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SYNOPSIS

A theoretical study is presented of the effect of viscosity and tangential
stress on the hydrodymamic stability of the interface between two horizontal layers
of slightly different densities which are in relative motion. The solution is ob-
tained approximately assuming uniform but different velocities in each fluid layer
and using the shearing stress formula at the interface found for steady, fully de-
veloped laminar flow. Viscosity and tangential stress effects are found to be so
small that they do not materially affect the stability criterion for Reynolds num-
bers greater than 20 if the wave number is taken, as experimentally observed, as
one~half of the reciprocal of the thickness of the moving layer.

INTRODUCTION

Study of the stability of an interface between two horizontal layers of fluids
of slightly different densities which are in relative motion is important for bet-
ter understanding of the mechanism of mixing of stratified flows, a phenomenon
which is often encountered in water resources engineering. )

Non-viscous—flow stability problems of two layered flow with different, but
uniform velocity and density profiles saw the famous solution by Helmholtz (5).
Viscous effect on the stability of such a flow configuration first received atten-
tion in connection with study of air-water interface stability. Thus Jeffreys (3)
was the first to study the viscous effect on the stability of such a flow. Tchen
(8) derived an approximate solution for the full viscous stability of two-layered
flow with different fluid properties moving with uniform but different velocities.
Although numerous works have been published on viscous and/or non-viscous stability
problems of two-layered flow with realistic velocity and density profiles, this
paper is mainly concerned with a viscous effect on the stability of two-layered
flow with different, but uniform velocity and density profiles.

Density difference between two layers in this study is chosen to be statically
stable and small, representing many problems related to hydraulic engineering. An
experimental or semi-empirical study of such a problem is the work of Ippen and
Harleman (2), who observed that a uniform flow of salt water under a body of fresh
water produced breaking waves when the non-viscous instability criterion for the
discontinuous but otherwise uniform density and velocity profiles was satisfied
as follows:

aU > T3k 7p) (g/k) | 6

in which AU = U' - U is the velocity difference between moving layers, the denser
fluid being on the bottom; g is the gravitational acceleration; and k is the wave
number of interfacial waves. They also found that the observed waves satisfied the
relation kh = 2 in which h is the thickness of the moving layer. Eg. 1 could
therefore be reduced to

F, = AU/ V(bp/p)gh > 1 2)
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in which F, is the densimetric Froude number of the lower and moving layer. Cri-
terion ( Eé. 1 ) is strictly valid for an infinite thickness of the fluid layers.
However, Ippen and Harleman found that finiteness of the thickness did not affect
the solution for F, < 1. The experiments in Ref. (2) covered Reynolds numbers
from 100 to 400. “The Reynolds number in this case was defined as R_ = AUh/v.
Keulegan (4) attempted to take into account the effects of Viscgs}ty and ro-

tationality semi-empirically. He arrived at a parameter 0 = (vghp/p)1’/3/AU which,
in combination with the Reynolds number, was used to define a measure of the sta-
bility of the interface. The critical values of 0 were found experimentally to be

0.127 for Re < 450; and 0.178 for Re > 450 ) (3)

It seems possible then to extend analyses of Jeffreys and Tchen to the case
of small density difference and apply it to the experimental results by Ippen and
Harleman, and Keulegan. It is true that the velocity profiles assumed in this
work, i.e. discontinuous otherwise uniform, may be unrealistic and one can argue
that viscous stability of two-layered flow with continuous velocity profile is
calculable in this age, e.g. Hayakawa and Unny (1) and Nishida et al. (7).
Nevertherless, discontinuous velocity profile is adopted in this work in order to
obtain a simple and comprehensive answer to the two~layered flow problem when vis-
cosity effect is small. Tt is hoped that the assumed velocity profile is a good
approximation to the initial growth stage of the boundary layer type flow and the
validity of the solution will be tested with reference to the experimental data.

