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SYNOPSIS

A mathematical model and experimental results are presented for a flow over
alternating point bars in a meandering channel. The mathematical model comprises
a transformation of the coordinate and an application of the k-emodel. According
to the coordinate transformation, the water body in a unit bend of a meandering
channel with bars is transformed into a parallelepiped.

Numerically simulated results are compared with experimental results obtained
in a relatively deep flow in a meandering channel. Formation of double cells of
secondary flow in a section and bed shear distribution are successfully reproduced
by the mathematical model. However, it is said that conventional treatment of the
k- € model is not sufficient to reproduce the details of the sidewall effect in a
relatively deeper flow in a meandering channel.

INTRODUCTION

It . is scarce. to encounter a fairly long straight reach in rivers and a
meandering channel seems an essential nature of the longitudinal path of rivers.
Strong secondary flows as well as local scour and deposition are observed in a
river bend whereupon river engineers have had a keen concern from the standpoint
of both flood control and water utilization. Understanding of three-dimensional
characteristics of the flow in a meandering channel is needed to completely
realize the mechanism of river flow over alternating point shoals in a meandering
channel.

Theoretical studies are still far from completion due to mathematical
difficulties to treat a fully three-dimensional nature of flow. Existing theories
utilize a quasi-three-dimensional approach [Engelund (2), Ikeda et al. (6),
Kalkwijk and de Vriend (9), Hasegawa (4), Tamai and Ikeuchi (20), and Tamai and
Ikeya (19)]. Fully three-dimensional approach has recourse to numerical
simulation. Several attempts have been performed to simulate a three-dimensional
flow in a meandering channel by turbulence models [Leschziner and Rodi (12),
Demuren (1), Mori and Kishi (13), and Ikeda et al. (7)]. Previous studies,
however, -are restricted to a rectangular channel or to a fully developed region
when an alluvial bed topography is treated.

The method presented herein utilizes a coordinate transformation by which an
arbitrary shape of the bed in a meandering channel is expressed by a coordinate
surface. A series of experiment was performed in a meandering channel with an
idealized shape of alternating point bars. Mean velocity field and the Reynolds
stress were measured in a relatively deep flow through a meandering channel.
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Computed results by the k-€ model is discussed in comparison with the experimental
results.

Majority of the existing experimental studies in a meandering channel were
performed for a single bend with a rectangular cross section. Only a few studied
velocity distribution in a meandering channel with an alluvial bed. Yen (23),
Hasegawa et al. (3), and Tamai and Ali (18) measured water surface profile and
longitudinal and lateral components of velocity for an alluvial bed topography in
a meandering channel. In the present study measurement of the vertical velocity
and the Reynolds stress is also performed in a meandering channel with an
idealized shape of alternating point bars to study the three-dimensional flow
structure and to calibrate a mathematical model.

This paper is an extended version of the paper published by the authors
in Japanese (8).

MATHEMATICAL MODEL
Trans formation of Coordinates

In Fig.l schematic diagrams of the coordinate system, and a perspective of
the centerline and a sectional shape of a meandering channel are shown. Here,
L = the length of a meander along the centerline, 0= angle between a tangent
of the centerline and the direction of the valley axis, and o = angle between
the plane on which the channel meanders and the horizontal plane.

The Cartesian coordinate system(y ﬁ yz, y3) is transformed into a general
curvilinear coordinate system(xl, xz, x %) so that the water surface, the bottom,
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Fig.l Definition sketch of the coordinates and a meandering channel

and the side walls in a physical domain compose the coordinates surfaces in (xl,
®2, x3)-system. This is accomplished by the following transformation.

B :
yl= {fo Ea,cosedx - >x’sinf}cosa + {(hg-hyp)x® + hyp}sing

1L
22 f§ 5— sinfd x ! + %xzcoss (1)
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The metric tensor is given by
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where z = (hs~hb)x3 + hy. The determinant of the metric tensor is obtained as
in the following equation.

g = G- 5l

2 G = X gD (hemhp) ® k (3)

Basic Equations

Basi¢ equations for describing the motion of fluid are equation of continui-
ty and the Reynolds equations for incompressible, turbulent flows, such that

ui; i =0 (4)
o . P N R :
uls jud = - (ey? + o - (ututd)gy )

where ul = a contravariant component of time-averaged velocity, u'l =,
contravariant component of fluctuating velocity, G = gravitational acceleration,
o = density, p = pressure, a comma = differentiation, a semicolon = covariant
differentiation, and overbar = time averaging process.

