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SYNOPSIS

This paper deals with runoff analysis in a mountaineous watershed where
time of concentration of the river channel is much shorter than that of the
slope of the basin. The equation of momentum and continuity are used as basis
ones and solved by means of the kinematic wave theory. By introducing the
distribution of time of concentration, a response function of runoff system is
derived, as a result, the relation between the instantaneous unit hydrograph and
the time of concentration is clarified.

The new response function derived here is applied to an experimental basin
to obtain the time of concentration from the data of rainfall and runoff. The
results show that the distribution of time of concentration is roughly
log-normal and similar to that of the slope length of the basin.

INTRODUCTION

There are two different approaches to the problem of rainfall-runoff
process in watersheds. One is the stochastic approach, known as black-box
analysis and the other is the dynamic approach based on hydrauliecs. The
kinematic wave method belongs to the latter, in which length, gradient, and
roughness coefficient of a slope are introduced. In the analysis, however, the
average values of these factors are typically taken without considering their
variations, even though in actual basins, those values vary according to
location.

For instance, a hydrograph of dye concentration in a flow flattens in shape
as it flows down, due to diffusion and dispersion caused by variations and
fluctuations in flow velocity as shown in Fig. 1. Analogous to this, déviations
from the average values of length, gradient, roughness, etc., should play
important roles in the rainfall-runoff process.

In this paper, the author

researches the runoff analysis in a INPUT SYSTEM OUTPUT
mountaineous watersheds where the

time of concentration of the river concentration flow concentration
channel is negligibly small compared at a source ‘ at downstream

with that of the slopes. The

momentum and continuity equations are ::::>

used as basic equations and are . _Ai:l);.
solved by means of the kinematic wave .
theory. By introducing the rainfall rate  basin runoff rate

distribution function of time of o
concentration, representing the :::j>
characteristics of topographical and f >
hydraulic factors, a lumped system -

model of runoff process is derived. Fig. 1 Analogy of diffusion and runoff
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BASIC EQUATIONS
Flow on a slope

The equation of continuity of a flow on a slope is

a(g;h) —(7 —f)cos 6 ¢}

where y= porosity; h= depth; ¢= discharge unit width; r=rainfall intensity; f=
infiltration rate; x= downstream distance; (= time; and @= angle of a slope as
illustrated in Fig. 2

When the slope of the energy gradient is assumed to be equal to the bed
slope, the momentum equation can be written as

h=Kq* (2) Phrr bbb
where K and p=constants. If Manning's formula is A
adopted | ' Lye

[ ' X
K=(N/Ismoy; »=06 3) AR
Fig. 2 Definition sketch

and if one applies Darcy's law of slope

K=1/k,siné ; S p=1 (4)

where N = Manning's roughness coefficient and k= hydraulic conductivity.
Equations 3 and 4 may be used for a turbulent surface flow and a subsurface
flow, respectively.

Eliminating % from Eqs. 1 and 2 one obtains

8q , 9g _
Kypa™ 5 + 54 =7e (5)

where z,=(r—f)cos#= effective rainfall intensity. This partial differential
equation can be solved by use of the kinematic wave theory as
follows:

By combining Eq. 5 with the total diffierential of ¢, one cobtains

Ed.x_ = .__jdL._ _ _‘?E 1 UL

1= Kb~ 7 ©  grn
Hence the well-known equations are obtained as o X !

-

a1 g-* 7

dt — Kyp
and 1 1p . ‘;

a={ Kyf ) } 8 :
where  t=time when the characteristic starts. Fig. 3 Schematic sketch of
By substituting Eq. 8 into Eq. 7 characteristic curve

- -V,
x Z.d’f (K,y)xi.o J‘if:ﬂ,"e(t“‘f}df} ’ Pd"/ (9

where yx,= point where the characteristic originates. Assuming that K and p are
constant along a slope and that the effective rainfall began at time 4, we
obtain the following equation by rearranging Eq. 9 with x=0, x=/and T=t(—f

=g ([ o) e ao

where /= length of a slope and 7= time of concentration.



