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SYNOPSIS

A method is explored to compute the skewness coefficient of the sum of hydrologic variables, when
the first three moments as well as covariances are known ; if quantitative probability statements of the
sum variable are to be made, a three-parameter probability function can easily be fitted to it, given the
first three moments. A primary task integral to this study is the determination of an appropriate matrix
that transforms correlated variables to uncorrelated variables.

To determine the appropriate transformation matrix the proposed approaches are compared with
the exact solution for identically distributed gamma variates with a stationary Markov process as well as
with the results of Monte Carlo experiments where the three-parameter log normal (LN3) distribution
is used to generate correlated variates with correlation schemes of AR(1) and ARMA(1, 1) processes.
The results of the distribution-free approach reported here compare favorably with those of Monte Carlo
experiments.

INTRODUCTION

The importance of multivariate analysis in the planning and management of water resource systems
has been recognized in recent years. Of particular interest in multivariate problems are the statistical
characteristics of the sum of hydrologic variables. The following are some of the examples in which the
sum of skewed and correlated variates is frequently encountered in hydrologic applications:

(1) The annual flow is regarded as the sum of monthly flows. The seasonal AR (1) process, well known
as a Thomas-Fiering model in operational hydrology does not necessarily guarantee preservation of the
variance and lag-one serial correlation at the annual level. The inability of the assumed seasonal AR (1)
model to replicate annual statistics has important consequences in reservoir design capacities (Hoshi et al.,
1978) ; this example clearly demonstrates the importance of preserving all relevant correlations between
monthly flows. In many modeling situations it is also necessary to model the form of the monthly flow
marginal probability distributions; skewed marginal distributions widely used in hydrologic studies are the
log normal and gamma families.

(2) Point rainfall amounts in a watershed are usually lumped to the mean areal amount in rainfall-runoff
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analysis. The mean areal rainfall is regarded as the weighted sum of rainfall amounts at the sites of
interest. There are many instances where point rainfall amounts are highly correlated. The degree of
correlations depends on the distances among the sites as well as on the terrain of the watershed concerned.
It has been found, however, that the correlation structure of point rainfalls does not follow fixed patterns;
for example, space variations of rainfall vary with different time units. Moreover, it is unlikely that the
frequency distributions of point rainfall amounts are approximated by identical marginal distributions.
When the skewed marginal distributions of hydrologic variables vary spatially and temporally, it is
unrealistic to use the same distributions to be fitted to them.

(3) A linear transfer function model (i. e., unit hydrograph theory) has long been used in watershed
modeling approaches in which the discharge is given by the weighted sum of rainfall inputs. Major
practical interest in this problem is how to estimate the frequency distribution of runoff outputs for any
given distributions of inputs.

(4) The properties of partial sums of net inflows to a reservoir are relevant to the determination of the
required design capacity. The dependence between sequences of inflows and the form of flow marginal
distributions largely affect the magnitude of reservoir size.

It is extremely difficult to theoretically derive the probability density function for the sum of
random variables which have particular marginal probability distributions and correlation structure.
This is due to the fact that the reproductive property pertinent only to normal variates is not valid for log
normally and gamma distributed variates; the sum of log normal or gamma variates which are dependent
is not necessarily of the same type. Kotz and Neumann (1963) have developed the approximate distri-
bution of the sum of identically distributed gamma variates whose correlation structure is defined by the
first-order autoregressive, AR(1) process. The fundamental premise in their solution is that the sum
itself is a gamma variate. The approximate distribution of sum variate is uniquely determined, because the
first two moments define completely a two-parameter gamma distribution. Thom (1968) and Murota et
al. (1974) have shown that the sum of # independently distributed gamma variates, each having different
distribution parameters, can also be approximated by the gamma distribution. The accuracy of ap-
proximations was evaluated by the relative error of the third moment about the origin. Kotz and Adams
(1964), and Nagao (1975) have derived the exact solution for the distribution of the sum of identically
distributed gamma variates which are correlated according to a stationary AR(1) process.