EIGENVALUE EQUATION FOR INTERFACTAL STABILITY
Following the usual step of linear stability analysis, one obtains a simpli-
fied form of the Orr-Sommerfeld equation with respect to the complex amplitude
$(y) of the stream function of perturhed flow:
2,,.2 2 . 4 2.2 ,.2
W - o)y @h/aly 29) = /0 @/ay® —ataleray? o) )
where U is the unperturbed flow velocity in x direction, c¢ is the wave celerity
of the perturbed motion. The stream function ¢y is assumed to take a normal solu-
tion described as follows;
Y = ¢(y)exp ik(x - ct) (5)
Eqs. 4 and 5 both hold for upper and lower fluid motion, In relating upper layer
fluid motion hereafter, primed quantities will be used.
Boundary conditions at infinity are given as

¢' > Qasy>=; ¢ >0asy>-= (6)

The kinematic condition at the interface, y = n, is, to the first order

it
it

o/t + U on/ = W'/ oat y = Q ‘ 7.1)

2 /& at y = Q (7.2)

/ot + U o/ x

A solution of Eq. 4 satisfying the boundary conditions 6 and 7 is given, for the
upper fluid
- R
o' =B e r g Y B4 C = U'- 0)a (8.1)
where v‘A'Z = v‘kz + ik(U' - ¢) and a is amplitude of interfacial displacement,
and for the lower fluid
6 =B srce;Brc= (- )a (8.2)

where vAz = vkz + ik(U - c¢). Branches of the wave lengths k and X are taken so
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that their real parts are positive.

As the dynamic condition at the interface, both normal and tangential stresses
at the interface are continuous and are assumed to fluctuate according to the re-
lationships

-P + pgn + 2u(dv/3y) pac exp ik(x - ct) (9)

P
vy

and

#t
[

p{Ca/ ) + (&/ &)} = pa ikB exp ik(x - ct) (10)

T
Xy
where o i1s the maximum amplitude of the slope of the shear stress at the interface.

The perturbed piezometric head can be shown to satisfy the Laplace equation
and the pressure fluctuation is solved for the upper layer

P/ (p'g)= - (k/g) (U'~ c)e"ky exp ik(x - ct) fory > 0 (11.1)
and for the lower layer
P/(og) = (k/g)(@U - c)eky exp ik(x - ct) for y <0 (11.2)

For the lower fluid, the substitution of Egs. 11.1 and 8.2 into Eqs. 9 and
10 leads to

ag = ga - k(U - ¢)B + 2v ik(B + C) (12)

2

a 1k8 = -\){sz + A°C + kz(B + )} 13)

Eliminating B and C from Eqs. 12 and 13, the following expression is obtained for
the lower fluid:

0 =g - 29AK2[81/{(U - )k} + 2v] = kB + (U —c= 2ikv)?}
) (14)
+ 2ivk 8/ (U - ¢)

The same procedure is applied to the upper layer and results in the following ex-
pression:

o= (o'/0)g + V'K [BL/{(U - &)k} + 2v]
FEB + (0'/0)U - ¢ - 2ikv)2) = 21v'k%B/ (U - <) (15)

To simplify the equations the following assumption, which was also utilized by
Jeffreys(3), is made:

vk << (U - )3 B8 << (U - ) (16)

This implies that the wave damping due to viscous dissipation and tangential
stress is small., Thus Eqs. 14 and 15 are reduced to

G=g-k{B8 + (U-c - 2ivk)?} an

and

6= (0'/0)g - k{8 + (6"/p)(U' - ¢ - 2iv'K)%} (18)

Equating 17 and 18, one obtains

o = ¢ = 20kv)? + o' (U' = ¢ - 2ikv")% - Aog/k + 208 = O (19)
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where Ap = p - p'., This is the eigenvalue equation of the problem, containing one
unknown parameter B which can be found using the semi-empirical steady rectilinear
flow resistance law equation at the interface.

INTERFACIAL STABILITY OF A SURFACE CURRENT

If the lower layer is stationary( U = 0 ) and the density difference between
the two layers is small, it is justifiable to assume that

e'/p = 13 v o= ‘ (20)
Eq. 19 will then be reduced to
(e + 2ik0)% + (U - ¢ - 2ik0)% - w2 428 = 0 (21)

where wz = Apg/ok.
The shearing stress at the interface is assumed to take the form

2

T
xy

where U' is the interfacial velocity and . is a shear stress coefficient.

