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SYNOPSIS

The flow in a meandering channel the centerline of which follows a sine-
generated curve is analyzed with a perturbation technique. The main emphasis
is laid on the transverse shift of the location of the maximum velocity in a
section along a unit bend. .

The effect of the local radius of curvature is taken into consideration in
the present formulation, which results in an improvement of existing theories
especially when the width to depth ratio exceeds 102, Solutions are obtained
up to the second order.

It is revealed that the location of the maximum velocity in a section is
strongly dependent on the transverse shape of the bed topography. The typical
features of the transverse distribution of the depth-averaged primary flow both
in a flat bed and in an equilibrium bed obtained for a movable bed are reproduced
by the present theory.

INTRODUCTION

Foreword

A planimetric shape of the centerline of rivers commonly follows consecu-
tively alternating arc-like bends. The flow in bends has been an important
subject for both high- and low-stage of water, concerning river embanking and
intake of water. The flow in meandering channels is three-dimensional and the
characteristics of secondary flows have been reported by many papers. The main
emphasis of these previous works, however, is laid on features of a single bend
and a fully developed region whére the flow does not vary in the longitudinal
direction.

In this study the longitudinal variation of the depth-averaged flow is
analyzed. The process of convergence and divergence of the flow toward and from
the outer bank is considered the most important feature. Conhsequently, the
distribution of the secondary flow is not discussed in this paper.

Terminology

Definitions of the terms used in this paper are given as follows to avoid
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confusion,

(1) primary flow: velocity component parallel to the centerline of the channel.

(ii) transverse flow: horizontal velocity component perpendicular to the center-
line of the channel. The vertical component does not explicitly appear in
this analysis because we are concerned with the depth-averaged velocity
field.

(iii) fully developed region: the region where time-averaged hydraulic quanti-
ties do not vary in the longitudinal direction.

(iv) = depth-averaged velocity: primary and transverse flow components averaged
over a local water depth.

(v) equilibrium region: the region where hydraulic quantities show the same
value repeatedly at the similar phase of bends. The flow pattern reaches
in equilibrium in an idealized meandering channel compcsed of the similar
unit bend which is connected alternately in opposite direction.

Brief Review Of Previous Works

Most of theoretical studies in previous works were devoted to the analysis
on the secondary flow in a fully developed region. The fully developed regionm,
however, is a simplification to remove a mathematical difficulty and will be
found out in part of a strong bend which has large change in its direction,
say, larger than 180 degrees (ex. Kikkawa, Ikeda, Ohkawa and Kawamura(9)). In
meandering channels water depth, velocity and flow direction gradually change
in the longitudinal direction.

There are several examples which dealt with the transitional characteristics
of the flow in a bend. Leschziner and Rodi(12) solved a three-dimensional system
of equations for turbulent flow by k-e model. De Vriend(22) obtained a first
order solution of a three-dimensional problem by using a perturbation parameter
composed of the ratio of the water depth to the radius of curvature of the
centerline. Kalkwijk and de Vriend(8) proposed a depth-averaged form of the
Reynolds equations, and the flow behavior was analyzed by a method of character-
istics. :

Analytical apptoach to the flow in a bend marked a remarkable advance when
Engelund(2) solved the equilibrium features of the flow in a meandering channel
the centerline of which was explained by a sine-generated curve. Ikeda et al.

(6) further took the effect of superelevation which was neglected in Engelund's
analysis into consideration and discussed the development of free meandering of
rivers. Hasegawa(3) proposed a shallow water theory over alternating bars and

applied double Fourier 'series to obtain a solution.

Previous analysis by Engelund, Ikeda et al. and Hasegawa et al. implicitly
assumed that a radius of curvature at an arbitrary point in a bend is the same
as that at the centerline. This assumption involves the error of the order of
e which is equal to the channel width divided by the representative radius of
curvature. Therefore, this assumption is considered not suitable for a pertur-
bation analysis using € as a perturbation parameter. Furthermore, previous
solutions are derived under an equilibrium condition. This means that the effect
of neither upstream nor downstream boundary conditions was not taken into
consideration in existing theories.

Recently studies on the flow in meandering channels have been actively
accumulated in various fronts. Hasegawa(4) solved a linearized equation of
shallow water flow over alternating bars with the weighted residual method.

The obtained result may explain the experimental results on the phase shift of
bars against a geometric shape of the channel and on the standing condition for
the bar migration. Mori and Kishi(13, 14) studied the effect of interaction
between the primary and the transverse flows for a fully developed flow in bends.
For a rectangular and an idealized alluvial transverse bed profile, they were
able to reproduce the observed results of the main flow distribution in Ishikari
River with a two-dimensional scheme of the k—e model. Demuren(l) studied flow
and mass transport characteristics in a rectangular meandering channel with the
k- model. Tanaka and Ikeda(20) performed both turbulence measurement and
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numerical analysis with the k-e model for a meandering air duct. Tamai and
Ikeya(l9) developed an analytical three-dimensional approach with the weighted
residual method, keeping the major nonlinear term in the momentum equation.

Objectives of the Present Study

The major emphasis is laid on the development of the theory which enables
to explain the alternate gradual change of the transverse distribution of the
primary velocity in meandering channels. For this purpose it is considered the
depth-averaged flow analysis gives sufficiently realistic solutions for river
flows, because the width to depth ratio of rivers is pretty large. Furthermore,
the effect of the sectional profile of the bed topography on the transverse
distribution of the primary flow is explained. A rectangular section and an
equlibrium alluvial profile are treated.

An analytical expression is sought because of its clarity to the depth of
essence. Being motivated by incompleteness of existing theories, a rigorous
formulation of governing equations in a general curvilinear coordinate system
for meandering channels is developed at first. Then the linear theory of the
perturbation method is extended to the second order in order to bring the
perturbation technique to a reasonable level of completion.

This paper is an English version of the Japanese paper written by authors(7)
with addition of the review on later studies.

GOVERNING EQUATIONS FOR THE FLOW IN
MEANDERING CHANNELS

Coordinate System

According to Langbein and Leopold(10), the centerline of meandering channels
in field is expressed by the 'so-called' sine-generated curve.