There are some limited practical applications in the above approaches in which individual variates
in the sum are described by two-parameter gamma distributions and their correlation links between
variates are assumed to follow the stationary processes. In many practical stuations where asym-
metrically distributed hydrologic data are encountered, it is often necessary to fit a three-parameter
density function to them for preserving skewed marginal distributions. It is clear that the use of a two-
parameter distribution fails to maintain the first three moments of the observed data. Quite frequently,
the nonstationary process is required to accommodate the correlation structure of hydrologic variables in
stochastic hydrologic modelings.

The present study is primarily motivated by the fact that the first two moments of the sum of
correlated variates are distribution free and that no higher order moments more than the third are used
to model skewed data in frequency analysis of hydrologic data. Once the skewness coefficient for the sum
of any correlated variates is obtained by some appropriate method, it is quite straightforward to make
quantitative probability statements (i. e., estimation of quantiles corresponding to probability levels) via
use of a three-parameter density function. For example, Lettenmaier and Burges (1977) have shown
that the theoretical Pearson type 3 (P3) and three-parameter log normal (LN3) distributions for a given
skew coefficient y and coefficent of variation £ are almost identical for § < I and y between I and 3.
It makes little difference, therefore, which distribution is used to represent skewed data ; the choice is.one
of operational convenience. . :

The objective of this paper is to develop the distribution-free approach by which the skewness
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coefficient of the sum of variates can be computed given the first three moments of variates in the sum
and any correlation structure. The proposed procedure was compared with the exact gamma solutions
and Monte Carlo experiments.

EXACT SOLUTION OF GAMMA DISTRIBUTION

Consider a two-parameter gamma distribution with p.d.f. :
fx)= (x/a)*exp(—x/a)/ [al'(b)] 0<x <00 (1

where ¢ and b are scale and shape parameters, respectively. The parameters a and b are positive, and
T'(b) denotes the gamma function. The population moments of the gamma variate x are given by

u=ab
o?=a%b 2)
y=2/bY?

where y, ¢?, and y are the mean, variance, and skewness coefficient, respectively. The relationship
between coefficients of variation (8) and skewness (y) for the gamma distribution is defined by

y=28 (3)
Consider # random variables, x;, %, === , %, and their sum :
2=x i oty 4)

The distribution-free mean y, and variance o% of z are easily determined from

n
ne =23 p (5)
i=1
2 n -1 n
0, =5 a?+2'2' 2 0,00 (6)
i=1 i=17=1+1]

where y; and ¢% are the mean and variance of variable x;, respectively and p;; is a correlation coefficient
between variables x; and x;.

When assuming that the sum variable z is distributed as gamma defind by eq. 1, then the two
parameters, ¢, and &, of the approximate gamma distribution are easily estimated by @, = 6%/, and b,=
1%/ 62, using the relations of egs. 2, 5, and 6.

Kotz and Adams (1964), and Nagao (1975) have shown the population statistics of variate z, defined
by eq. 4 in which each variate x; has the same marginal distribution of eq. 1 and the correlation structure
is defined by a stationary AR (1) process. The 7-th cumulant K, (r=1, 2, 3, == ) of the sum variate,
z is given by

K= (r-1)!'bar_zf‘lx; (r=1,2,3, ) (1)

where A; (i=1, 2+ , n) are the eigenvalues of correlation matrix whose elements are given by p;;=
pliTIVE (4 j=1, 2 e , n) and p is a lag-one serial correlation coefficient. Hence, the mean g,
variance o2, and skew coefficient y, of the sum variable z are given by

n
Lz = ab _z_“lx; =nab

o2=a% é'“l 22 (8)
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%= (20% 3 1)/ 0

Some useful relations can be evolved from the statistical properties of eq. 8 as follows :
(1) Consider the case of #=2 for which 1, =1—p“2and 1,=1 + p"2. Thus eq. 8 reduces to

pz=2ab
02=2a2b(1+p) 9
v2=2(20)"V2(1+3p) (1+p)-%?