=%p'c ﬁv

. (22)

U= Ut (' 3y) s Ty T

The fluctuating component of shear, Txy , can be expressed as

NI

2
¥ ¥
0 cTU + Txy (23)

Tey = ikpBa = - p'cTU'(&b'/Qv) (24)

when second order terms are neglected. Substituting Eq. 7.1 and eliminating B’
and C', Eq. 24 can be transformed into

= t T [ T -
Txy chU (U k[ (x k)/ (A" + k)
(p/p")iB /' (A" + k) (U' - c)}]a (25)
The assumption previously invoked in Eq. 16 and the fact that the shear stress
coefficient c¢_ in fully developed flow is proportional to the reciprocal of the

Reynolds number (laminar flow) permit replacing the term in brackets by unity,
and hence

= i z Y Ut -
Txy ikBa = p cTU (U c)ka (26)

or
B == 1i(p"/o)c U"(U' - ¢) (27)

Substitution of Eq. 27 into Eq. 21 leads to the following expression:

2c2 - 2(U" - 4ikv - icTU')c + U'2 ~ w2 - 8k2v2 ~ 4ikvU’

- 2ic Ut =0 (28)
This equation is then solved for c:
=_3—_, LI Y ¥
c 3 U 4ikv 1cTU )

2 1 .2

+ {%'w - Z‘U' 2

i U,2]1/2 (29)
T

_!-‘ l2_ ¥ o
7 Co U ZkchU + 5 C

Separation of the imaginary part of ¢ leads to the critical stability condi-
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tion

2,1 2,2 o2
+ 7 c'[U / (2kv + cTU /2)

The second and third terms of the right-hand side of this condition are the effects
of viscous dissipation and tangential stress respectively. It can be seen that the
effect of viscous dissipation is stabilizing, while that of tangential stress is

destabilizing. If the viscosity and the interfacial shear are zero, Eq. 30 reduces
itself to Eq. 1, as is expected.

2(8p/0) (/) /U2 = 1 - 1650270 (30)

DISCUSSION OF THE STABILITY CRITERION

For
simetric

a surface current AU = U'. Eq. 30 can be rewritten in terms of the den-
Froude number, the Reynolds number and the dimensionless wave number a =
kh', for the upper layer of thickness h'.

The shearing stress formula for steady, fully developed laminar flow along a
solid straight wall or an interface is
C =
T

s/Re (31)

in which s is a constant. The critical stability condition (Eq. 30) then becomes

= (/D11 - 160%/8% + (s2/4)/ (20 + /2)°] (32)

It should be noted here that the stability of the interface depends only on the
relative motion of the two layers and Eq. 32, though derived for the surface cur-
rent, is expected to hold for the subsurface current as well.

The value of s depends on the viscosities, the densities, and the thicknesses
of the two layers. According to an analysis given by Lock(6), a theoretical value
of s = 3 is applied to fully developed flow in two fluid layers-of approximately
the same density and viscosity occupying the upper and lower half-space respective-
ly. 1If both layers are of limited depth, however, the s-value for a surface cur-
rent can range between zero and six
depending on the relative thicknesses

T T T T

of the layers and the circulation pat- 20+
terns set up in both layers. The first
value refers to an interface mnot oppos— o}
ing the flow at all, while the higher

vdue represents the resistance: found 6
along a solid wall. If the moving up- 4 -

per layer is thin as compared to the

lower layer, the interfacial shear will

generally be small, and vice versa. a
Eq. 32 has been plotted in Fig. 1

with F on the abscissa, o on the ordi-

nate, ‘and R as a parameter, for s = 0.6

5, corresponding to a high shear, and

s = 0. The critical condition for non-

viscous or frictionless flow (Eq. 1)

is a particular solution of Eq. 32 and 0.2

0.4 =

STABLE

is obtained by setting s equal to zero Sg\
and Reynolds number equal to infinity. 01 . : L=

The value of the dimensionless 0 1.0 20 3.0 4.0 5.0 8.0
wave number o in Eq. 32 cannot be cho— £i

sen arbitrarily, but must be a specific
value found when the waves begin to
break. In Ref.(2), a value of a = 2

is given as a result of laboratory ex- -
periments on bottom density currents.
This value also agrees fairly well with

Fig. 1 Critical stability condition in
terms of dimensionless wave number
o and dimensionless Froude number
F.. Solid lines refer to an inter-
ficial shear coefficient s = 5;
broken lines refer to s = O.
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a limited number of observations on surface density currents. It may therefore be
used to reduce Eq. 32 to

Ff -1 - 64/R§ + (s214) /(4 + s/2)2 (33)

Expressed in terms of Keulegan's 0 values, Eq. 33 for high interfacial shear, or
s = 5, is

- g2 1/3 _ -1/3 _ 2
e =F,"R R, (1.15 64/Re) (34)

For zero interfacial shear, or s = 0, it is

_ -1/3 2 ;
0= R, (1.0 - 64/Re) (35)