115

In the case that 7 is larger than {¢—4%, a characteristic which reaches the end
of a slope at time ¢ should depart from a certain point of the slope (x=x) at
time 4 as indicated by line @ in Fig. 3. Hence substituting x=1/4, x=/and T=¢—4
into Eq. 8, we obtain

T T a-py

an

To find /4 in terms of T, we assume a steady effective rainfall having a
constant rate of % before 4, and a characteristic curve generated by the
imaginary rainfall as indicated by a dotted line in Fig. 3. Then 4 is given by
substituting 7.= %, %=0 and ¢=4 into Eq. 9 as

l= (‘f{“%ﬂ%“‘mm(T‘H‘ HV? : (12)

Combining Egqs. 11 and 12 leads to

T T A-p)p
l :ZTR%'_”—" f’b { L_(re(t-»r)dr} dr’ + prl=Prg e (13)

where

%= 0 y T=st—h } (14)

=T—t+4 ; T>t—4

From Eq. 7, the discharge per unit width at the end of a slope ¢ is given as

o= { Kl;frre(t-—r)dr}l/p (15)

0

Eliminating Ky from Egs. 15 and 13 yields

@=IR( T) - (16)
where

R, T)=p [ [T rt=oac)" [ [ f: [ [ rte=orde} "™ aw pro-reme ]

a7
Stream Flow
The equation of continuity for a stream flow is
94, , 2Q _
Ea L (18)

where A,= cross-sectional area of flow; Q= discharge; and ¢,= lateral inflow
rate.

Making an assumption of quasi-uniform flow, the momentum equation can be
expressed as

Q= ”}{ASRZ/‘*I”Z (19)

where %= Manning's roughness coefficient; R= hydraulic radius and 7= channel
gradient. To simplify the following development, we put

AsRm:aAf (20)

where a and b = constants related to the shape of a cross section. Equation 19
then is written in a convenient form by introducing Eq. 20 as

A=KQw (21)
where

K.=(n/a [y
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Equations 18 and 21 are of the same form as Eqs. 1 and 2, respectively, making
possible to solve by the same method.
The characteristic equation so obtained is

dx _ dt de (22)

1~ KlQub-»l:“q'-;
Hence, the discharge at the end of a stream segment (L, t) is

AL, 9=00, t-To+ [ gt nax (23)
where  @Q(L, )= discharge at the upstream end (¢=0), L= length of the segment;7,=

time of concentration of the stream; and r= time between 0 to 7,. The relation
between these factors are also given as

e 7 [l o) [ o] o i

DERIVATION OF LUMPED SYSTEM FUNCTION OF FIRST~ORDER BASIN

When we consider a watershed of order 1, Q0 # should be zero, and ¢, is
to be equal to ¢ . Equation 23 then becomes

L
)= fﬂ Gt —7)dx (25)
where Q(f)= discharge at the outlet of a basin.

Since flow velocity in a channel is much higher than that of the slopes,

the time of concentration of a stream segment is to be negligibly small. Then,
Eq. 25 can be approximated by .

Q= [ ata= ["Ret, 5ax (26)

We now consider a successive effective rainfall of constant rate 7 over a
basin. Then R(7, #) is given by rearranging Eq. 17 with 7=# as

Rt T=n (27)
Therefore, the discharge caused by this rainfall is
Q:n,LL ldx (28)
On the other hand, the rational formula gives the discharge
Q=A4n (29)
where A=catchment area of the basin. From Eqs. 28 and 29, we obtain
=f:ldx or ﬁlex/Azl (30)

This suggests that Idx/A is the probabillty of a slope of length [ Hence, we
can write as

——abc——f(l)dl f(l)~—~dT (31)

where f(/)= probability density function of slope length. Since / is a function
of T and ¢t as seen from Eq. 13, f()di/dT is also a function of both 7 and ¢
s for a given hyetograph. Then we again write

fO =0l T) (32)
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where ¢(f, T) is considered to be a probability density function of 7. By
substituting these relations into Eq. 26, the following equation is obtained.

Q(t)::Afww(i, TYR(t, T)dT (33)

0

in which, Q) R(t T), and @(, T) correspond to output, input and response
function, respectively, in a runoff system.

