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SYNOPSIS

Recently, many investigators have proposed stochasic method of real-time
flood prediction. In most of the studies, however, there are some assumptions:
that the basin dealt with in the study is simple, namely not divided into any sub-
basins; that the rainfall prediction is deterministic or perfect; that no missing
data are contained in the discharge observations; and that noises incorporated in
the rainfall-runoff model to compensate both model incompletion and observation
error are white and steady, and so forth.

These assumptions are not always appropriate.

The aim of the present study is to propose methods of coping with difficulties
in the case where they are not appropriate.

In this paper, as a case study, the authors deal with the Fukuchiyama basin (
1 350 km®) which consists of several sub-basins and contains four gauging stations,
which may have missing observations; it is described as a stochastic state-space
model based on the existing flood prediction model of the Yura River in Japan. The
noises incorporated are continuous colored system noise and discrete white observa-
tion noise. Stochastic rainfall prediction is also taken into account.

It is shown, by using the existing data, that the methods presented here is
practical and useful.

INTRODUTION

Flood forecasting is important to prevent or reduce disasters due to flood.

In this paper, we propose a stochastic method of real-time flood prediction in a
basin consisting of several sub-basins. It is assumed that the total area of the
basin is hundreds km® or more.

Flood prediction can be executed with rainfall prediction and a rainfall-
runoff model; in general, however, the predicted value of discharge is different
from the observed value because of both model incompletion and observation error of
rainfall and discharge. It is, therefore, reasonable to construct a stochastic
rainfall-runoff model incorporating noises which compensate such errors. Meanwhile,
it is also necessary to make use of both rainfall and discharge data obtained
hourly. )

We have investigated stochastic methods of real-time flood prediction based on
the state-space description of runoff systems (see Shiiba and Takasao (13), Takasao
et al. (14,15,16,17)).

In the methods, Kalman filter theory is applied to predict the system states
and outputs. When "prediction' which contains some uncertainty is dealt with, not
only in the case of flood prediction, its precision should be quantitatively
specified. Using hourly observed data, Kalman filter can compute not only the
predicted values but also the covariance matrix of the prediction error in a
sequential manner. This is why Kalman filter is often applied to various problems
of water resources systems (e.g. (4,22)).

This kind of studies on real-time flood prediction, which have been made by
many investigators (for example, Hino (6), Bras (3), Todini and Wallis (19), Wood
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and Sz0116si-Nagy (21), Shiiba and Takasao (13), Hoshi and Yamaoka (7), Kitanidis
and Bras (11), Bolzern et al. (2), Hoshi et al. (8), Takasao et al. (15,16)),
contain some assumptions: that the rainfall prediction is deterministic or perfect;
that the basin dealt with in the study is simple, namely not divided into any sub-
basins; that no missing data are contained in the discharge observations; and that
the noises incorporated in the rainfall~-runoff model to compensate both model in-
completion and observation error are white and steady, and so forth.
These assumptions are not always appropriate.
The aim of the present study is to propose methods of coping with difficulties
in the case where they are not appropriate. We made some new attempts as follows:
[1]1Basin Scale
We deal with the Fukuchiyama basin (1 350 km®) consisting of five sub-basins;
it must be treated as a multi-input and multi-output (MIMO) system. We show a
treatment of both input (rainfall) and output (discharge) in the case of such
a basin. Although there have been many papers, it seems that few authors have
discussed this kind of subject.

[2]System Output
It is often assumed that there is only one gauging station which has no missing
data; in this paper, it is assumed that there are four gauging stations which
may have missing data.

[3]Rainfall Prediction
In most of the studies formerly made by many investigators, they seem to have
focused on runoff prediction techniques. Rainfall prediction needed for runoff
prediction has been often treated in a perfunctory manner; for instance, it is
assumed to be given (known). In this paper, we use 3-hour moving average
method which is often used in the practical work by the Ministry of Construc-
tion of Japan Government; we compute spatial and temporal correlation of hourly
rainfalls predicted in each sub-basins and take account of the covariance of
their prediction errors. Thus the rainfall prediction is treated as stochastic.

[4]Noises incorporated in the rainfall-runoff model
As for the rainfall-runoff model, we construct a stochastic state-space model
based on the existing flood prediction model consisting of six storage func-
tions (of four sub-basins and of two channel systems). Continuous colored
system noise.and discrete white observation noise are incorporated in the model
to compensate both model incompletion and observation error. Steady noise and
unsteady noise are presented; and we make a comparison between them in the
later chapter.

