence M must be generated. From the conservation of concentration flux at M,
the following equation is obtained.

{u;s,0,(M) - 5,0, G ) b+ {U,5,C,(M) - sznz(acz) }

(31)
3¢
= {U38;C, (1) - $,0,(=2 3) }
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River 3
- g2
<
@av®
Fig. 17 One-Dimensional River Fig. 18 Schematic Diagram of
Confluence Confluence

in which Cy{M) and C,(M) are the concentrations obtained at M from each computation
of river (1) and (2).

Eq. 31 is discretized and only dC/dx|y is estimated by values at t = t,_1, SO
that the estimated concentration C;(M) at t =t for the river (3) is given by

clan) = cfu-1)
(AX)1

n _ 1 n n¢
C3(v) = 5;§3{U151C1(M) + Up8,Cp(M) - 8D,

: : . 32)
Co(M) - C3(M-1) cdlann -} 1<M)} G2

(33, AR x5

= 5,D,

Then, the six-point scheme can be ‘o
easily applied to the river (3). The
situation used here to show an example
is given in Fig. 19, where U; = 0.5m/s,
U2 = 1.0m/s, U3 = 1.5m/s, Dl = DZ = D3
= 3.78m?/s and the cross-section Sp,
Sy, S3 are constant.: A Gaussian dis-
tribution with o= 264m placed at a V e¢(L oL
distance 2,000m apart from M in the SR *°
river (1) and a trapezoidal one at a
distance 6,000m apart from M in the
river (2). are advected and diffused.
The computed results successfully show °
this process in Figs. 20 and 21.
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River 3 (p)
o 2000 , A000 BO0U,
Fig. 20 Computed Concentration Fig. 21 Computed Concentration

Distribution at t=4,500s Distribution at t=7,500s
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Pure Convection of Concentration Discontinuity

The six~-point scheme is easily
applied to two dimensions. We simu-
lated the advection of a concentra-
tion discontinuity at a constant
velocity aligned 45° to the Buler-

- 3000(s) TR
v - s000(s) AR
2= Y ‘N'

QS
ian mesh (U = 0.5m/s, V = -0.5m/s). - QQQ
Fig. 22 shows the result computed § wa\
at 't = 3,000s with Ax = Ay = 100m, o 0§® Q\\

At = 100s. This scheme appears to g o
reproduce a moving concentration 5 1000 2000 (p) )

discontinuity well. < - DIRECTION
Advection and Diffustion in a corner

Flow Fig. 22 Calculation of Advection

of Concentration Discontinuity

Lastly we simulate the advection and diffusion of a concentration distribution
in a corner flow. A Gaussian distribution with o, = o, = 264m whose center is sit-
uated at x = -2,500m, y = 900m at t = 2,000s is advected and diffused in the flow
field where U = -ax (m/s), V = ay (m/s) (a = 3x10"%s™1) and the diffusivity D =
20 vU25 V2 (m2/s). Advection and diffusion are computed by the six-point scheme
and the "Crank-Nicholson method', respectively. The boundary condifion is treated
by Eq. 30. The computed results in Figs. 23 and 24 show clearly that the Gaussian
distribution is distorted in time by the advection and diffusion.
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Fig. 23 Velocity Field Fig. 24 Calculation of Advection
at a Corner and Diffusion of Gaussian
Distribution
CONCLUSION

The six-point method has been developed on the basis of the eight-point
method. Practical difficulties in the implementation of the eight-point scheme are
reduced by dropping back to the accurate six-point method.

(1) The method retains almost the same accuracy as the eight-point method or
Holly-Preissmann method.

(2) Each two-dimensional interpolation is based on 36 adjacent points, almost
half the number needed for the eight-point method. '

(3) The method is much simpler in computation for a two-dimensional case, par-
ticularly when compared with the Holly-Preissmann method.

(4) Practical difficulties for the treatment of boundary conditions are obvi-
ated by using Eq. 24 or Eq. 30.

(5) In the case of a non-uniform computational grid or non-constant velocity,
there is no remarkable difference between the computed values and the exact
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ones, which means that the six-point method is useful even under these
conditions.

Based upon the results of this investigation, we have concluded that the six-
point method is easily applied to various practical flow fields and very useful in
calculation for advection not only in one-dimensional cases but also in two-dimen-
sional ones.

Further exploration of the possible applications of the six-point method are
presently in progress. )
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APPENDIX - NOTATION

The following symbols are used in this paper:

a.d.c. = artificial dispersion coefficient;

Ay - Ag = concentration interpolation coefficients in the 8-point scheme;

by - bg = concentration interpolation coefficients in the 6-point scheme;

C(x,t), C(x,y,t) = concentrations;

C;'Q, C3+3 = estimated concentration values of Ci—&’ Ci+3 for the 6-point
scheme;

CX(x,t) = concentration derivative;

CXX(x,t) = second concentration derivative;

CXXX(x,t) = third concentration derivative;

D = diffusivity;

D, - Dy = diffusivities in rivers 1, 2 and 3 , respectively, in a

river confluence;

i = x-direction computational point index;
j = y-direction computational point index;
1, m = weight factors in estimation of CXj

M = confluence point index;

n = time index;
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Tis Ip
S, - S,

X, ¥y

total number of computational points;

coefficients with respect to 7 in a.d.c.;

crose-sectional areas in rivers 1, 2 and 3, respectively,
in a river confluence;

time;

x~direction water velocity;

y-direction water velocity;

orthogonal Cartesian distance coordinates;

Courant number;

coefficients with respect to m in a.d.c.;

prefix indicating incremental quantity;

y~direction foot of the trajectory;

x-direction foot of the trajectory; and

standard deviations of a Gaussian distribution in x and y

directions.