In this system, however, the response function is unsteady, making
treatment difficult. Some additional arrangements may be needed to obtain a
steady response function as follows:

In the case that 2 equals one

When water flows on a downslope following Darcy's law, p is unity. By
substituting p=1, Eq. 13 reduces to

[ =T/Ky ; ; (34)
This means that T is independent of time and rainfall intensity resulting in

the stationary response function of the system o(T). For p=1, Eq. 17 also
reduces to

T
R(t, T)-t‘fo relt—7)de/ T ’ (35)
which shows that the input to the system is the average effective rainfall

intensity in the time of concentration. Hence, the relation betweem rainfall
intensity and runoff is given by substituting Eq. 35 into Eq. 33 as follows:

0 :Af:’ LT re(t—7)deg(T)/ TdT (36)
If we define the average effective rainfall intensity as
m= [ [ =0/ T - p(mrar | 37
then the rational formula is obtained
Q=rA (38)
Equation 36 is also rewritten in the form of the unit hydrogragh as
Q=4 [ umnit—s)ax , (39)
where
u(r)= f “o(T)/TdT | (40)
This shows that the relation between rainfall anf runoff is linear when p equals
one, and that the instantaneous unit hydrograph u(s) is the average of
reciplocals of time of concentration larger than =
In the case that 7 does not equal one
When a succesive rainfall of a constant rate of #% is given on a slope, the

relation between the slope length and the time of concentration 7, for the
rainfall is given from Eq. 13 as

] =75““"’"°(7},/K7)”" (41)

Since 7, is independent of time, we can define the steady probability density
function ¢(7;) as follows:
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F(Dal=f (1) = dT dTy=(T0)dT, , (42)
Substituting Eq. 42 into Eq. 33, we obtain

0=4 [ Rt Tyo(Tyar; | )
and the relation between 7 and 7, is given by Egqs. 10 and 41

=L f ([T 2294} " gy e (44)

Since T is a function of 7, and ¢ R(£ T) also is a function of them, i.e.
R(t, T)=Ry(t T;) . Then Eq. 43 becomes

Q=4 [ R( Toe(T)an (45)

in which, @(T,) is considered as a steady response function resulting in the
linear relation between the output @ and the input R,, though the rainfall
runoff relation is nonlinear when p does not one.

APPLICATION TO AN EXPERIMENTAL BASIN

There are two kinds of methods to evaluate o(T) or (7, from the data of
rainfall and runoff; one is the optimumization technique which has been used for
the unit hydrograph method, and the other is the parametric method.

Optimum Response Function

Several optimumization techniques have been used to obtain the unit
hydrograph (2),(3). The same method may be used to find the optimum response
function in Eq. 36 or Eq. 45. The best fit criterion is minimumization of the
sum of the squares between the observed and the computed discharges. Applying
the least squares method to evaluate the optimum values of @(7;) , one obtains
the following:

arl7) = f :’ @olt) pralz — 1)t : (46)

where gu(f)=optimum value of @(#) ;

pua(z) = Jim o1 f U0 y(s, z)at

} )
pua(r ) = Jim L f 7 Ralt, mRlt, )t
Equation 46 is well-known as Wlener-Hoph equation and rewritten in the form of
discrete time.

pax(?) 25%(2) prea(i—7) (48)
This can be easily solved numerically.

Though the Wiener-Hoph equation has been widely used to obtain unit
hydrograph, resulting unit hydrograph usually exhibits oscillation. From Eq.
36, the relation between the instantaneous unit hydrograph and ¢(T) is expressed
as

o(T)/T=—aT)/dT ; (49)

Since @(7T) is a nonnegative value, du(T)/dT must be negative, i.e., u(f) should
decrease monotonically with time, the oscillation in the unit hydrograph results
in unrealistic negative values of resulting response function as illustrated in
Fig. 4. ‘

To evaluate the physically reliable values of @(T), we now need to solve
Eq. 39 under constraint ()20 as follows:



N m
minimize 3 e(?)
i=0
subjecting to the constraints
where

m

2 Ro(i, f)o(f)

J=0

Q)

e(i)= A

o()>0 and e(i)>0
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(50)

(51

Equation 46 is readily solved by use of the simplex method (1).
The analysis method mentioned above was applied to an experimental basin of

area 0.226kn .