GENERAL METHOD IN A LARGE BASIN
Synthetic Model of a Large Basin

In a basin whose area is hundreds km® or more, time of flood concentration and
spatial distribution of rainfall must be considered. Such a large system is,
therefore, divided into some smaller sub-systems and treated as a MIMO system.

Let a synthetic model of such a basin be given in the following form.

Let x and r be a Ny~dimensional state vector and a Ny-dimensional input vector,
respectively; where Ny denotes the number of state variables and N, is the number
of inputs.

The state transition in the whole basin is represented as

k=f(x,x,t) ,t2to (&9]
where X, r=column vectors; and t=time (to = the initial time). Symbol ''' denotes
differentiation d/dt.
Let y be an observation vector

T
y_=iy:,°“,yNy}

where yn=discharge of the n-th gauging station (n=1, °°°, Ny); Ny= the number of
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gauging stations. Suppose that the discharge at time ty can be described as a
function of system states:

y=g(x, tg) ,k=1,2, ccc and to<ti<ees (2)

The functions f and g, which are in general nonlinear, will be specified in
the later chapter.

Stochastie State-Space Model

In this section, the continuous-discrete state-space model (Egs. 1 and 2) is
re-formed as a stochastic ome. Namely, in the same manner as often used, noises
are incorporated into the model to compensate model error and observation error:

x=£f£(x,xr,t)+ul) (3)

X=

loe

(x, tp ) + vty ‘ (4)

where w(t) = continuous system noise vector; and X(tk)==discrete observation noise
vector. In general, w and v are assumed to be white and steady.

We consider, however, that the assumption is not always appropriate. If the
model structure is complete, in other words, if f and g in the above equations can
perfectly describe actual rainfall-runoff phenomenon, the noises are white.
Otherwise, they cannot be white and must be treated as colored. Especially, in the
case of short-term rainfall-runoff modelling, the whiteness assumption is not
right, because the phenomenon is too large in scale and complex to model it per-
fectly. As for the steadiness assumption, it is discussed later.

In this study, we employ an exponentially correlated noise as stated below;
it is representative of a rather large class of Markov Processes and called
occasionally ''colored noise".

Let p be a Np~dimensional noise vector. Eq. 3 is rewritten as

x=f(x,r,t)+G , t>to ' (5)

where G=NyXNy-matrix. Let the i-th component pj of p be a continuous colored
noise described by the linear stochastic differential equation (see Jazwinski (9)):

Bi(t) = = ep1pi(t) + epsad/Zwi(e) , t2to )

where cpi , qi=constants; {wy(t)} = zero-mean white Gaussian noise with
E{ wi(t)wi(t) } = 8(t~-1)
where §(t) =Dirac delta function.
Now consider the transition of p; during tk(j)gftéztk(j+l), where tg < ty=t}.(0)

<t (3-1) <t (§) Sty and £ (JH) = g (I)+At, F=1,7°,D. Let p;(ty(3)) be
independent of {w;(t)} and

pi(t(3)) v N(O, qj cpi/2) N

By integrating Eq. 6 from ty(j) to ty(j+l), the transition of pi during the time-
interval are obtained as follows:

pltp(3+1)) = Mp(tp () + W(t(d)) (8)

where Hf=Np—dimensional column vector; and its i-th component is

£ (3+1)

Wy (e (3)) = cpis (eip{-cpi (tp G+ -1)} q%/zwi(T)dT (9
tk j



96

and
M = T, 3 &y = exp(-cPiAt) (10)

Then

E{W(t, (3} =03

EH( 6 (3) BT () ) = = Qg s a1
52
Np

S:Zi. = Cpi qi (1-—52)/2

Treatment of Rainfall in Stochastic Runoff Prediction

Eq. 5 represents the state transition in the basin. Note that the rainfall,
which is the system input, contains observation error because of both its spatial-
temporal variation and many immature points left in the technology of rainfall
observation. Hence, it must be treated as stochastic variable. In most cases,
however, the observed rainfall is assumed not to contain any error; in part because
it is difficult, in the state of the art, to evaluate the rainfall observation
error (or the estimation error of the areal rainfall in each sub-basin), in part
also because few methods of rainfall-runoff analysis which treats rainfall as
stochastic input have been considered.