The solution given by eq. 9 is in agreement with that obtained by Nagao (1975).
(2) For the case of p=1 (i.e., complete dependence), ;= and 1,=0 (i=2, 3+ , n) and hence the
first three moments of z are given by

Lz = nab
oi=n’a*b (10)
Yz :2/b1/2

Equation 10 ihdicates that the skew of the sum of identically distributed gamma variates is identical with
that of a univariate gamma distribution as shown in eq. 2.

(3) For the case in whichx, (=1, 2, , n) are independent and identical gamma variates (i.e., p=0),
the statistical properties of eq. 8 are found to be

tz=nab
o2=na?b (11)
Ye=2/(nb)?

because of ;=1 (=1, 2,--- , n). The following observation can be made from eq. 11 that v, approaches
zero as # becomes sufficiently large. This characteristic conforms to the central limit theorem.

For both cases of p=0 and p =1, the relation of v, =28, holds, where £, is the coefficient of variation of
z, defined by o¢./y., implying that the sum of gamma variates with a common distribution is also
distributed as gamma.

DISTRIBUTION-FREE APPROACH

The preceding approach has limitations as to choices of marginal distributions and correlation
schemes ; two-parameter identically distributed gamma variates in the sum are correlated according to the
stationary lag-one Markov process. The method presented herein is based on a distribution-free
approach in which there are no restrictions on choices of the skew coefficients and correlation links
between variables. The main difficulty involved in multivariate problems is the correlation structure,
which makes the pertinent issue for determining the skew of the sum of variables extremely difficult to
resolve. One way of averting this complication is to first decompose the correlated variates into the
uncorrelated ones. Second, the skewness coefficients of independent variates are expressed by skews of
marginal distributions. Finally, a closed-form solution for the skewness of the sum of correlated variates
is derived from skews of uncorrelated variates.

Transformation of Correlated Variates

Let x; and g, (i=1, 2,5+ , n) be the correlated variate with zero mean, and uncorrelated
(independent) variate with zero mean and unit variance, respectively. When defining the transformation
matrix B whose elements are denoted by &;; (i, j=1, 2+ , n), the transformation relationship is given
by
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% b“ blz b13 ...... bln g
x.z _ b21 b22 b23 ...... b2n g'z (12)
O N O Byj weveeeeenes :
Xn by buz bug o bun) L gn
The general expression for x; is obtained from ‘eq. 12 as
%= bung+ bog t bsgst T bing (i=1, 2 n) - (13)
Equation 12 is also represented in matrix form as
X=BG (14)
where
XT= [ 2 2% x%,] as)

GT=lg &g g1)

Bisan (nXn) transformation matrix, and the superscript T denotes the transpose of a matrix. Keeping
in mind that x, has zero mean and g; is an independent standardized variate (i.e., zero mean and unit
variance), the variance-covariance matrices of X and G are written as

V,=E(XXT)
3y (16)
Ve=E(GGT)=1I
where V, is an (zX#%) symmetric matrix of variances and covariances of x; ; I is an (nX#n) identity
matrix ; and E(+) denotes the expectation operator.
Postmultiplying eq. 14 by X7 and taking expectations gives

V.=BBT a7)

The form of eq. 17 is frequently encountered in multivariate stochastic generation models. The solution
for the transformation matrix B can be effected in several ways. The first method is well known as the
Crout or Cholesky method (Young, 1968) in which a symmetric matrix is decomposed into the product of
a lower triangular matrix, L and its transpose L”. The second method uses the technique of principal

components (Kendall, 1961; Fiering, 1964) to solve eq. 17 for B. The four methods proposed so far are
summarized as follows :