2mse
L

6 = Bgsin 1)
where 0 = angle between the tangent of the centerline of the channel and the
direction of the meandering belt, 0; = the maximum of &, L = the meandering
length along the centerline, and sc¢ = the distance along the centerline of the
channel. The origin of sc~coordinate is located at © = 0 (see Fig.l).

Then ng coordinate is taken perpen-
dicular to s in the same plane on which
sc lies (plane A). The origin of ng - \'E
curve is on the sg —curve. A curve which
connects equal distance points from the
sc —curve on the ng -curve determines
5 —curve. X -coordinate axis is set at
the center of the meandering belt and
Y —-axis is taken perpendicular to X -axis
in the plane A. The origin of (X,Y)
coordinate system is determined at the
intersection between x -axis and s¢ -
curve where 6 = 83 and s, = -L/4 (see Fig.l).

The relationship between (s, ng) coordinates and (X, Y) coordinates is
given as follows:

Fig.l Definition of coordinate system

Sc
X=/

L/4 cosfds, + ngsind

(2)
Sc
Y = IL/& (-sin®)dsg + ngcosé
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Let ggzng be
X X, Y Y
%z ona * 98z 9na (3)

gsang =

The partial differentiation of Eq.3 shows that 8sana is equal to zero, which
proves that (s, ny) is coordinates constitute an orthogonal curvilinear
coordinate system. Moreover, the radius of curvature at a position (sz, ng) is
found as in the following equation:

Ty = re + ng (4)

Geometric Characteristics of the Channel

Several assumptions on the geometry of the meandering channel which are
essential to the simplification of governing equations are specifically stated
as follows:

i) Depth to width ratio is sufficiently less than unity. The ratio of the
depth to the radius of curvature of the channel is sufficiently less than unity,
too. Accordingly it is considered that the shear which exerts on the side walls
is negligible compared with that on the bottom.

ii) The bed slope of the channel is constant along the centerline of the
channel.,

iii) The width of the channel is constant.

iv) The centerline of the channel can be explained successfully in terms of
a sine-generated curve.

Governing Equations in Texms. of Depth-Averaged Velocity

Momentum equations for turbulent
flows are often called the Reynolds Bo 22
equations. The three dimensional co~- |
ordinate system utilized in this paper '
consists of sa-, ng~, zZg-curves. 2za is ,i;’”‘;:;
a coordinate axis taken positive up- Ho I ha ht
wards. Based on the assumption 1) i
aforementioned, it is confirmed that = depe--T e fg
hydrostatic pressure distribution The center of curvature na:-?if b
prevails in a shallow and wide flow in re iﬁ n _EE

. & as
meandering channels. Furthermore, i 2
smaller terms in the Reynolds stress ra
are neglected due to shallowness and
wideness of the flow.

Integration of basic equations o
over the water depth produces a follow- Fig.2 Section of the channel and symbols
ing set of equations. Boundary
conditions utilized in the process are as follows: Velocity vanishes on the
bottom and the shear vanishes at the water surface.

Equation of continuity is given by

P Zo

EFE ong d9rg

where ug and up are velocity components in sz— and ng- directions, respectively,
ht is the local water depth and an overbar means the depth-averaged value of
attached quantities.
Momentum equation in sg—~ direction is given by
dhtug? | Shtugun 4 phtusun gh;aha + ghggéh + 588 = g (6)
EEN Ing Ty 984 CEPY p

where hg = zy -~ 2y, 23 = 2zg —coordinate of the water surface, zh = za -coordinate
of the transverse mean of the channel bed, p = the density of water, and

Tsg = the bed shear stress in sz —direction.
Momentum equation in ng —-direction is given b
q a
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Shya | Shein® | beGi? - 5% , . dha , tno
+ + =
BSa Sna g + ghténa + o] 0 (7)
where Tny = the bed shear stress in ng -direction.
Intergration of Eq.5 from ng = -Bo/2 to ng = By/2, where By means the width

of the channel, gives

Bo/2  Wadna = Q = VH,B, )

ZBo/2

where the condition that Up on both side walls is zero is adopted. In Eq.8 Q is

the total discharge, V the representative velocity, Hyo the representative depth.

'Representative' means that the average over the whole region of a single bend.
Boundary conditions are listed as follows:

i) up =0 at ng = #By/2 9
ii1) Ts = Usi(ng) at se = sci (upstream end) - (10)
wheré Ugi(ng) denotes a given function of ng.
Bo/2
iii) By /2 hadna = BoHy at s. = sce (downstream end) (11)

Eq.1l means that the sectional average depth is equal to the representative depth
at the downstream end.

Correlations of Velocity and Bed Shear Stresses

Assumptions utilized in the following analysis are listed as below.

i) UgUp™ug Uy (12)
ii) Tg2=(Tg)? (13)
iii) wpT=(T,)? (14)

Approximate expressions in Eqs.12 and 13 mean that the primary velocity component
is assumed nearly uniform in the vertical direction. Equation 14 shows relative-
ly large error in the fully developed region where Ug is zero. The order of the
magnitude of the term which involves Up2, however, is comparatively small in basic
equations. Consequently, it is supposed that the error due to the approximation
in Eq.l4 does not produce any significant error in solutiomns.

Let us consider that the longitudinal component of the bed shear is expressed
(6) as,

Tgp o 1 £ (;;)2 (15)
o} 2 ) .

where £ = the friction coefficient. It is assumed that the direction of the
velocity vector coincides with that of the shear on the bottom. Thus, the
following relationship results:

Ing - (Un
Tso (us) bottom (16)

According to Rozovskii(16) and Engelund(2), the next equation has been derived
empirically.

U
()

h
s’ bottom = (7Nll);§ an

Combining Eq.16 with Egqs.15 and 17, we can derive the expression for Tng @s
follows:

Tho - (3,5~5.5) - (4g) 2+ 2F _ (18)
p Ta
Nondimensional Form of the Goverming Equations

Nondimentional symbols introduced are as follows:

u=T1ug/V, v=Ts/V, s = sc/R, n = na/(Bo/2), h = hy/Ho, N = hp/Ho,
uj = Usi/V, s¢ = sci/R, sd = sce/R, € = (Bo/2)R, Fr = V/ VgHy, R = L/210,,

and k = 21R/L, (19
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where hy = zy, — 2, shows the deviation between a local bed level, zp and the
sectional average zp. Differentiation with respect to sz is transformed as in the
following equation.