Eddy-viscosity concept is applied to express the turbulent stresses,

that is,

-u T = veudd s udsl) - (273)803k (6)
where vy = scalar eddy viscosity, k = kinetic energy of the fluctuating motion of
the flow, and &J = the Kronecker delta. Then, Eq.5 is reduced into the follow-
ing form:

(uludysy = g3i(-63y%/axd - p~tap/x) + gMlveulslysg + gll(vu™il)sy

- (2/3)g™s11k,n (7)
where gid = a conjugate of the metric tensor (= cofactor of gij/g).
Turbulence Model
The eddy viscosity is described by the k-¢ model, namely

2
Ve = e (8)
Ve _dk . ; ;
Gad)iy = GE 5955 + veCug,d + wlsiudsy - e (9)

(Euj);J (0€ gi?);l + czk ey I+ udspulsy - cpe¥k (10)
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where € = the rate of energy dissipation and uj; = a covariant component of a
velocity vector. Values of constants in the k-¢ model are shown in Table 1 [Rodi

(15)].

TABLE 1 VALUES OF THE CONSTANTS IN THE k-e¢ MODEL

cy c, c, | Ok O¢

0.09 | 1.44 ) 1.92| 1.0 1.3

Boundary Conditions

Boundary conditons on the bottom and the side walls are expressed by the
wall function method. The velocity, the kinematic energy and the energy
dissipation at the closest grid to the fixed boundary are given as follows:

—— = %lnji + Ap

(1)
k = ux 2//(:71, € = u*s/Ky

where U = the magnitude of the tangential component of velocity to the wall, kg
= roughness height, A, = constant, K = Karman constant, ux = shear velocity
(=v/T/p), y = distance from the wall, and T = the tangential component of stress
exerting on the wall.

Following conditions are imposed at the water surface.

p=0,u’=0, \vtu133=0, \‘)tuz;s=0
(12)

In the present computing process the water surface elevation is adjusted
so as to satisfy the condition p = 0 at the water surface.

At the entrance and the outlet of one unit bend of a meandering channel it
is assumed that the same hydraulic conditions are established repeatedly. This
condition corresponds to uniform flow in open channels and the normal depth of
uniform flow is also obtained through simulation.

Solution Procedure

Basic assumption to solve the set of relations through Eq.4 to Eq.10 is
that no flow reversal occurs in the longitudinal direction. Therefore, partial
derivatives and covariant derivatives with respect to x ! are neglected in the
process of descretization (12). For the finite difference representation of
advection terms QUICK [Leonald (11)] is utilized. Other procedures follow the
same line described in Demuren (1).

EXPERIMENTAL PROCEDURES AND RESULTS
Experimental Set-Up and Procedures

An outline of experimental flume and symbols for the coordinate are shown
in Fig.2. Planimetric shape of the flume is similar to that utilized by
Kinoshita (10) for the similarity law of a meandering where the centerline of
the flume follows a sine-generated curve. The maximum deviation angle between
the tangent of the centerline and the meandering belt is 20 degrees, wave length
of a meander is 160cm, and the width of the flume is 20cm. The bed slope in the



direction of the meandering belt is 1/1000. An idealized shape described
subsequently is adopted for alternating point bars. The variation of the
bed level from a uniformly sloping plane in the direction
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Fig.2 (a) Plan of the experimental flume, (b) Location map of the section
(c) Coordinate system and symbols.

of the meandering belt is explained by hy = - (2n/B)sin(27s/L) in cm unit where L
is the meander length along the centerline and the origin of s-coordinate is
taken at section 1 shown in Fig.2(b). The bed of the flume is molded by cement
mortar and painted on the surface. Vertical side walls are constructed by a
plastic plate.

Discharge rate was determined so as to produce the same water depth at the
entrance and the exit sections of a unit bend, and discharge of 31/s satisfied
the required condition. The measuring section was chosen in the middle reach of
the flume (shaded area in Fig.2(a)) in order to avoid upstream and downstream
effects. Average water depth over a unit bend was 5.2cm. Measurement of water
level was performed by a point gage at 9 sections shown in Fig.2(b). Lateral
interval of the measuring point was 2cm. Velocity measurements were done by a
hot-film anemometry with a split-~type dual component sensor. The number of
measuring points for three components of the velocity was between 54 and 58 in
one section and nine sections in the longitudinal direction, which amounted to
505 points for a unit bend. To obtain the three components of the velocity the
measurement was repeated three times at one point setting a dual component sensor
in the longitudinal vertical plane, in the horizontal plane and in an oblique
plane which passes the intersection of the longitudinal and the horizontal plane
with the angle of 45 degrees to the horizontal plane. Signals of the hot-film
anemometer were recorded by a tape recorder and were discretized by an A-D
converter. Sampling frequency was 100 Hz and sampling time was 30 seconds.