In this paper, we suppose that the observed rainfall does not contain any
error and the error of the rainfall prediction from the observation is treated as
uncertain. That is to say, it is assumed that the observed rainfall does not
contain any error and the predicted value of rainfall contains some error.

Supposing the present time is tys the prediction of rainfall from L to tyyq
is necessary to predict the discharge at tp4) (in Kimura's storage function method,
as stated later, when the lead time is shorter than the lag time Ty, the runoff
prediction can be executed only with the observed rainfall).

What is complicated in the case of a basin consisting of several sub-basins is
that the correlation between predicted values of rainfall in each sub-basin must be
taken into account. Furthurmore, when predicting the discharge from tr4p until
tr+y, (L>2), we must consider not only spatial correlation but also temporal cor-
relation.

In the case where there are J sub~basins, to predict the discharge L AT hours
hence (AT is the constant time-interval of discharge observation), N, =JXL pre-
dicted rainfalls and the covariance of prediction errors are needed.

Let ij be a rainfall prediction vector of the j~th sub-basin. Then

A 1 .
£j = [ rj st rg“ ]T R 3=l’ooo’J

where rY =mAT ~hour-ahead prediction of rainfall in the j-th sub-basin. Let ﬁ'be
a rainfall prediction vector of the whole basin;
=2l oo, 21T
where §j=Nr—dimensional column vector. Let P, be the covariance matrix of the pre-
diction error (NrXNr)’
Though r is treated as deterministic value in Eq. 5, when the state transition

is predicted, the future rainfall r is treated as stochastic. In the prediction
step, therefore, Eq. 5 is re~formed into a stochastic differential equation with
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Ny r= Nx+Np+Nr stochastic variables:

P
x=f(x,xr,t)+6p , t<t<tpr (12)

Local Linearization and Discretization of State Equation

The state equation (Eq. 12) is a stochastic differential equation. Define the
augmented state vector

Z[ET _ET —%;T}T

[

Then, instead of Eq. 12 the augmented dynamical system is

[

=f5( X, t )+ 6w ,  tp<t= tyy (13)

with deterministic input 2; where w=N,-dimensional noise vector whose components
are wy (i=l,"',Np) given in Eq. 6; and G* =N, rXNp-matrix:

P
0 1 } N ~dimensional
- Cp I/Eﬁ 0
Gk = T
Conr 4
0 PNp N,
] 0 ] } Ny-dimensional

Now, at time ty> we consider how to obtain the stochastic distribution of X at
ty41, namely, how to predict the states. Because f* in Eq. 13 is in general a
nonlinear function, it is impossible to obtain the transition of the stochastic
distribution of the state vector X strictly.

Supposing X is approximately Gaussian, and linearizing and discretizing f%
locally, we successively obtain the transition of the mean X and covariance Py of
X.

We first linearize Eq. 13 at time tk(j):

[pe

=AX+b (14)
Subsequently, by integrating Eq. 14 over the prcpér time-interval At, X at time
tr (J+1) = tx (j)+At is given by the following discretized equation

X(tp (3+1)) = FX( (i) + d (15)

In such a manner the state equation can be solved from ty tO Lyyqq-

To linearize Eq. 13 into the form of Eq. 14, either the Taylor series expan-
sion method or the statistical linearization method (5) is often used; the latter
is said to be generally more accurate than the former. To discretize Eq. 14 into
the form of Eq. 15, for example, the Padé approximation for etA can be applied
(20); it provides

- At 2AE% 4 At LA?
F—[I—A‘-"Z +A122] [I+A2+A——12 1
- _ At At -1
a=r1-a8 422t i

where I=identity matrix.
From Eq. 9, Eq. 13 consequently becomes linear discrete equation as

Kt (3+1)) = FX(t(3)) + d + BW( £ (3)) (16)
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where B==prrXNp—matrix:

0 } Ny ~dimensional

B=|1 (I is a N XN -identity matrix)

PP

0J 1} N,-dimensional

From Eq. 11,

i

FX(t(3)) + d
FPyy (1)FT + Bth(j)BT

Rt (3+D) = E{X(5(3+1))]
Pry (j+1) = CoviX(ex(3+1))}

17

it

Correction of the State Estimate Using Observed Rainfall and Discharge

In this section, we express a state vector as x; it contains both Ny system
states and N, system noises. Then its dimension is Ny p=Ny+Np .