9 _Xc 3
9sa ¥g 0S¢ (20)

The nondimensional form of Eqs.5 and 8 on the volume discharge is derived as
follows:

{(h + mu} + == {—a(n + n)v} : (21)
%‘f_l(h +n)udn = 1 : (22)

Utilizing Eqs.5, 12, 13, 14, 15 and 18, Eqs.6 and 7 are rewritten and then
transformed into the nondimensional forms on use of Egs.19 and 20.

Y,y ral du R 1 3h giR cry u? R
Bs e € on + re uv Fr2 Bs~+ V2 2 rc hin (23)

EEA v v E&.‘Z - 1 3h ng, .2
eu == + Ve ta u o n + (3.5.5. 5)f (24)

where ¢ = fR/Ho, ng = Bg/2, and i = bed slope along the centerline of the channel
(in case of a movable bed i denotes the slope of the transverse average level of
the bed).

Let us estimate the order of magnitude of the second term in the right hand
side of Eq.24. As for the value of €, Yen(23) reported € = 0.13 for a representa-
tive value of navigable part of the Mississippi and the Missouri rivers. Rozovskii
(16) adopted £ = 0.56 in his experiment. In the author's experiment(18) € = 0.30
was adopted referring the field data reported by Leopold and Wolman(ll) and
Schumm(17) . 1In Hooke's experiment(5) € = 0.22.  In Yodo river ¢ = 0.27 is
observed at a bend near Hirakata. On the other hand the values of f were reported
as follows. 1In Yen's experiment(23) 0.0043 < £ < 0.0054. In Rozovskli's experi-
ment £ = 0.0054. 1In authors' experiment f = 0.001 and in Hooke's experiment f
ranges from 0.012 to 0.058. The value of £ = 0.014 is observed in the high water
stage in Yodo river. Therefore, it is concluded that the magnitude of f is less
than the order of €?. The order of ng/r, is estimated as below.

P'_Q_ = —-—-—-——-——-—-no =
ta Tot+ng -0 © (25)

Consequently, we obtain
(3.5~5.5) f22 = 0 (%) : (26)
Ta
Since we are going to obtain up to the second order solution in €, we can
safely neglect the bed shear stress in the transverse momentum equation. This

order estimation was also supported by the experimental data(lé4).
Boundary conditions are shown in nondimensional form as follows:

i) v=0 at n = *1 (27)
ii) wu =1ui(n) at s = sy (upstream end) (28)
iii) %'ilhdn =1 at s = sq (downstream end) . (29)

SOLUTIONS FOR A RECTANGULAR CHANNEL

For the case of a rectangular channel n = 0 is satisfied in basic equations.
Substitution of this condition into Egs.21, 22, 23, and 24 yields the following
set of equations.

3 (uh) + dn(-r-&"vh) =0 ' (30)

f uhdn = 1 - (3D
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du , a1 Bu, R 1 9h giR cxau?
“5; + Te _é— Véz + 'r—c— uy. = Fr BS V) 2 Te h (32>
Te _ 9V _ay_ ng 2 _ _ _1 dh
g € 9s + on g ‘ Fr 1 (33)

Perturbed Expression

To solve a set of partial differential equations a perturbation method is
introduced in terms of €. Hydraulic quantities are explained as follows:

h = hy +¢eh; + c%hy + ceovenes :
Ug + cuy + ePug £ eececeee (34)
Vo + EVy + £lvy 4 ceeeeees - C

uy = fujo(n) + fug,(n) + Ezfuiz(n) 4 oeeeceees

< e
o

where uj denotés a transverse distribution of the dimensionless form of the
primary flow and the numeral in subscripts shows the order of solutions.

Since € is given as € = no/R, in the fourth equation of Eq.34 the highest
order of n in the function f,i coincides with the order of €. Accordingly, fuio,
f,4, @nd fyi» are Oth, linear, and quadratic functions of n, respectively. 1In
order to make the upstream boundary condition be independent of the order of
solutions, the following conditions are imposed on the distribution function.

1 1 1
5 4 fute(n)dn = 1, {1 fuj, (n)dn = 0

1 (35)
flfuiz(n)dn =0
Then, Eq.34 is rewritten as in Eq.36 satisfying Eq.35.
uj(n) = uig + enui; + e?(n? - %?uiz (36)

where ujg, uiy and ujp are constants determined by the upstream boundary
condition.

The flow condition is assumed in equilibrium and in quasi-normal flow from
macroscopic point of view. Therefore, it is considered that the condition

hy = 1 ~ (37)

is stasfied along the centerline of the channel. Furthermore, the zeroth order
solution of the longitudinal velocity, ue is a function of s only.

Because we chose € = ng/R as a purturbation parameter, a term of the order
of e~ exists in the momentum equation in s-direction. This is-the second term
in the left hand side of Eq.32, that is, v(due/9n. The fundamental solution
(zeroth order solution) of u, ug , however, is considered a function of s only.
Accordingly, we are able to conclude that this term comes to be zero.

3110

Vit = 0 ' (38)

The solutions in each order of € are explained in due order and the
characteristics of the fundamental solution mentioned above are utilized in the
process of solving the equation.