Method 1;  B=L (lower triangular wmatrix) (18)
Method 2 ;  B=FD':PT (19)
Method 3 ;  B=PD™ (20)
Method 4 ; ~ B=PD'?P (21)

where D isan (nX#n) diagonal matrix of eigenvalues of V, and P isan (#X#) matrix of corresponding
normalized eigenvectors. The eigenvector matrix has an orthonormal property of P7=P" (inverse
matrix of P) and hence, Methods 2, 3, and 4 satisfy the condition of V,=PDP7. Method 2 produces a
symmetric matrix of B which Todini (1980) applied to generating skewed seasonal flows in the dis-
aggregation scheme. All the methods preserve the first two moments of the sum of correlated variates ;
therefore the question arises as to which scheme can be practically used to approximate the skew for the
sum of skewed data. The remainder of this paper is directed toward the determination of an appropriate
transformation matrix of B.
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Skewness of Uncorrelated Variates

Because the elements of the column vector G in eq. 14 are mutually independent, the element g; is
univariate distributed with zero mean, unit variance, and skewness v It is also proved that the
following relations can hold between independent variates g; (i=1, 2,---+ , n) s

Ya (i=j=Fk)
El(ggg) =1 0 (i+j=Fk) (22)
0 (i#j*k)

where v, is the skewness coefficient of g..
Cubing both sides of eq. 13 and taking the expectations yields

E (&) =viol =303 E(¢) +32  bijbhE (gl
" n on v (23)
+ é’ z ZlbijbikbimE(gjgkgm) (i=1,2, - ,n)

j=lk=1m=
(j#k+m)

where o; and y; are the standard deviation and skewness coefficient of variate x, respectively. Sub-
stituting the condition of eq. 22 into eq. 23 gives

%
7i0?=jé;b?j'ygj (i=1,2," , n) (24)

Equation 24 can be written in matrix form as

2i =BT, (25)
where

I'T= [y 9 95 oo Ya)
rr= ['}’gl Yaz Va3 7" Yen)

[}

23 0
0:
2= 0 3 (26)
.“dn

bxi; blg blg """ 12

bt bbb
B=1 . P Y TR

bat bk b b

Zxinan (nX#n) diagonal matrix of standard deviations of x,, and the elements of B, are computed by
being cubed element by element in matrix, B.
A skewness vector of uncorrelated variates g; can be obtained by solving eq. 25 for I'y as

rg=8B;'3r, @7
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where B7! is the inverse matrix of B,. ’
Equation 27 indicates that the skewness coefficients of original variables are explicitly incorporated to
determine those of uncorrelated variables g;.

Properties of the Sum of Correlated Variates

Premultiplying eq. 14 by a (IX#) unit vector gives the sum of variates x; as

(28)
=UX=UBG=CG
where
U= [1 1 I 1]
C=UB i
bn b12 ...... bln (29>
b ...... n
= (rzgee) |20
bnl bnz ...... bmz

Cisa (IX#n) known vector whose elements are given by the sum of the rows of matrix B as shown in
eq. 29. The scalar form of eq. 28 is written as

kZ =& + 82 Feeees + Cn8n <30)

where ¢; is the element of vector C. By definition, X has zero means and hence the sum variable z has
also zero mean. From eq. 30, the variance (¢%) and skewness (y;) of z are obtained,; using eqgs. 16 and
22 as

2=E(z?) = éc? (31)
and .,
ve00 =E(23) = 3 ¢}va
ol (322)
or N s
y”_{ff‘ ”g’}/ o (32b)

where y,; is the skewness coefficient of g;.
Equation 31 is another expression for the variance of z which is statistically equivalent to eq. 6. It

follows from eq. 32b that the skewness for the sum of correlated variates is expressible by functions of the
skewness coefficients for uncorrelated variates.

PERFORMANCE COMPARISON

When the proposed procedure is used to estimate the skewness coefficient of the sum of correlated
variates, an important question is : Which method would give a desired result for the skewness out of the
four transformation matrices given in eq. 18 to eq. 21?7 In Chapter 2 the exact solutions were derived for
the first three moments of the sum of identically distributed gamma variates whose correlation structure
follows the stationary AR(1) process. As a preliminary screening tool to select the candidate methods
of the proposed approach, a comparison was made between skew coefficients of the sum variable resulting
from the exact gamma solution and each of the four transformation matrices. There are no presently
existing studies on the statistical properties of the sum variable for the cases where variates in the sum
have different skewed properties and take a nonstationary process. The resolution can best be made
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through Monte Carlo experiments for such cases. As the second screening procedure for the selection of
an appropriate transformation matrix, the results via distribution-free approaches were compared with
those of Monte Carlo tests, given the first three moments of variables in the sum and correlation schemes.