Suppose that given the observed data up to time ty, the filtered state esti~
mates‘g(tk!tk) and P(tkftk), the covariance matrix of the error in g(tkitk), have
been stored. At time et Ik+13[rl’ LRI rJ]T, observed rainfall intensities in
J sub-basins from ty O ty7, and Xﬂtk+1) = [yl, R yNy]T, observed discharge
at Ny gauging stations at ty4], are obtained. By using these observed data, the
state estimates are corrected in the following manner.

We first obtain the state transition from ty to tiqq- Namely, we integrate
the state equation by starting with the initial values g(tkltk) and P(tk[tk) and
giving the observed rainfall intensities Ik, as input in the same manner as
described in the previous section (notice that X must be reduced its dimension and
replaced by Nyp-vector x since T does not need to be considered). Thus, we obtain
the corrected state estimates. We express these new estimates as gg, Py (the
meaning of the subscript o (zero) will be specified later).

Using the observed discharge y, we second estimate the state by means of
Kalman filter. Now we are treating pr—dimensional state vector, we rewrite the
observation equation (Eq.4) as

y(tp) = g* (x, tx ) + vity)

where g% is in general a nonlinear function. In most cases v(ty) is assumed to be
steady or independent of x(ty), and we have ever investigated the case that these
are not independent, namely, v and x are correlated (see Takasao et al. (15,16)).
As one method of considering the dependence, v is assumed to be a function of the
state x and the noise e which is independent of x. Linearizing the above equation,

y(ty) = Hx(ty) + ¢ + Ze(ty) (18)
where (
h cy el(tk)
B=] @ |5 e=] 1 |5 el = : (19)
QNy Ny eg (ty)

= constant

H = N XNy ~matrix; hi (i=1, °*° , N,) = pr-dimensional row vector;
S-dimensional

(Ny-dimensional column vector) obtained by the linearization; e(ty)
noilse vector with zero-mean and covariance Ry; and Z = N XS-matrix.
If some missing data are included in the N, observed discharges, we cannot
filter using observation vector y(ty;;). Then, making use of yj(ty4q) (i=1, <,
Ny) one by one, we estimate the state; and missing observed value is dignored.
Considering that the a priori (that is, before making use of the observed

C
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discharges) estimate is X, with Py, we propose the following filter algorithm:

1)Set n=1;
2)Compute the Kalman gain matrix

3 T 3 T -1
Ky = Pp-thplhgPy chy + ZReZ' 173 (20)
3)Process the n-th observation y,(tiks1),; then updated state estimate is given as
Xn = Zpo1 + Knlyn(teer) - hn%n_l]
N 5 (21)
Pp = [T - Kby P, o
provided, however, that when yn(tk+l) is missing value,
Xn = Ep-1 s By = IN’n-l 3 (22)

4)If n<Ny, set n=n+l and go to Step 2); otherwise,

]

gr:e

(tget1 | tre1) )

i
R

Bltier|tis) = Pn

and finish this algorithm.

STATE-SPACE REPRESENTATION OF THE EXISTING FLOOD PREDICTION MODEL
IN THE YURA RIVER BASIN

Outline of the Yura Basin and the Existing Model

The Yura river, whose stream length is 146 km, flows into the Japan sea; the
basin lies in the north of Kinki district and its area is 1 882 km? (Fig. 1).

X;———*-—— the Japan Sea

A - ) \
~ A S e T
( © oy o L 7N o T
@'~ 7 (..J
B

v
{..J @ '\' /'/ \ Ohno dam site
U

Fl -
W LA Y A ~
gsf'-"" \7"\‘_~_/ -
® ANY ¢

h\-“(

A : Ayabe
L \ / T : Toda Gauging
A I : Iwama station
F : Fukuchiyama

- M 4
\\._/\.-__/"\~,——1 ‘J“? r/
W‘

Fig. 1 The Yura River Basin (1882 km?)
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(1.0) (2.5)
Fukuchiyama
Ohno
L & & ——O 1! I
Toda Ayabe
Iwama (0.5) (0.3)
(4.0 (2.0)

VY sub-basin <7 Dan () Llag time
D Channel system . Gauging station

Fig. 2 Schematic Diagram of the Existing Flood Prediction Model of the Yura River