Egs. 34 and 35 have been 08 T T ! ' i '

plotted in Fig. 2 as

curves II and IIT respec-~ 0.6

tively. The non-viscous

flow condition (Eq. 2), 04

which becomes © = 1/R_, ’
. . €

and Keulegan's empirical )

conditions have been

added as curve I and IV,

STABLE

X 0.2 UNSTABLE
respectively.
Eq. 35 indicates (34)
an absolute stable
region for Reynolds 01 , .
numbers less than about 2 4 6 10 20 40 50 100

seven which is due pri-
marily to viscous dissi- Re

pation. A slightly destabilizing effect of viscosity can be noted.for Reynolds
numbers larger than 20 for high interfacial shear(curve II). The difference be-
tween curves IT and III is fairly small, indicating that the interfacial shear is
of little importance. At Reynolds numbers above 20, viscosity and interfacial
stress effects are also small and affect the stability criterion very little.

CONCLUSION

The effects of viscosity and tangential stress on the interfacial stability
of superposed fluids in laminar flow with discontinuous density and viscosity
profiles have been demonstrated in an approximate but comprehensive way. Viscosi-
ty and tangential stress effects are so small that they do not materially affect
the stability criterion for Reynolds numbers greater than 20. There exists an ab-
solutely stable region, where any disturbance is damped out, for Reynolds number
less than about seven. At first approximation the tangential stress seems to have
only a slightly destabilizing effect, if any.

ACKNOWLEDGEMENT

The author is indebted to Professor Heinz Stefan of St. Anthony Falls Hydrau-
lic Laboratory of the University of Minnesota for encouraging him for carrying out
the bulk of the work reported herein.

REFERENCES

1. Hayakawa, N. and T.E. Unny : Viscous stability of parallel streams of super-
posed fluids, Physics of Fluids, Vol.l7, No.5, pp.879-882, 1974,

2. Ippen, A.T. and D.R.F. Harleman : Steady-state characteristics of subsurface
flow, Circular 52, U.S. National Bureau of Standards, pp.79-93, 1952.



21

3. Jeffreys, H. : On the formation of water waves by wind, Proceedings of the
Royal Society of London, Vol.Al07, pp.189-206, 1925.

4. Keulegan, G. : Interfacial stability and mixing in stratified flows, Journal
of Research, U.S.National Bureau of Standards, Vol.43, pp.487-500, 1949.

5..Lamb, H. : Surface waves, Hydrodynamics, 6th ed., Cambridge Univ. Press, Cam-
bridge, U.K., pp.373-375, 1932,

6. Lock, R.C. : The velocity distribution in the laminar boundary layer between
parallel streams, Quarterly Journal of Mechanics and Applied Mathematics,
Vol.4, Part 1, pp.42-63, 1951.

7. Nishida, S. and S. Yoshida : Theoretical analysis of shear instability for two
layer flow, Proceedings of 29th Japanese Conference of Coastal Engineering,
pp.550~-554, 1982.

8. Tchen, C.M. : Approximate theory on the stability of interfacial waves between
two streams, Journal of Applied Physics, Vol.27, No.12, pp.1533-1536, 1956.

APPENDIX - NOTATION

The following symbols are used in this paper:

a = internal wave height;

c = complex wave velocity;

c. = shear stress coefficient;

Fi = densimetric Froude number;

g = gravitational accelerationg

h = thickness of lower layer;

i = unit of imaginary number;

k = wave number (= 2mw/A);

P = perturbation pressure;

Pyy’ Txy= perturbation normal and tangential stress, respectively;
Txy = resultant tangential stress;

Re = Reynoclds number;

s = coefficient in laminar shear stress law;

t = time;

u, v = components of perturbed velocity in x- and y-direction, respectively;
U = basic flow velocity;

T = resultant flow velocity = U + u ;

X,y = gpace coordinates;

o = dimensionless wave number;

n = interfacial elevation:

0 = Keulegan number = 1/(F12Re)1/3;

A = wave length;

Vsl = kinematic viscosity and dynamic viscosity, respectively;
o = density of lower fluid;

Ap = density difference = p - p';

0,8 = normal and shear stress coefficients, respectively;

¢ = amplitude of stream function;
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stream function;
1i/2,

= (g/k) H

[

(Apg/pk)l/z;

added to variable if referring to upper layer{unless defined other-

wise.