Comparison between Exact Gamma and Distribution-Free Solutions

To determine the appropriate transformation matrix the results using the distribution-free approach
are compared with those via exact gamma solutions for each of four transformation matrices given from
eq. 18 to eq. 21. The methodology employed here is very simple. The population statistics of identical
marginal distributions are given in eq. 2. The variance-covariance matrix is specified using the station-
ary AR(1) process, given the number of variates in the sum, # and a lag-one correlation coefficient p.
To have an insight into the changes in magnitude of the skew of the sum variate, the values of p =0.1
(0.1)0.9 and »=23 and 6 are used in the experiments.

Tables 1 and 2 report the skewness coefficients y, of the sum of variates for #=3 and #n=6,
respectively, where the results of the exact gamma solution are compared with those using four trans-
formation matrices. The values of v, corresponding to p =0 and p = I are computed by using egs. 11 and
10, respectively. As mentioned before, the four methods produce the same variance of the sum variate as
the gamma solution does; this consistency was numerically checked by using eq. 8 for the gamma solution
and eq. 31 for the distribution-free approach. .

The results of Tables 1 and 2 show that the skewness coefficients estimated from Method 3 (eq.
20) and Method 4 (eq. 21) behave substantially differently from those of the exact solution; Methods 3

and 4 should be discarded to compute an approximate skew of the sum of skewed and correlated variates.
Methods 1 and 2 (egs. 18 and 19) produce skewness coefficients that are smaller than the exact ones fora
gamma distribution, but the skew 7. resulting from Method 1 is slightly larger than that from Method2.

Comparison between Distvibution-Free and Monte Carlo Results

It is found from the above experiments that Methods 3 and 4 are inappropriate for use in the
computation of skewness coefficients of the sum variate through distribution-free approach. Insofar as
the exact solution is only applicable to identical marginal distributions of gamma variates with stationary
correlation structure, additional experiments are added to evaluating the performance of Methods 1 and
2 for any skewed and correlated variates.

The three-parameter log normal (LN3) distribution is used to model the marginal distributions of
variates and covariance relationships between them. The convenience of the LN3 distribution lies in the
fact that there exist theoretical relationships between covariances in the untransformed (real) and
transformed (log) domains; the nonstationary correlations in real space can easily be transformed from
stationary process in log space by changing real space variances. The LN3 distribution used here is
parameterized in the Slade-type model of the form :

=7t ¢ exp (kys) (i=1,2 3 - ,7) (33)

where x; is a LN3 distributed variate, y; has a standard normal distribution with zero mean and unit
variance, and z;, ¢;, and k; are distribution parameters.

The mean g;, variance o%, and coefficient of skewness y; of a random variable x, with a LN3 distribution
are given by

M=zt cnpt?
0%26%77;‘(77{_1> (i=1,2 3 ,n) ‘ . (34)
Vi— (ﬂi+2) (775_1>1/2



83

Table 1 Comparison of Skews between Four Methods for the Sum of
Identically Distributed Gamma Variates with AR(1) process
(a=2, b=4, y=1.0, n=3)

N Gamma

P Solution Method 1 Method 2 Method 3 Method 4
0.1 0.683 0.584 0.580 4.396 1.506
0.2 0.769 0.606 0.570 3.718 1.320
0.3 0.838 0.632 0.605 3.143 1171
0.4 0.891 0.669 0.626 2.657 1.055
0.5 0.930 0.712 0.654 2.248 0.969
0.6 0.959 0.761 0.691 1.904 0.909
0.7 0.979 0.815 0.739 1.615 0.875
0.8 0.991 0.873 0.801 1.373 0.870
0.9 0.998 0.935 0.885 1.170 0.905