The existing model for predicting flood at Fukuchiyama consists of seven
sub-systems, namely, five sub-basins and two channel systems (Fig. 2, (12,18));
and the runoff calculation in each sub-system is carried out by Kimura's storage
function method (KSFM) (10). The basic formula of KSFM is:

for each sub-basin

it

s(t) = K q(t)P (24)

s(t)

it

re(e-Tp) - q(t) (25)

where s(t) = water storage height (in mm) in the sub-basin at time t; q(t) = direct
runoff height (in mm/hr) (the baseflow is assumed to be zero in the Yura basin);
T, K, and P = constants and Ty, is called "lag time"; and r, = effective rainfall
intensity (in mm/hr) given as

£, r(e) ( Re(t)

A

(t) { fa) (26)
r 1
¢ r(t) ( Re(t) > Rgy)

where r = observed rainfall intensity (in mm/hr); R, = cumulative rainfall (in mm);
and Rgy (20) and f; (0<fy<1) are constants;

for each channel

s(t)
§(t)

K q(t)P
(27)

i

ic(t“TL) - g (t)

where s(t) = water storage height of channel (in mm); i.(t) = inflow height (in
mm/hr); and q(t) is runoff height (in mm/hr) . Water storage height of channel
means the amount of channel water storage devided by the total area A (in kmz)
upper than the channel; 1i.(t) ( q(t) ) is the amount of inflow (discharge) devided
by A/3.6.

Table 1 shows the parameters of the model of each sub-systems. Note that in
the existing model the runoff calculation of the Ohno sub~basin is not carried out,
and the inflow to Channel-I from the Ohno dam is given every hour as the dam out-
flow.

State~Space Representation

The water storage of each sub-system can be regarded as the state. As the
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Table 1 Parameters of the Existing Ohno sub-basin is being excluded,
Flood Prediction Model the existing model has four sub-
of the Yura River basins and two channels.

Synthesizing the existing
Area T R model, we represent it as a state-

Sub~systems

(km?) (hr) (mm) space model with 6~dimensional

state vector.

1 350 - - - - As the lag time of sub-systems
are different, the synthesis is a
2 22013 0-65 2.0 80 little troublesome. Let the time
Sub~-basin| 3 240 30 0.65 2.5 80 of each sub-system be shifted back-
ward as much as the total time lag
4 . 0.65 4.0 80 between the sub-system and the
5 170 20 0.65 1.0 80 Fukuchiyama base station.

In accordance with the quanti-~
I - 9 0.6 0.3 - tative continuity of water and the

Channel 11 _ 23 0.6 0.5 _ interconnection am?ng the sub-
systems, the equations of water
storage transition during tp<t<

ty41 are:

in the j-th sub-basin (j=2,°°°,5),

85 = Tej (t-Tp) - qi = r:(t-Tp) ~ (s4/K:)1/Pj (28)
j ej L a5 ej L 383 J

where s, =water storage of the j-th sub-basin; rg; =effective rainfall intemsity in
the j-t% sub~basin; qj==runoff height from the j-th sub-basin; and K4, Pj=con-
stants;

in Channels I and 1T,

s _3.600 Ay (s2\1/Bs _ (SI\1/P;
L A1 A1 \ K2 Kq

5 :.éL(iI_ 1Py | As (s3)1/Ps _(SII)l/PII (29)
I App \Kp AT (K3> K1t

where sy, Syy= water storage heights of each channel (see Eq. 27); Q; = discharge
(in m®/sec) from the Ohno dam; Kys K11, Py, Pry=constants; and Aj =area of the j-
th sub-basin (in kmz), especially Ay and Ayy denote the total areas of the basin
upper than the channels I and II, respectively.

The discharges are obtained at four gauging stations;

0, As (83 1/Ps | AL (ST \1/Py
YA ~ 3.6

K3 3.6 \ K1
Q. =-As (ss)1/Ps ATT [ SII\1/Pyg
TOD 3.6 | Ks 3.6 | K11
Q - AL; Sy 1/134 (30)
IWA 3.6 \Ky
Q. = Au (s4)1/Py  As (55 1/Ps 4 A1 siry 1/pqg
FUK 3. Ky 3.6 \Ks 3.6 K1

where Qava, Qrops Qwas Qryg = runoff heights at Ayabe, Toda, Iwama, and Fukuchi-~
yama, respectively.

After this, s;, °°*, s;5, sy, st are replaced by x1s °°*°, Xg, respectively;
and Qavas> Qrops Qwa, and Qpyk are also replaced by yvi, **°, Vu.