Zeroth Order Solution

Basic equations for the zeroth order solutions are put in order as follows:
1 :
% I, ughedn = 1 (sectional discharge) : (39)

g%’(hovo) =0 (eq. of continuity) (40)
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Ju, . ) auo BUQ 8u1
?;— + vgncosks 7§;~+ T +‘V07§T~+ ugvocosks
- __l dhg  giR _coup?®
= iﬂ?? s + v 7, (sa-component of mementum) (41)
8\70 = 1 3h _
Vos, = i;;-7;f~ (ng—-component of momentum) (42)

Boundary conditions are shown as follows:

vo = 0 at n = *1 (43)
u T ujg at s = sgyg (44)
A% ilhgdn =1 at s = sg (45)

Reffering to Eqs.40 and 42, it is derived that both vy and h, are functions
of s only. Consequently, the following solutions results from Egs.37 and 43.
Vo = 0 (46)
hy = 1 (47)

Noting that uy, is a function of s only, Eqs.39 and 47 lead to the solution for
Ug.
ug = 1 (48)

Substitution of Eqs.46, 47, and 48 into Eq.41 yields the following relation-
ship for the condition of the normal flow.

iR _ ¢
%z_ =5 (49)
First Order Solution

Basic equations for the first order solutions are shown as follows:

1
f

[, (ughy + ulho)dn =0 (sectional discharge) (50)
é% (ughg) + — (hovoncosks + hevy; + hyvg) = 0
(eq. of continuity) (51)
ug% + u;i) + voncosks%y—v+ vlncosks%;;-+ i;:
_ 1 3hy ¢ ug

+ cosks{(ugvy + uyvy) = - .7 3s "2 ﬁ;—-{ncosks + 2(

-} (sa-component of momentum) (52)
uy%%f + vgoncosks %¥£-+ %;: + v %;— - ugzcosks
= - ﬁlr-(ncosks %&0 + th) (nag~component of momentum) (53)

r
Boundary conditions are summarized as follows:

vy =0 at n = 1 (54)
ur = nui; at s = sg (55)
*% Jihidn = 0 at s = sg (56)

Substituting Eqs.46, 47 and 48 into Eq.51, we obtain the following solution
on use of Eq.54.

vy = 0 (57)
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Substitution of Eqs.46, 47, 48 and 57 into Eq.53 makes the equation as below.

%g% = Fr2cosks k (58)
Integration of this equation leads to
h; = nFr?cosks + Fhi(s) k (59)

where Fhi(s) means a function of s only.
Equation 50 is rewritten as in the next equation on use of Egs.47 and 48.

1
Il(hl + uy)dn = 0 (60)

Substitution of Eqs.46, 47, 48 and 57 into Eq.52 leads to Eq.61 as below.

duy ___1 38h; ¢ c
7;;-+ cur = - F7 S 5 ncosks + 2h1 (61)

Integrating Eq.61 over the range from n = -1 to n = 1, and using Eqs.59 and 60,
we obtain a differential equation to determine Fpi(s).

(F,2 - 1)§Eh%§§l-+-% CFr2Fp,(s) = 0 (62)
Assuming that Fr?# 1 and denoting

Co= 1.5 cFr?/(F.2-1), (63)
we obtain the expression for Fhl(s) as follows.

Fhl(s) = Cle-.CZS (64)

where a constant C; is determined by a lower boundary condition. Substitution of
Eqs.59 and 64 into Eq.56 reveals that C; = 0. Therefore, nondimensional water
depth in the first order is finally obtained as follows.

h; = nFy?cosks (65)

The solution for the longitudinal velocity is obtained when we solve Eq.61
with Eq.65 and a boundary condition shown in Eq.55.

u; = n(Asinks + Bcosks + Cse_cs) (66)
where
A= ke (1 + Fp?)/2(c? + k?)
B = {0.5c?(Fr2-1)-k?}/(c? + k?) (67)
Cs= (uj,; - Asinks, - Bcosksg)e®S®
c = fR/Ho
The solutions up to the first order are summarized as follows:
h = ho + €h; = 1 + enFrcosks —es
u=ug + eu; =1+ en (Asinks + Bcosks + Cze ) (68)
v = vy + vy = 0
Second Order Solution
Basic equations in the second order are shown as follows:
N .
fl(huuz + hiu; + houg)dn = 0 (sectional discharge) (69)

é%(houl + hiug) = - é%{ncosks(hovl + hive) + hgve + hyvy
+ hpvol (eq. of continuity) (70)
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dup Buo dus dup BUQ

Ug—r—= 3 4+ uy a + u aS'*‘V(r*‘“““an"l'V an'i‘Vga +. v 311
ouy _B_LLQ_ - 1 2hs
+ ncosks (vo 8 + v Vig- + vy Bn) = - 5.7 52

gu u h Uiy 2 u2 h1 l’lgg‘
SR 2 Eh + @D 2D + ¢H - @D

+ ncosks {Z(Eiﬁ ( )}} (sgz~component of momentum) (71)

ovy vy v ovy vy 1 Bvo

Ug s + u17;;~+ Voj;;‘+ Vl?;;'+ 27;-+ ncosks(v07;~ )
- 2u ks = - R (hincosks + hj)
1UgCOS8KS Frl n 1 2

(ng-component of momentum) (72)

Boundary conditions are given as follows:

vy = 0 1 at n = *1 (73)
up; = (n? - 5)u12 at s = sy (74)
%"{1 hodn = 0 at s = sg (75)

Substituting the zeroth and first order solutions (Eqs.46, 47, 48, 57,

65

and 66) into Eq.70, we can determine the expression for v which satisfies the

boundary condition of Eq.73 as follows:

cs

= (1 - n®)(Dcosks + Esinks + Cue ) (76)
where
D = kA/2
E = -k(B + F?)/2 (77
Cy= -C3sc/2

Substituting Eqs.46, 47, 48, 57, 65 and 66 into Eq.72 and solving a
differential equation, we obtain the following equation:

hy = hy1(s, n) + hy,(s) (78)
where '
hyi1(s, n) =<—E§i(n2 - %){Asinst + By (cos2ks + 1)
+ 2Cze~CScosks} (79)

In addition B, = B - 0.5 and hy,(s) denotes a function of s only which will be

determined in the next step.

Substitution of Egs.47 and 48 into Eq.69 leads to the following equation:

1 1
{, uzdn = - [ (uihy + hp)dn (80)

Substitution of Eqs.46, 47, 48, and 57 into Eq.71 makes the next equation.

dug - _ ..ouy _ Qduy 1 on
s + cuy uj 38 Vo o vycosks Ez' -—————8 + cui;h; - ..Z.hl
- %‘u12 + %-hz - cujincosks +r§ hincosks (81)
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Integrating the both hand sides of Eq.81 from n = -1 to n = 1 and rewriting
on use of Egs.65, 66, 76, 78, 79 and 80, we can derive a differential equation
for hyy as follows;

P + Cohyy = ETFQE_T_IT Ghao () (82)

where Fy? # 1 is assumed and
Ghzz(s) = Tlsinzks + T,sinks cosks + Tscos’ks + (Tysinks
+ Tscosks)e~CS + Tee—ch (83)
The details for coefficients T; through T¢ are given in Appendix 1.