* lag-one serial correlation coefficient

Table 2 Comparison of Skews between Four Methods for the Sum of
Identically Distributed Gamma Variates with AR(1) process
(=2, b=4, y=10, n=6)

ot SGSﬁ‘tj‘; Method 1 Method 2 Method 3 Method 4
0.1 0506 0.414 0411 7589 2.100
02 0.596 0.430 0.419 6.166 0.936
03 0680 0.455 0.433 5.025 0.713
0.4 0.758 0.490 0.454 4099 0.726
05 0.828 0536 0.482 3338 1.507
06 0.889 0.594 0521 2704 1.325
0.7 0.938 0.667 0575 2171 0.919
08 0973 0.757 0.654 1718 0.793
0.9 0.991 0.865 0.778 1.330 0.871

* lag-one serial correlation coefficient

where

m=exp (k%) (35)
The parameter 7; is determined from y; as

w= s +(§=D¥e+ [5 — (s3-1)"]s~1 (36)
with s;=1+9%/2. The real space correlation coefficient p. (7, ) between x; and x; is given by

explkikjoy (i, 7)) — 1
Cexp (kE) —1)V2(exp (BE) — 1112 (37)

p:(i, j) =

(i9j=1y2’3’ """ ,n;l#])

where p, (7, ) is a correlation coefficient between standard normally distributed variates y; and y;.
Two different correlation schemes are chosen for p, (7, 7) in this experiment. The first scheme is
the short memory model represented by a stationary AR(1) process whose autocorrelation function is
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defined by
oo(i, y=p" "7 (38)

where p is a lag-one serial correlation coefficient.
The second is the long memory model using an autoregressive moving average (ARMA(I, 1)) process
whose correlation structure is given by

py(i, ) =pg 771 (li=j1>D) (39)

The parameter ¢ was held fixed at ¢ =0.95 in this experiment. Three levels of p=0.3, 0.5, and 0.8,
reflecting the degree of dependence between variates, were used. Table 3 shows an example of serial
correlation coefficients for AR(1) and ARMA(1, 1) processes in the log domain, conditioned on p=0.8
and ¢=0.95. It is observed in Table 3 that the autocorrelation function corresponding to an AR(1)

process decays faster with lag values than that of ARMA(1,1) . The correlation matrix generated with
stationary AR(1) and ARMA (1, 1) processes in the log domain is transformed to the real space covariance
matrix using eq. 37. A special emphasis is placed on the fact that the covariance structure resulting from

use of px(4, 7) is no longer AR(1) and ARMA (1, 1) sequences, but follows a nonstationary process,

because the variances of x; and x; have different values. For each set of u;, 0, 7, and px (¢ 7) com-

binations, the skewness coefficient of the sum of » random variables was computed using either Method

1 or Method 2 in the distribution-free approach.

The computational steps of Monte Carlo experiments where the sum of LN3 distributed variates
was generated by using AR(1) and ARMA (1, 1) models, are summarized as follows :

(1) N3 distribution parameters of z,, ¢, and k; were determined corresponding to population statistics
M, B (coefficient of variation), and v; for the number of variates, #.

(2) As shown in eq. 17, the transformation matrix in log space was determined from a correlation
coefficient matrix whose elements are given by p, (7, /) with AR(1) and ARMA(1, 1) processes ;
Method 2 (eq. 19) was used to effect the solution for the transformation matrix (either of the four
methods is applicable in the normal domain).

(3) Multivariate normally distributed deviates y; (i=1, 2, 3+ , n) were generated from independent
normal deviates using the transformation matrix computed in Step(2). The sum of LN3 distributed
deviates x; (i=1, 2, 3 - , n) was computed through eq. 33.

(4) 50,000 independent sequences of the sum variate were'generated, repeating the procedure of Step(3).