Thus, the existing flood prediction model has just rewrited, as deterministic
state-space model, into the form of Egs. 1 and 2 by Egs. 28-30.
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Linearization and Discretization Method Used in This Study

Incorporating noises, we treat the existing model as a stochastic one.

To linearize it, in this study, we apply the statistical linearization method.
The nonlinear terms appearing in the existing model are only in the form of xl/P
Suppose x is approximately Gaussian, that is,

xVN( %, 0%)

Then %1% is statistically linearized as

f(x) = x/P 2 ax + b (31)
where
a=[ Exf(x)} - 28{f(x)} 1/ o
(32)
b = E{f(x)} - a%
The expectations are
« oy 2
E{f(x)} = 5 sgn(x)}xtl/P Zsbexp{—£%i§;~}dx
00 - . (33)

E{xf(x)} = E{x(1H+P)/P} = S, Sgn(X)iXI(l+P)/%€i;Oexp{—(me) }dx

where the function f(X)—Xl/P is extended for negative x by setting f(x)—-lxll/P
For the numerical integration, we apply Hermite-Gauss formura (see, for example,

).

As a simple example, consider only the Iwama sub-basin. The nonlinear aug-
mented state equation is

. r 1 l/Pq‘
X3 '-"('Iz-) XEI/PL*' + re3 t+ Py
= 4 (34)
Ps | ~CpyPs t CpyvVdaws
After the linearization, it becomes
K a¥xs+ b* + T, + p,
Py ~Cp3Py * Cpy/TEWs
a% 1 %3 b#+re, 0
= + + Ws (35)
O ""Cps P3 O p3‘/q—3

where

1/p,
SR

1 l/Pu
&)

To discretize Eq. 35, we use the Padé approximation.

b*

i
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STOCHASTIC PREDICTION OF FLOOD IN THE YURA BASIN
Prediction of System Inputs

The inputs of the state-space model (Egs. 28-30) are Taj (j=2, °**, 5) and Q;.
Let T. be the amount of lag time between the j-th sub-basin and Fukuchiyama. When
the runoff prediction lead time L is not greater than T, we do not need the predic-
tion of the input of the j-th sub-basin for runoff prediction. 1f L>Tj, it is
required.

Fig. 3 shows the relation among T;, L, and the rainfall needed for the runoff
prediction calculation. For example, 1t shows that in the Wachi sub-basin (the
case j=2) the observed rainfall during the past three hours and the predicted rain-
fall during the future one hour are required to predict the discharge three hours
hence. When the flood runoff is predicted in a stochastic manner, it is natural to
treat the inputs also in a stochastic manner.

Let RPRE(k+m,3j) be the m~hour-ahead prediction of rainfall in the j~th sub-basin.
According to Fig. 3, we use RPRE(k+1,5), RPRE (k+2,5), RPRE(k+1,2) and the covari-
ance matrix of their errors to predict the discharge three houres hence; then the
dimension of the rainfall prediction vector becomes three. Similarly, in the pre—
diction of the discharge four hours hence, it becomes six. Thus, the greater the
lead time becomes, the greater dimension is required.

In this paper, we predict the rainfall by 3-hour moving average method. This
simple method has been often used in the practical work of flood forecasting by the
Ministry of Comstruction, for any special trouble has not occured in the conven-—
tional flood forecasting. At time k ,it gives

Ppg = (rp-2 v 1y FTR) /3 ' (36)

where ?k+m = the predicted value of the rainfall at time k+m; m = lead time (m=1,
+ee  L*); and ry = observed ainfall at time k. We assume the maximum lead time of
rainfall prediction L* is not greater than that of runoff prediction L.

Analysing the prediction error sequences obtained by the above method from
the past data of rainfall about both each sub-basin and each lead time, we obtained
the covariance matrix of the rainfall prediction error (Table 2). The data used
consist of 25 records of rainfall in the flood period during 1962-1975; they have
been arranged by Fukuchiyama Work Office, Kinki Regional Construction Bureau,
Ministry of Comstruction (12).