Solving Eq.82 with the aid of Eq.75, we can determine the final form of
hoo(s) as follows:

hap(s) = 0.5F 2(Aszsin2ks + Bicos2ks + D3e—cssinks + Ege—CSCOSkS

N (84)
where coefficients A3, Bz, D3, E3, Cs, Ce¢ and C7; are shown in Appendix 2.
Then let us determine the function for u,. Substituting Eqs.65, 66, 76

and 78 into the right hand side of Eq.81. we obtain Eq.85.

I

%if + cu, = Gy,(s, n) (85)

where ;
Gup (s, n) = P;(n)sin®ks + P,(n)sinkscosks + P3(n)cos?ks + P“(n)e_cssinks

4+ Ps(n)e “Scosks + Pe(n)e_zcs + Py(n) (86)

and coefficients P;(n) through P7(n) are given in Appendix 3.
Solving Eq.85 under the boundary condition of Eq.74, we obtain the following
expression for u,:

Uy = uz1(s, n) + Cg(n)e °° (87)
where
Py + P3 + 2P Py - Pj .
uz1 (s, n) =1 23 7 4 2(c3 " 4kz)(cco:Sst + 2ksin2ks)
Py . ~ _ Py -cs "
+ ETEI—;fZETT (csin2ks 2kcos2ks) e cosks (g8g)
Ps ~ Pg ~2cs ., Pg -C28
e Peinks - e Tadnks + Tipe
py = Sz 4 SFrly ¢ (39)
2 4 7
1
Cg(n) = {uiz(n2 - 5) = uzi(s, n)}ecs0 (90)

Here, the solutions up to the second order are obtained. The solutiong are
summarized as follows:

h =1+ ¢ch; + €%(ho; + hao)
u=1++ gu; + €“uy (91)
v = €2V2

The details of solution of each order are described in Eqs.65, 66, 76, 79, 84
and 87.
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SOLUTIONS FOR THE FLOW OVER AN EQUILIBRIUM MOVABLE BED

An equilibrium bed means that sediment motion into and out of a particular
section balances with each other and that bed topography remains constant from
temporal point of view. Let us assume that the bed profile is explained as in
the following equation (1 and 4).

o= et (92)
c

where ¢=constant and Engelund(2) utilized the following expression.
¢ = 7 tand (93)

where ¢ = dynamic friction angle.

Odgaard(1l5) treated the functional form of ¢. According to his results
Eq.93 is suitable for a continuous meandering channel discussed in this paper
but is not applicable to a fully developed zone. In the fully developed zone
¢ is a function of the particle Froude number.

The Taylor expansion of Eq.92 gives us a following expression.

n = endcosks + €2n2¢(2_l) cos?ks 4+ v . (94)
Accordingly, we can determine the expression for perturbed parts as follows:

no = 0 (95)

ni = ndcosks (96)

Equation 95 shows that the zeroth order solutions for an equilibrium bed are the
same as those for the case of a rectangular channel. Therefore, the following
equation holds.

ho=l

U.o=l

Vo=0 (97)

giR/V? = ¢/2

Rewriting the equations for the first order solutions on use of Egs.95, 96
and 97, we obtain regously the same equations for the sectional discharge,
equation of continuity, and ng-component of the momentum equation as those in the
case of a rectangular channel., However, the term cnl/Z is added to the right
hand side of Eq.52 for sg-component of the momentum equation. Applying the
same procedure as that in case of a rectangular section, we obtain

hy = nFrzcosks s
u1 = n(A"sinks + B'cosks + Cz'e ) (98)
vi = 0

where
A' = ke(l + Fr? + 0)/2(c? + k%)
B' = {c2(Fy? + ¢ - 1)/2 = K2}/ (c? + k?) (99)
Ca'= (ui, - A'sinksg - B'cosksg)e®S0

The equation of continuity in the second order of € is transformed to the
next form utilizing Eqs.95, 97 and 98.

3 3
7%% = - 55 (u +hy + ) (100)

Substituting Eqs.96 and 98 into the right hand side of Eq.100, we obtain the
solution for v, which satisfies the boundary conditions.
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vy = (1 - n?)(D'cosks + E'sinks + Cg'e_cs) ! (101).
where

D" = kA'"/2

E' = -k(B' + Fp? + ¢)/2 (102)

Cq'= "C3'C/2

Substutiting Eqs.97 and 98 into the n-component of the momentum equation,
we obtain the following solution.

hyy = %—3 (n? - ) {A'sin2ks + (B' - 0.5)(cos2ks + 1)
+ 2Cse “cosks} (103)
where hy; explains the deviation from the sectional average water level.
COMPARISON WITH PREVIOUS SOLUTIONS
Previous solutions by Eqngelund(2) and Ikeda et al.(s) are derived for
distributions of velocity and water surface level on the assumption that Eq.92

for an equilibrium bed is applicable to a meandering channel. Further assumption
applied is the approximation stated below.

R B
983 9sc (rc + na

ollo

re) (104)

The approximation shown in Eq.104 produces an error of the order of €. In this
section the difference between the presently developed solutions and previous
ones is explicitly explained in the first order solution because there have been
no second order solutions except those developed in this paper.