Experimental Results and Discussion

Measured isovels and contours of Reynolds stress components at representa-—
tive sections are shown in Fig.3. Fig.3(a) shows the isovels of the primary
velocity where at the section 1 higher velocity core is observed in the middle
third in lower half of the depth and in the second quarter from the concave bank
in the upper half of the depth. 1In the middle part of the depth in the section 1,
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Fig.3 Contours of observed mean
velocity and Reynolds stresses
and a location map of the section




a higher velocity core extends to the convex bank. At the section 3 which
corresponds to upper one quarter in the longitudinal direction, a fairly uniform
velocity distribution is observed, though higher velocity is seen near the water
surface along the convex bank. At the apex of a unit bend a higher velocity
core covers a fairly large part of the section from the central part toward a
region close to the convex bank. At the section 7 where the distance from the
entrance is three quarters of a unit bend a higher velocity core appears in the
right half section of the convex bank side. The longitudinal transition of a
higher velocity core is similar to that observed in a meandering channel with a
rectangular section [Rozovskii (16), Tamai et al. (17)]. This is because the
experiment was performed for a relatively deep flow, for which the width to
depth ratio is about four and the height of alternating bars was not so large.
As for the vertical distribution of the local primary velocity, it is found that
the maximum appears in the middle of the water depth at many locations. That is
also one of typical features of the flow in a meandering channel with a flat fixed
bed [Yen (22), Tamai et al. (17)].

Fig.3(b) shows the isovels of the lateral velocity component of the time-
averaged velocity where the broken lines indicate the minus sign, that is, flow
toward the convex bank. The solid lines indicate flow toward the concave bank.
The density of the isovels seems to increase in the latter half of a unit bend.
In the downstream half of a unit bend, the lateral component directs toward the
concave bank in the middle part of the depth and toward the convex bank both near
the surface and near the bottom in a half section near the concave bank side. In
the region near the convex bank, the lateral velocity directs toward the concave
bank near the surface and toward the convex bank near the bottom. In the entrance
region of a unit bend the direction of lateral component tends to be reversed,
which shows the effect of a preceding bend still remains in the upstream region
of a unit bend.

The vertical component of velocity is shown in Fig.3(c) where the direction
is positive upward. The density of isovels begins to increase in the downstream
half of a unit bend. Large magnitude of the downward velocity illustrated in
sections 5 and 7 are attributed to the deviation of the setting angle of a sensor
in case of measurement. Because the distribution of the primary velocity is
approximately uniform in the large part over a unit bend, the shift of small
constant velocity caused by the oblique setting does not produce large torsion in
the velocity vector.

4.
X' =3n/8

Fig.4 Observed secondary velocity vector in the
section 4

From the data of the lateral and the vertical components, local velocity
vectors in a section is constructed as in Fig.4. Considering the fact that the
setting of a probe might deviate from the idealized position and angle, residual
from the sectional mean of the lateral and vertical components were utilized to
construct a local velocity vector. In this figure two countering cells are
found, which is a typical feature in a mid-part of the longitudinal path of a unit
bend in a meandering channel both in laboratory experiments and in field
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observation [Yen (22), Yen (23), Kinoshita (10), Tamai et al. (17), and Thorne
and Hey (21)]. The two cells in Fig.4 look as if they separate the section into
two compartments by a vertical sector at the center. On this point the shape of
circulating cells differs from reported patterns in previous papers where
combination of a residual top cell and a developing secondary cell along the
bottom was seen. The discrepancy of the cell pattern from the existing result
may be attributed to the less accuracy in setting of a probe.

Hereafter, the distribution of the correlation of turbulence velocity is
explained. When the density of water p is multiplied, these. correlation
comprise six components of the Reynolds stress which determine the whole
component of a symmetric tensor. A zone of large absolute value of —us'us'
and -uy'u,' is seen near the water surface of the concave bank side of the
section in the entrance region of a unit bend and thereafter it extends toward
the central part of the section near the apex of the bend. In the convex bank
side of the section absolute value of -ug'ug' and -uj'up' is large near the
bottom and small near the water surface. The distribution of -u,'u,' shows the
similar pattern to other diagonal components of a correlation tensor of the
turbulent velocity, though the large absolute value appears below the water
surface. This is supposed that the existence of the water surface suppressed
the vertical component of turbulence near the water surface.