The outflow of the Ohno dam as well as the rainfall must be predicted. Though

j : Sub-basin No. ROB(t. j) : Observed hourly rainfall (from t—1 to t)
. RPRE(t. j) : Predicted hourly rainfall (from t -1 to 1)
i T, (nr) t ¢ Time
J k : The present time Tjt The lag between the j-th sub-basin and Fukuchiyama
1 : i i
2 2.8 s b T Do e e wom s 0 e o e 2 b e s e e e e
ROB(k - 2.2) ROB(k - 1.2) ; ROB(k. 2} RPRE(k+1.2) RPRE(k+2.2)
{ { i
i t 1
i 1 1
3 3.0 * S e e = e i o o o s e e =
ROB{k—2.3) ROB(k - 1.3) i ROB (k. 3) : RPRE(k+1.3) §
I 1
i ! i
: | ' !
4 4.0 % x e —T ————— -
ROB(x-3.4) |  ROB(k-2.4) | ROB(k-1.4) I ROB (k. 4) "
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Table 2 Covariance Matrix of the Rainfall Prediction Error

@HT | @2 @2 @3 @5 (2,5 (3,5
(1,2) 13.8 10.5 10.6 6.0 4.8 3.7
(2,2) 10.5 17.9 8.4 7.0 8.9 7.3
(1,3) 10.6 8.4 14.9 8.8 6.1 5.2
(1,5) 6.0 7.0 8.8 13.5 9.9 7.6
(2,5) 4.8 8.9 1 9.9 18.1 13.7
(3,5) 3.7 7.3 . 5.2 7.6 13.7 20.5

T (i,j) denotes i-hour-ahead prediction
of the rainfall in the j-th sub-basin

in this study we do not predict the outflow of the Ohno dam, its value and the pre-
diction error variance can be obtained in the following procedure. Before pre-
dicting the outflow, we first predict the runoff of the Ohno sub-basin (namely, the
inflow of dam) by rainfall prediction and rainfall-runoff model. Then we predict
the outflow based on the dam operational rule. As for the covariance among the
prediction error of the outflow and those of the rainfall in the other sub~basins,

© it must be obtained from the correlation among the rainfall prediction error of

the Ohno sub-basin and those of the other sub-basins.

In this paper, however, we assume that the outflow can be predicted perfectly
and treated as deterministic value; in part because the existing model does not
take account of the rainfall-runoff model of the Ohno sub-basin, in part also
because incorporating the dam operational rule into the model makes the prediction
algorithm more complex.

Filtering and Prediction in the Basin

The state equation of a stochastic rainfall-runoff model is represented by
Eq. 12; in the case of the existing model, f is given by Egs. 28 and 29.

As noted above, when the lead time is greater than one hour, rainfall predic-
tion is required. In this case, treating the future rainfall r as stochastic
variable, we linearize Eq. 12 statistically to obtain an equation corresponding to
Eq. 14 and discretize it to obtain an equation corresponding to Eq. 16. Then we
estimate the state tramsition by Eq. 17.

When the lead time is not greater than one hour, rainfall prediction is not
needed. In this case, we reduce the dimension to Ny,.

The observation equation is generally represented by Eq. 8; g is given as in
Eq. 30.

Note that there is no lag among Toda, Iwama, and Fukuchiyama; on the other
hand, there is 0.5-hour lag between Ayabe and Fukuchiyama. This makes the filter-
ing and prediction algorithm (Eqs. 20-23) a little more complex. It comes to this
that; after the third updating in the step 3) (namely, after using three observed
discharges at Toda, Iwama, and Fukuchiyama), we start with X; and P;, and obtain
the state transition during tp < t< ty+0.5; replacing the old values of %3 and P;
with the solution obtained at E=tk+0.§, and using the ogservedwdischarge at Ayabe
and Egqs. 20 and 21, we obtain x4 and Py; starting with X, and Py, we obtain the
state transition and predict the state at ty4+j. If the discharge at Ayabe is
missing, we omit the step in which we obtain ¥y and P,.

On the Noise Statistics

When a stochastic state-space model and Kalman filter theory are used to
filter and predict the system state, it is important to appreciate the noise stat-
istics (in particular the covariance matrix); for, in the algorithm of Kalman
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filter, the system noise covariance matrix must be given at each time to obtain the
covariance matrix of the error in l-step-ahead estimate; and the observation noise
covariance matrix also must be given at each time to compute the Kalman gain matrix.
Usually, the noise covariance matrices are fixed during the flood; in other
words, the noises are assumed to be steady. This type of filter is known as "non—
adaptive filter". However, the steadiness assumption is suspicious in such a phe-
nomenon as flood runoff; so that some investigators apply "adaptive filter", which
estimates the covariance matrix at every observation time. For instance, Hoshi et
al. (8) applied it to the Iwaonai basin (331 km?) .
In this study, we deal with two different types of noise as follows:
a) The noise statistics do not change all over the period of flood;
b) The noise statistics depend on the state and thus change with time.
In other words, a) is steady noise and b) is unsteady noise.
We first consider the observation noise. Let S=K in Eqs. 18 and 19. If the
observation noise v is steady (in the case of a)), suppose Z=I (identity matrix)
and the covariance matrix of y‘(that is, g) is

Cov{ v(ty) } = ZEk_ZT = R (const.)