The first order solution for the nondimensional longitudinal velocity be
Ikeda et al.(6) is shown in the following equation.

u; = n(A;sinks + Bj;cosks) (105)

where coefficients are given by the following equation.

k Fr?
s A gD

(106)

a1 o 2
b=z e £ ) -k

The first order solution derived in this paper is described in Eq.98. In
an equilibrium range the term which expresses the effect of the boundary condition
disappears. Therefore, omitting the term Cji'e , £q.98 1is rewritten as:

u; = n(A'sinks + B'cosks) (107)
A= Ak de g (- D)
{ 1 (108)

(- < 2 — - 2
B' = =y 5 (B + ¢ - 1) - K}

Let us consider the case of a rectangular channel (¢ = 0). The location
s = 0 corresponds to the apex of the meander. At this location u; becomes
u; = nB', which means that if B' is positive, the velocity along the outer bank
is faster and if B' is negative, the opposite situation occurs. Eq.108 shows
that B' is always negative for subcritical flows (Fr<l). Therefore, the



24

velocity along the inner bank is the fastest at the apex of the bend, which
agrees with experimental results. In previous theories this does not remain true
for some combinations of ¢ and Fy.

As the value of ¢ increases, the value of B' turns positive and increases.
This means the faster velocity appears along the outer bank. This type of
transverse distribution of the primary velocity coincides with those observed
in rivers. It is concluded that the faster velocity along the outer bank is
caused by the bed profile, that is, larger water depth along the outer bank.

The values of Ay, A', Bi, and B' are plotted against c = fR/Ho for Fy = 0.5
and k = 4/7 (central angle for the change of the direction of a meandering reach
is 90 degrees) in Fig.3. 1In Fig.3 ¢ is set to zero. The variation of A' and B'

i ¥ T 0.5 I J T —
. —— B’ (Authors)
. —— A’ (Authors) B
0-7 _ Topsemersl
-== Ai(lkeda) Fr=0.5 ol Bi (lkeda) _ :
05~
-0.5( .
03
01 ~1.0f~ .
1 - i 5 | -
107 10 10 __fR
e
(a) (®»

IR
C"Hn

(a) (b)

Fig.4 Coefficients for the depth-averaged primary flow for various
bed shapes in the transverse direction i

is shown in Fig.4 for various values of ¢, fixing Fy = 0.5 and k = 4/7m. 9 = 0
means a rectangular channel and ¢ = 4 corresponds to ¢ = about 30 degrees which
was shown in Hooke's experiment (5).

In experimental flumes the value of ¢ is of the order of 10-1 or 10_2.
Therefore, the error caused by the assumption shown in Eq.104 is not large. How-
ever, the order of ¢ in rivers amounting to 10° or 10 > the error caused by Eq.
104 is cgqsiderable. The expression of ¢ is rewritten as c = fR/Hg = (£/2)
(Bo/Hg)E 7. According to field observations during floods, the ratio of surface
width to the largest water depth in the section shows the value between 80 and 150
in Tokachi, Omono, Abukuma, Tone, Kuzuryu, Yodo, Hi~i, Yoshino, Niyodo, and
Watari Rivers in Japan(21). Furthermore, 70% of data of € falls into the range
from 0.1 to 0.3 in meandering channels (18)., These results obtained in field
observations infer the order of c stated above.
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COMPARISON WITH EXPERIMENTAL RESULTS

Centerline of Experimental Flumes and a Sine-Generated Curve

Most experiments were performed in T Centerline 1 fme
rectangular channels and their planimetric % X X Sine generated curve 1A 69
shape was composed of circular reaches and >
straight reaches. On the other hand, the a0 y a5
theory developed in this paper assumes that
the centerline of a flume follows a sine- <
generated curve. In order to make previous ) g
experimental results compatible with the 85 8.0

86

theory, we have to find out a suitable
expression for the centerline by a sine- }
generated curve. . 9
The planimetric shape of Rozovskii's
experimental flume which is a single bend
and has 180° of central angle in the change
of direction is shown in Fig.5 with an
approximated sine-generated curve. In the
calculation of a sine-generated curve
00 = 7/2 and L = 2TRy + 2.5R, are adopted,
where Ry is a radius of curvature along the
centerline of a circular channel. Accord-
ance of the shape of a fixed boundary with
a computed sine-generated curve is very good
except the section 6.5 and 8.0 depicted in
the figure. 1
Fig.6 shows comparison between Yen's
experimental flume and a sine-generated
curve approximated. 00 = T/4 and L is set - Centerline of the
equal to the distance of a unit bend along experimental flume
the centerline of the experimental flume. X X X Sine generated curve I~
It is seen that the centerline of the flume
composed of a circle and a straight line can Fig.6 Planimetric shape of a flume
be well approximated by a sine-generated used by Yen
curve.

The authors performed the experiment in a flume Flow
which had ten consecutive bends in the central part ==
. 10® 1060.7=10607mMm
and the bed slope of which was constant along the b '

centerline. Accordance between the actual centerline
of the flume and a sine~generated curve is good as
shown in Fig.7.

rFlow
80cm 80 cm

Fig.S Planimetric shape of a flume
used by Rozovskii

Comparison‘of Rozovskii's Results with Theoretical
Results

Experimental conditions utilized in Rozovskii's.
Experiment No.l were O = 180° (the central angle of
the change), Ro = 0.8m, Bop = 0.8m, Fr = 0.34, Ho = 6
cm (at the entrance to a bend), V = 0.26m/s (at the

entrance to a bend), Chezy's coefficient = 60 (in m,
s unit), and the sectional shape rectangular. Experi-

. . : ——-—= Centerline of the
mental results of the depth-averaged primary velocity experimental flume

are shown in Fig.8 with the theoretical results of the
first order solution (Eq.68) and the second order
solution (Eq.91). As for the upper boundary condition,
uj, = -0.0142 and uj, = -0.575 are determined by the
least square method applied to experimental results.

X X X Sine generated curve

(b)
Fig.7 Planimetric shape of
a flume used by authors
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Fig.9 Comparison of Rozovskii's experi-
mental result with the theory (water
surface level)
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The agreement between observed and theoretical results is good and there is
little difference between the first and second order solutions.

Transverse distribution of water surface level is shown in Fig.9. The
origin of the vertical coordinate is settled at the mean surface level of each
section. Therefore, hz = hy1 in the second order solution(see Eq.78). It is
seen that the first order solution is not able to explain the experimental
results but the second order solution agrees very well with the experimental
results except in the region near the outer bank.

Rozovskii's experiment was performed in flume which had large ratio of the
width to radius of curvature. Good accordance with experimental results inferred
that the theory was applicable even to the case that € = 0.564.