The value of -ug'u,' shows a similar distribution to that of -u,'uy' and
is negative in the surface region near the concave bank. The zone of negative
—us'un' extends to the corner composed of the bottom and the concave bank wall.
The value of ~us‘uz' becomes positive near the bottom and negative in the surface
region near the concave bank. This component corresponds to the shear stress
substantially determined by the vertical gradient of the velocity vector. The
distribution of the plus and minus signs of —us'uz' roughly agrees with that of
the vertical gradient of the primary velocity ug. Although_accuracy of the
present measurement of -u,'u,’' is considered not so high, ~u,'u,' takes positive
value in the bottom region near the side walls and negative value in the surface
region near the concave bank side. Like the average velocity field, the
remaining effect of a preceding bend is also seen in sectional distribution of
the quadratic correlation of turbulent veloity components.

COMPUTED RESULTS AND COMPARISON
WITH EXPERIMENTAL RESULTS

Specified conditions for computation were the same as those experienced in
the flume experiment aforementioned. Numbers of mesh points utilized in a unit
bend are 32, 20, and 10 in %1, x?% and x3 directions, respectively.

Time-Averaged Velocity Field

Fig.5 shows isovels of the physical components of average velocity in the
transformed curvilinear coordinate. Although the transverse direction perpen-
dicular to the side wall does not coincide with coordinate line of x° = const.
from rigorous point of view, % is approximately regarded as Up -

Higher velocity core of the primary velocity (Figs.3(a) and 5(a)) which
exists at the center in the entrance region of a unit bend moves toward convex
bank near the water surface and the maximum velocity along one vertical line
appears in the mid-part of the water depth near concave bank. Computed results
reproduce this tendency. However, coincidence of the pattern of the predicted
isovels with the measured ones is relatively poor. It is supposed that the k-¢
model is not sufficient to take the influential effect of the water surface on
the Reynolds stress into account in case that width to depth ratio of the flow is
small like in a present case (z4).

Secondary Circulations

Secondary flow patterns can be reprocuded fairly well by the computation



1R 2 I
3R > 3L
5R 33&’) 5L
78] @ T

GI
Interval=10cm’s ® Interval=05 cm/s () Interval=02cm/s

(a)

(d)

Fig.5 Isovels of simulated mean velocity
and a location map of the section

both in transverse and vertical directions. Large values for the vertical
component in sections 5 and 7 are caused by deviation of the setting angle of

a sensor in case of measurement. Because the distribution of the primary velocity
is approximately uniform in the larger part through bend, the shift of constant
velocity caused by this oblique setting does not affect much on the results of
other hydraulic quantities.

Fig.6 shows predicted velocity-vector distribution in the section 4. Two
cells are seen in this figure as described previously. The top cell is a residual
one generated in the preceding bend and the bottom cell is a developing secondary
circulation in the present bend. This result may be the first simulation that
reproduces the double-cell pattern of the secondary flow. However, there is still
incompleteness in the simulation for the detailed features.
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Fig.6 Predicted secondary velocity vector
in the section 4

Bed Shear Distribution and the Fddy Viscosity

As an example of turbulence quantities bed shear distribution obtained in
the simulation is shown in Fig.7. 1In Fig.7 broken lines indicate traces of the
location where the average shear over a unit bend appears. High shear stress
region, where shear stress exceeds the bend average, appears near a convex bank
at the entrance of a unit bend. It remains near a convex bank side in the
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upstream half of a unit bend. Then the high
shear stress region begins to migrate toward a
concave bank after the flow passes the apex of
a unit bend. The variation of the bed shear
obtained in the simulation agrees qualitatively
with existing data published by Yen (22) for a
trapezoidal section and Yen (23) and Hooke (5)
for an equilibrium alluvial bed. The transverse
migration of the high shear zone is more
distinct in case of an equilibrium alluvial bed
where a deep scour hole along a concave bank
generates the convergence of large amount of
water mass toward a concave bank.

Back to Fig.3 (a), it is noted that the
pattern of isovels of the primary velocity is
much more complex than that estimated by a
mathematical model. Velocity profiles in the
vertical and the transverse directions do not
change monotonously and are strongly deformed
from those observed in a straight channel. As
for the vertical velocity profile, a 'so-called'
barrel type in which the maximum velocity appears
far below the water surface is observed at
nearly all locations in the downstream half of
a unit bend. The stronger intrusion of higher
isovels into a concave bank in the middle of the
water depth is obvious in the measured results.
Furthermore, the vertical gradient of isovels
seems to be kept considerably large near the
water surface in the measurement. Therefore,
it is suggested that the boundary condition of
the shear stress at the water surface may have
to be revised as well as the turbulence model
in order to predict the flow behavior in a relatively deep flow in a meandering
channel [Naot and Rodi (14)].