(5) The sample mean, variance, and skewness coefficient of the sum variate (taken over 50,000 real-
izations) were estimated for given values of », u;, £;, v:, and p, (i, 7). v

In all cases examined the number of variates in the sum was taken as #=6. Two relationships

were considered between population coefficients of variation (8;) and skewness (y,) (i=1, 2, - ,n)

the first scheme is the relationship of the two-parameter log normal distribution given by y,=g%-+38; and

the second is the case of ¥, =28, which is identical with the gamma relationship. For the latter case the

LN3 distribution was force fitted to the gamma population.

Tables 4 and 5 compare the skew coefficients of the sum of 6 variates between Methods 1 (eq. 18)

and 2 (eq. 19), and Monte Carlo results for AR and ARMA processes, using the relations of v: = B3+ 36:

and y;=2;, respectively. In these experiments all the mean values of variates were fixed at ;= 1, while

the coefficients of variation g; ranged from 0.1 to 0.6 with increment 0.1, While not shown herein, the
variances computed through Monte Carlo experiments were practically equal to those of theoretical
relationship given by egs. 6 or 31 ; the maximum relative error in percent was 2.6%. It should be noted
that the results corresponding to use of Method 2 differ from those corresponding to Method 1. The
comparisons between exact gamma and distribution-free solutions as shown in Tables 1 and 2 indicate that
the results using Method 1 are always closer to the gamma solution than those of Method 2. The results
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Table 3 Comparison of Autocorrelation Coefficients between AR (1)
and ARMA (1,1) Processes for p=0.8 and ¢ =10.95

Lag 1 2 3 4 5 6
AR(1) 0.800 0.640 0.512 0.410 0.328 0.262
ARMA(1,1) 0.800 0.760 0.722 0.686 0.652 0.619

shown in Tables 4 and 5, however, reveal that Method 2 gives rise to much closer results of Monte Carlo
experiments than does Method 1. Of notable significance is the skew behavior produced in Method 1 for
ARMA(1, 1) sequences ; for the three levels of lag-one correlation coefficients examined, Method 1 yielded
the minimum skew of the sum variate at p=0.5. This inconsistency is not observed in the results from
Method 2.

Further tests were conducted for the cases where the mean levels of variates in the sum were in a
range between 1 and 6 with increment 1, and other parameter relationships were the same as those in
preceding experiments. Tables 6 and 7 report the results similar to those shown in Tables 4 and 5 for the
different mean values of 6 variates and parameter relationships of y,=g3+38;, and y,=28,, respectively.
The behavior of skewness coefficient of the sum variate for different mean values bears out a similar
conclusion as for identical mean levels of variates in the sum ; different values of mean and coefficient of
variation did not affect the consistency of results via distribution-free approach using Method 2. A
limited set of results from application of the methods reported here show convincingly that Method 2
might be a valuable tool in hydrologic data analysis where estimates of skews for the sum of skewed
variates with nonstationary correlation structures are required. The principal appeal stems from the fact
that the user does not have to assume a population from which the data were obtained.

CONCLUSIONS

There is no rationale to determine the theoretical distribution for the sum of correlated variates,
except for the sum of gamma variates distributed identically and correlated according to the stationary
lag-one Markov process. Different correlation schemes that hydrologic variables resemble aggravate this
issue, wherever the exact gamma solution is no longer applicable. Consequently, the distribution-free
approach is required to resolve this problem.

It is well known that the determination of the first two moments of the sum of correlated variates
is distribution-free. Most of hydrologic data have nonsymmetrical distributions. Hence, full details of
a method which appears to offer advantages for estimating the skew of sum variate directly from the first
three moments and covariances have been given. The major advantage is that no underlying distributions
and stationary processes have to be assumed for describing hydrologic sequences.