Comparison of Yen's Results with Theoretical Results

Quantities utilized in Yen's Run 3 were as follows: € = 90°, re = 8.53m,

Bo = 1.83m (the bottom width), Fy = 0.58, Hp = 0.156m (sectional average water
depth at the mid-point of the tangent reach between two circular parts), V =
0.691m/s (mid-point of the tangent reach), ig = 0.00072 (surface gragient),
trapezoidal section, gradient of the side walls 1:1 and f = 2gHyig/V* = 0.0046.

In Fig.1l0 observed results and theoretical estimations of the depth-averaged
primary velocity are shown. uj; = -0.955 and ujy = -6.194 are given to explain
the observed velocity distribution at the upstream boundary through the least-
square-method. - Agreement between the observed results and the theoretical
results is good except the region near the outer bank in the lower reach and the
far downstream section. Discrepancy between the first and the second order
solutions is little.

Transverse distribution of water surface level is shown in Fig.ll. It is
seen that the second order solutions give sufficiently close estimates to
experimental results. )

Although Yen's experiment was performed in a trapezoidal channel, depth-
width ratio was sufficiently small compared with unity. Therefore, the
theoretical estimates for a rectangular channel are in good agreement except in

the region near the sloping side walls.
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bank bank  bank bank
o ® o LIS
2
§
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-15 0 1 -
S0 5 15 0 74 15
TR 20 o
01 Quter ral
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LY ® o | ---Theory (na=zz10cm)
2 L
§ 0
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-15 0 15 -5 ¢ 15 i
% 5 i
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e ® o o
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Q Inner bt . 7,. n‘ 7: 5" 5‘
-1 0, 15 -5 ) 5 o 0 X % oz A B A
G %

¢ Measured
Theory(second order)

~==Theory(first order)
Fig.12 Comparison of author's experi- Fig.13 Comparison of author's experi-
mental result with the theory (primary mental result with the theory
velocity)
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Comparison of Author's Experimental Results
with Theoretical Results

Hydraulic conditions of our experiment
were as follows: 6, = 90°, re = 0.60m, By =
0.30m, Fy = 0.42, Ho = 2.93cm (average depth
over a bend), V = 0.223m/s (=discharge/ (Hq-
By)), 1 = 1/1000 (along the centerline of
the channel), and £ = 0.0115.

The depth-averaged primary velocity
observed and theoretically estimated is
shown in Fig.12., Theoretical results are
obtained under the condition of equilibrium
range, which means the terms proportional
to e are neglected. Theoretical results
near the outer bank are larger than those
measured. Measured velocity around the
center of the channel tends to be larger
than that estimated by the theory. In this
experiment width-depth ratio was ten, which
is relatively small in comparison with
actual rivers. Although the agreement
between the experiment and the theory is
fairly good, transverse distribution of the
primary velocity seems to be affected by
side walls in the case of a relatively
narrow channel.

Inner Quter

bank b
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(mm}
- 1R
@ -
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15 l = 15 15 [ -15
L ”0 3 () -1 b o o.(cm)
%2 2
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o 1 -b. L
15 o 5 05 o

~1F s

r X (em) " 'Lm)

e /)

e Measured

—Theory (second order)

~-—~Theory(first order)

Fig.l4 Comparison of author's
experimental result with the theory
(water sirface level)

Direction derived from depth-averaged velocity vector is shown in Fig.13

with the computed value by arctan {e?v,/(u, + eu; + e%uz)}.

At the locations of

Onr and 7/2 which correspond the entrance and exit of a bend, respectively, the
Since the radius of curvature
varies discontinuously at these points in the experimental flume, the observed

observed values jump to certain large values.

values much deviate at these points.

However, the theoretical results agrees

fairly well with the observed results except at around these two locations.

Transverse distribution of water surface level is shown in Fig.l4.

The

origin of the vertical coordinate is set to the mean surface level of each

section.
factorily.

The second order solutions can reproduce the measured results satis-

Summary of the Comparison Between the Experimental Results and the Theoretical

Results

Theoretical results obtained in this paper agree well with experimental
results of Rozovskii, Yen, and authors in the transverse distributions of the
depth~averaged primary velocity, the direction of the velocity vector, and the

water surface level.

In the theory it is pointed out that the maximum primary

velocity appears along the inmer bank in all sections of a bend in the case of a

rectangular channel.
paper.

This is proved in all experimental results referred in this
As for the estimation for the water surface level, the second order

solutions are neeced for reasonable agreement with experimental results.
However, the second order solutions did not show much superiority to the first
order solutions for the transverse distribution of the depth-averaged primary

velocity.

CONCLUSIONS

items.

Concluding remarks derived in this paper are summarized as in the following
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Up to the second order solutions on the depth-averaged flow field and the
water surface level are obtained for meandering channels by perturbation
theory. The perturbation parameter ¢ is defined by € = (half width of the
channel) / (minimum radius of curvature). The solution is rigorously developed
for an arbitrary position in a meandering channel, which improves previous
theories in which the solution is obtained only along the centerline of the
channel. The effect of this improvement becomes explicit when the width to
depth ratio exceeds one hundred as encountered in big rivers.

According to the theoretical result, the transverse distribution of the depth~-
averaged primary flow is strongly dependent on bed topography. For sub-
critical flows, the maximum primary velocity appears along the inner bank

all through a bend in case of a rectangular section and it appears near the
outer bank for an equilibrium shape for a movable bed in which deep scour
hole exists near the outer bank. The theoretical estimation for the trans~
verse distribution of the depth-averaged primary velocity agrees with measured
results in experimental flumes and rivers.

Theoretical results are compared with experimental results obtained by
Rozovskii, Yen, and authors. Accordance between the theoretical results and
measured results is good in the water surface level and the depth-averaged
primary velocity. However, the reproducibility of the primary velocity
distribution near the exit of a unit bend is less satisfactory.

Deviation of the depth-averaged velocity vector from the direction of the
centerline coincides with the observed results except for the connecting
point between a straight reach and a circular part where the radius of
curvature is discontinuous in testing flumes.