The topographical map of the basin is shown in Fig. 5.
results obtained are shown in Figs. 6 - 10.
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Figure 6 shows the resulting optimum time of concentration for p=1 and
comparison of the observed and computed hydrographs of event 1. To test the
validity of the results the predicted hydrograph of event 2 using @(T) of even 1
is shown and compared with the obsreved hydrograph in Fig. 7. The optimum
values of time of concentration for events 1,2 and 3 are given in Fig. 8 which
shows that they are log-normally distributed with the same standard deviation
2.2,

Figures 9 and 10 are the results obtained using p=0and #%=10mm/hr . In
this case, the distribution of the optimum time of concentration are also
log-normal but with less standard deviations. If X and / are independent of

each other, the standard deviation of time of concentration o is given from Eq.
41 as

logor= Jm (52)

where ¢, ok= standard deviations of / and Ky, respectively. Equation 52
indicates that the value of 6 decrease with decreasing p.
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Fig. 10 Distribution of time of
concentration (p=0.6)

2 (m
Fig. 11 Distribution of slope length

A slope length can be measured on the topographical map as the length of a
curve running orthogonally to the contours from the diving ridge to the nearest
stream. As shown in Fig. 11, the measured slope length also shows a log-normal
distribution with the standard deviation of 2.1 which is very close to the value
of or for p=1. This suggests that logex is very small compared with loger or
that there is a certain correlation between K and / . If the former is true,

logor=ploge, or or = o : (53)

Substituting p=06 and o,=21 into Eq. 53 yields =156 which is considered to
be a reasonable value of the standard deviation for p=06, as seen in Fig. 9.

Q(t) "
(8./s) -~ observed. Ye(t
106 - e cOMPUted ) (mm/ hr)

F10

40 50
: t (hr)

Fig. 12 Comparison between computed and

observed discharge (p=0.6 and o = 10mm/hr)
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Parametric Approach

Since the respone function derived here is the probability density
function, it is reasonable to fit a certain probability density formula to treat
it as a parametric system model. Doing so, the mean and the standard deviation
becomes the unknown parameters to be determined. If one uses Eq. 53 to estimate
the standard deviation, the mean is the only parameter.

In Fig. 12, the computed hydrograph is compared with the observed one, in
which, the distribution of time of concentration is assumed to be log-normal
with standard deviation of 156 and the mean was determined so as to obtain the
best fitting. Good agreement was obtained.

The instantaneous unit hydrograph is expressed by the probability density
function of time of concentration as seen in Eq. 40. Applying the log-normal
function to @(7), Eq. 40 becomes

u(e)=Lexp (~c(¥~ L esr) (-erfx) G
where
X:leﬁlf..:i_.éi;i.@_ ; ¢=In10=2303 ; Sr=logor ;

and X is the mean of log T:

CONCLUSION

The new response function of runoff system has been derived by use of the
kinematic wave theory. It is clarified from the equation that the instantaneous
unit hydrograph is expressed by the probability density function of time of
concentration.

The time of concentration obtained from the data of the experimental basin
ig distributed log-normally as is the slope length of the basin.
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APPENDIX - NOTATION

The following symbols are used in this paper:

a = a constant;

A = chatchment area;

As = cross-sectional area;
b = an exponent;

o
I

Ln 10=2.303

= prediction error given by Eq. 51;

N
-~

N
~
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f = infiltration rate;

§i0) = probability density function of slope length;

g = acceleration of gravity;

h = water depth; ‘

g = gradient of river bed;

ks = hydraulic conductivity;

K = a constant;

K, = a constant;

! = slope length;

Is = length from the top to the origin of a characteristics;
L = channel length;

N, n = Manning's roughness coefficients of river channel;

ji3 = an exponent;

g = discharge per unit width;

@ = discharge per unit width at the end of slope;

q. = lateral inflow rate;

Q = discharge of river;

7 — rainfall intensity;

7e = (r—f)cos§ , effective rainfall intensity;

7 = rate of a steady effective rainfall intensity;

Vm = average effective rainfall intensity defined by Eq. 37;
R = hydraulic radius;

R, T) = function of time and 7 given by Eq. 17;

Rt Ty) = function of time and T, given by Eqs 17 and 44;

Se ‘ = logor

t = time; ‘

3 : = time when effective rainfall begins;

Is = time when a characteristic starts;

T, T = time of concentration of slope and river channel;

Ty = time of concentration of slope due to a steady effective

rainfall having a rate of 7 ;

) = instantaneous unit hydrograph;

x = downstream distance;

Xs = position where a characteristic originates;
X = log T

X = mean value of log T ;

Y = porosity

g = angle of slope;

Par = cross correlation function;

PRR = auto correlation function;
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= standard deviation of slope length;

= standard deviation of Ky;

= standard deviation of time of concentration;

= time valuable;

= time given by Eq. lé4;

= time defined in Fig. 33

= probability density function of time of concentration; and

= optimum probability density function of time of concentration.