The most important ingredient of the present approach is the determination -of an appropriate
matrix which transforms the correlated variates to the uncorrelated ones. Of existing four trans-
formation matrices, the matrix given by PD¥?P7, where D is a diagonal matrix having eigenvalues of
variance-covariance matrix and P is a corresponding eigenvector matrix, became the most competitive to
estimate the skew of the sum variate, based on the reported Monte Carlo results. The skewness
coefficients using the above transformation matrix are slightly smaller than those of Monte Carlo ex-
periments. The exact amount of deviation could not readily be determined, because it depends on
correlation structures. It is seen, however, from Table 4 to Table 7 that the deviations tend to be the
largest for lag-one correlation coefficient around 0.5, and decrease with the values of correlation coeffici-
ent larger than or less than 0.5.
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Table 4 Comparison of Skews between Distribution-Free and Monte
Carlo Results for the Sum of Correlated Variates

AR(1) ARMAQ1,1)
p* Method 1 Method 2 onte Method 1 Method 2 Vonte
0.3 0.762 0.837 0.891 0.543 0.848 0.943
0.5 0.762 0.876 1.021 0.508 0.919 1.028
0.8 0.841 1.081 1.179 0.605 1.146 1.215
Table 5 Comparison of Skews between Distribution-Free and Monte
Carlo Results for the Sum of Correlated Variates
(ﬂi :1, ﬁi =0A1(0.1)0.6, Vi =2ﬁ1 y nzﬁ)
AR(1) ARMA(,1)
o* Method 1 Method 2 Monte Method 1~ Method 2 Monte
Carlo Carlo
0.3 0.471 0.513 0.555 0.337 0.520 0.582
0.5 0.478 0.541 0.628 0.319 0.567 0.698
0.8 0.534 0.671 0.738 0.382 0.711 0.760
* lag-one correlation coefficient in the log domain
Table 6 Comparison of Skews between Distribution-Free and Monte
Carlo Results for the Sum of Correlated Variates
AR(1) ARMA(,1)
o* Method 1 Method 2 vonte Method 1 Method 2 Conte
0.3 0.996 1.106 1.113 0.750 1.114 1.119
0.5 0.982 1.136 1.187 0.675 1.171 1.291
0.8 1.071 1.328 1.366 0.774 1.379 1.374
Table 7 Comparison of Skews between Distribution-Free and Monte
Carlo Results for the Sum of Correlated Variates
(g; =1(1)6, B; =0.1(0.1)0.6, v; =28, , n=6)
AR(D) ARMA(Q,1)
p* Method 1 Method 2 Monte Method 1~ Method 2 Monte
Carlo Carlo
0.3 0.607 0.669 0.695 0.455 0.675 0.718
0.5 0.607 0.691 0.764 0.415 0.713 0.784
0.8 0.670 0.813 0.843 0.480 0.844 0.867

* lag-one correlation coefficient in the log domain
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APPENDIX - NOTATION

The following symbols are used in this paper :

a = scale parameter of gamma distribution ;

b = shape parameter of gamma distribution ;

bi; = element of transformation matrix B ;

B = (mXn) coefficient matrix ;

B, = (nXmn) coefficient matrix computed by being cubed element by element in matrix B ;

Bt = inverse matrix of B, ;

¢ = element of vector C, eq. 29 or parameter of three-parameter log normal (LN3)
distribution, eq. 33 ;

C = (IXn) coefficient vector ;

D = (mXn) diagonal eigenvalue matrix of Vj ;

E(-) = expectation operator ;
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probability density function ;

independent standardized variate ;

(nx 1) vector of uncorrelated variates g; ;
identity matrix ;

parameter of LN3 distribution ;

7-th cumulant ;

(nXn) lower triangular matrix ;

number of variates ;

(n X n) normalized eigenvector matrix of V ;
parameter (=1-+y%/2);

transposition of matrix as superscript ;

(IXn) unit vector ;

(nX#n) covariance matrix of X ;

random variable ;

(nXx 1) vector of correlated variates x; ;
standard normally distributed variate ;

sum of » variates ;

coefficient of variation ;

coefficient of skewness ;

lag-one serial correlation coefficient ;
correlation coefficient between variates x; and x; ;
population mean ;

population variance ;

= parameter of ARMA(1, 1) model ;

Il

Il

il

location parameter of LN3 distribution ;
parameter [ = exp (k%) ] ;

eigenvalue of correlation matrix ;

gamma function ;

(mX 1) vector of skewness coefficient y; ; and
{(nXn) diagonal matrix of standard deviation o;.