As for the transverse variation of the water surface, the second order
solution provides much better agreement with experimental results. On the
contrary, the second order solution gives practically the same result as the
first order solution for the depth-averaged primary velocity.
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APPENDIX 1

Coefficients in Eq.83

T; = (-2ABk + 2F¢%kA + 4AE + cA?)/3
Ty = (28%k - 2B®k + 4Fp2Bk + 4AD + 4BE + 4E - 2cAFy2? + 2ABc
— 2cAFr? + 2Ac)/3

T3 = (2ABk — 2F¢2AK + 4DB + 4D — 4cBFr? + cB? + cFe?
+ 2¢B - cFr2)/3
Ty = (2BkC3 + ZFr kCs + 4ECs + 4AC4)/3
Ts = (2A503 + 2F¢%cC3 + 4DC3 + 4BCy + 4Cy — 4cC3Fr® + 2cC3)/3
Tg = —CC3

APPENDIX 2 - Coefficients in Eq.84

2k(Ts - T1) + CoT» Co(Ty = Ty) - 2kT»

As = DT ¥ kD (Fr? - D Bs = ST 7 4D (Fe2 - D)
D = (Co = ¢)Tu + kTs By = ~kTy + (Cr - e)Ts

ST - T FKEL - D PTAC: - e KT (F - 1)
Ce = Te Ce = Ty + T3

= T+ Ts

57 (62 - 20)(Fy7 - 1) 6 % 20, (FrZ - 1)

C7 = —e®25d(A3sin2ksq + Bscos2ksg + Dgemcsdsinksd + Ege—CSdCOSde
+ Cge-2csd + Cg)
APPENDIX 3 - Coefficients in Eq.86

Pi(n) = n?(ABk + AE + Ak - cA?/2) - - Ak/3 + Azk - cFy 33/4

Py(n) = n?(B%k - A%k + AD + BE + E + 2sz + 3cAFr2/2 ~ CAB - cA)

- AD-BE-E- 2kBy/3 + 2kB3 - cAFr2/6 + cAsFy /z

n?(-ABk + BD + D - kA + cBF,? - cB?/2 - JCFr /2 + cFr®B2/2 -cB
+ cFy?/2) = BD - D + kA/3 -~ kA3 - cBpFy?/6 + cFr?Bs/4

i

p3(n)



Py(n) =
Ps(n) =

Pg

The following symbols are

Fy
£

fuio, fuil, fuiz

Ghyy

hO’ hly hZ

hay, ha2

i
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n”(BkC3 + AcCs + ECs + AC, + Csk - cACs) - EC3 — ACy - Cs3k/3

+ D3k/2 + E3c/2 + cFrlEs/4

n?(C3cB ~ C3Ak + DCs + BCy + Cy + 3C3cFr2/2 = C3cB) - DC3 - BCy
= Cy - Csc/3 + D3c/2 - Esk/2 - cC3Fy2/6 + cDsFrl/b

= =C3Cy + cCs + cFp2Cs/4

APPENDIX - NOTATION

used in this paper:

width of a meandering channel;

fR/Hy;

V/VeHos

friction coefficient;

zeroth, first, and second order functions to explain
nondimensional transverse distribution of the primary
flow at the upstream boundary;

function shown by Eq.83 concerning the second order
solution for the water depth;

function shown by Eq.86 concerning the second order
solution for the primary velocity;

gravitational acceleration;

Jacobian of coordinate transformation between (X, Y)
and (sa, na) systems;

average depth over a single bend;

local water depth;

water depth measured from the sectional average level
of the bottom;

hg/Hes

zeroth, first, and second order solutions for h,
respectiveiy;

two parts of hp which are explained in Eqs.79 and 84;
bed slope along the centerline of a meandering channel
(in case of a movable bed 7 denotes the slope of the
transversely averaged level of the bed);

21R/L; )

meandering length along the centerline;

Bo/2;

coordinate taken perpendicular to s, in the same plane
on which s¢ lies;

n,/(Bo/2);

total discharge;
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Ta

e

S¢
Sa

sCig Sce

S, S0 , S84
Ug, Un, uz
us, un

Ugi

u

up, Ui, U2

uji

uzi

v
v

Vo, Vis V2
X, Y

Za

Z9s Zhs 2Zb

A, B, C3
A", B', Cy'
B2

Co

D, E, Cy

D', E', C'4

T1~Ts

Az, Bs, D3, E3z, C5-~Cy
P1(n)~P7(n)

minimum radius of curvature of a meandering channel

(= L/2m6y);

rédius of curvature to an arbitrary point in a section;
radius of curvature of the centerline of a meandering
channel;

distance along the centerline of a meandering channel;
coordinate parallel to sc and perpendicular to ng;
values of s at upstream and downstream boundaries,
respectively;

sc/R, sci/R, and sce/R, respectively;

sz, na, and z components of local velocity, respectively;
depth-averaged values of ug and up, respectively;
transverse distribution funétion of Ug at the upstream
boundary;

ug/V;

zeroth, first, and second order solutions for u,
respectively;

Tsi/V;

equilibrium component of up which is free from the
upstream boundary condition;

representative veloéity for a unit bend;

Tn/V;

zeroth, first, and second order solutions for v,
respectively;

Cartesian coordinate in which X-axis coincides with the
centerline of the meandering belt;

vertical coordinate taken positive upward;

values of zg-coordinate for the water surface, the
transverse mean level of the bed, and the local bed
level, respectively;

coefficients shown in Eq.67;

coefficients shown‘in Eq.99;

B ~ 0.5;

exponent which explains the effect of the boundary
condition Eq.63 ;

coefficients shown in Eq.77;

coefficients shown in Eq.102;

coefficients shown in Appendix 1;

coefficients shown in Appendix 23

coefficients shown in Appendix 3;
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Pg = coefficients shown in Eq.89;
n = hp/Hos
= perturbation parameter (= (By/2) /R);
= angle between the tangent of the centerline of a

meandering channel and the direction of the meandering

belt;
B¢ = maximum value of 0;
o} = exponent in Eq.92;
o = dynamic friction angle; and

Tses Tng = bed shear stress in s, and n, directions, respectively.