Fig.7 Bed shear distribution

FLOW

Fig.8 Observed eddies on the water surface

In Fig.8 the shaded areas show the rigions where eddies were observed on
the water surface. In these regions large values of correlations of turbulence
velocity in the longitudinal and the transverse directions were also observed
near the water surface. It is revealed that higher degree of approximation than
that used in the k-¢ model for the turbulence quantity is needed in these areas.

Fig.9 shows the distribution of the eddy viscosity in several sections.

The maximum value in a section appears at the water surface and the transverse
location of this sectional maximum seems to follow the same longitucinal trail
as the migration of the higher bed shear zone. The maximum value of v in one
unit bend is observed at the water surface in a little downstream section from
the apex of one unit bend. The distribution of vy in the bottom half of the

water depth remains unchanged through a unit bend in a meéandering channel. In
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a theory developed by Tamai and Ikeya (19) the 1.8

following function is adopted for Ve \5:::://,xﬁ’
rile=—=l)

(kuxh/4)n(1l-n)  for 0Sn0.5
Ve = (13)

i 1.8
Kuxh/4 ~ for 0.5<ngl W~/
3R 3L
where nN= z/h and h is the local water depth. The -—-z~—~___*~_~______
X . . 1 1.8

trend of vertical variation of Ve follows (13) up k N 8=
ton = 0.5, but Fig. 9 reveals that the value of 5R Qég;g;;%ggiggéiy 5
Vi continues to increase toward the water surface. L
Therefore, the simulated result will provide the
means of improvement for a theoretical approach. \<::/

An experimental determination of the eddy viscosity 7R ::>§:§==5U 7L
was not achieved because of the difficulty to

perform numerical differentiation for velocity
data. More precise and detailed measurements are

needed to obtain the experimental data of V. Interva OZsz/S

CONCLUDING REMARKS

Fig.9 Distribution of the

Conclusions obtained in this study are eddy viscosity

summarized as below.

1) A mathematical model is developed for the flow with alternating point bars
in a meandering channel. The double-cell pattern of the secondary flow is
reproduced by the present mathematical simulation.

2) Simulation of isovels of the primary velocity indicates that the combination
of the k-€ model with conventional treatment of the shear stress at the water
surface is not sufficient for the flow in a meandering channel in case that
the width to depth ratio is small.

3) Distribution of the bed shear stress is reproduced qualitatively by the k-¢
model for the flow over alternating bars in a meandering channel. In this
context a new technique to measure the bed shear exerting on complex three-
dimensional bar surface is needed to test the theory procisely.

4) Although global features of the flow over alternating bars in a meandering
channel are reproduced by the k-€ model, future revision is still needed to
trace the detailed behavior of a three-dimensional flow under complex
boundaries.
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APPENDIX~-NOTATION

The following symbols are used in this paper:

Ay = constant in the logarithmic velocity distribution;
B = width of a channel;

Cys C1s C2 = constants in the k-¢ model;

G = gravitational acceleration;

813 = metric tensor;

g = determinant of the metric tensor;

hy, = elevation of the bed surface from the datum line;

h = elevation of the water surface from the datum line;
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comma
overbar
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kinetic energy of the fluctuating motion of flow;

roughness height;

length of a meander measured along the centerline;
coordinate axis perpendicular to the centerline of a meander-
ing channel;

pressure;

coordinate axis tangent to the centerline of a meandering
channel;

tangential component of velocity to the wall;

local shear velocity;

velocity components in s, n and z directions, respectively;
contravariant and covariant component of a velocity vector;
contravariant component of fluctuating velocity;

coordinate axes in a general curvilinear coordinate system;

1'is taken along the centerline, x? perpendicular to the

X
centerline, and x® in the vertical direction;

local distance from the wall;

Cartesian coordinate system (see Fig.l);

vertical coordinate axis;

differentiation;

time averaging process;

covariant differentiation;

angle between the plane on which the channel meanders and the
horizontal plane;

Kronecker's deltas;

rate of energy dissipation;

angle between a tangent of the centerline and the direction
of the valley axis;

Karman constant;

scalar eddy viscosity;

density of waters;

constants in the k-& model; and

tangential component of stress exerting on the wall.
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