In the case of b), Z and Ry may be shaped in various forms; in this study, we
suppose

hjxt+eg 0
Z = Toe (37
0 hex +cg

and let Ry =R (constant). Then

yiltr) = (hyx(ep) +eq ) (I+ei(er) ), i=l,000,K (38)
This type of noise is called "multiplicative' (15,16). Suppose

R=0a’1 39

where I =identity matrix; and o (>0) is constant. Then all of the observed dis—
charges are assumed to contain about 0. X 100% error . The observation noise covar-
iance matrix becomes

covi v(ty) } = zR 2T = a? 22T (40)

Secondly, we consider the system noise.

The system noise is BW(ty(j)) of Eq. 16. The system noise covariance matrix
Qtx(3)is given by Eq. 11. In the case of a), let Cpi and q; be constant all over
the period. 1In the case of b), in this study, we substitute BX;(t (3)) (B>0) for
Cpidi in the right side of the third equation of Eq. 11. Then the variance of
Wi (t(J)) is in propotion to X (tk(3)). Suppose Cpi (i=1,"',Np) are invariant all
over the period, then

a3 = BXs/ cpg | (41)

Thus q4 changes with time.

Since the state variables appearing in Eqs. 40 and 41 are not known, we
replace them with their estimates to approximate Cov{v(ty)} and qj.

Summarizing, a) is additive noise whose statistics are invariant all over the
period of flood. b) is unsteady noise whose statistics depend on the states at
each time; and the observation noise is so-called "multiplicative" noise.

Summary of the Stochastic Prediction Method in the Basin

We summarize the stochastic method of flood prediction in the Fukuchiyama
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basin as follows:

1)Give the initial state estimate and its error covariance matrix;
2)At time k, observe the rainfalls and the discharges; ‘
3)Predict the outflow of the Ohno dam;
4)Using the observed discharge at Toda, Iwama, and Fukuchiyama at time k, obtain
the estimate by filtering; i
5)Predict the state transition until 0.5 hour hence;
6)Using the observed discharge at Ayabe and the estimate obtained in Step 5),
filter the state; :
7)Predict the state transition from 0.5 hour hence to one hour hence;
8)Store the l-hour-ahead estimate and its error covariance matrix for the filter-
ing at time k+1;
9)Predict the rainfalls and give the covariance matrix of the rainfall prediction
error; )
i0)Incorporate the rainfall prediction vector into the state vector and predict the
state from k+l to k+L;
11)Output the predicted discharge at four gauging stations at each time from k+1 to
ktL and their error variance (or standard deviation);
12)Finish this algorithm if danger of furthur flood have got out; otherwise, set
k=k+1 and go to Step 2).

RESULTS AND DISCUSSION

We applied the above method to the data of rainfall and discharge in the
period when the flood had occurred in the Yura River.

In all the cases, we set the initial conditions as follows. The initial
storage height of each sub-basin was assumed to be 0.0 mm; as for in each channel,
we assumed the initial flow was equal to the initial outflow from the Ohno dam and
obtained the channel water storages by the reverse calculation. All of the initial
estimates of the system noises were 0.0. The error covariance matrix of these
initial estimates was assumed to be diagonal; the variances of the storage heights
were (10.0 mm)? and those of noises were c $9i/2 (i=1,°°°,6).

The computation time-interval At=0.1 hour and the observation time-interval
AT =1.0 hour.

On the Noise Statistics

We studied the two different types of noise, namely type a) and type b).

Fig. 4 shows l-hour-ahead prediction of the flood at Fukuchiyama on Sep. 14 in
1965. 1In the figure, the solid line is the observed hydrograph and the dashed line
is the predicted mean; the shadowed portion shows the region where the prediction
error at each time is within #10 from the mean.

The noise variances were given as follows: In the case of a) (Fig.4(A)), they
were obtained from the observed peak discharges of the past five floods. The ob~-
servation noise variances were given corresponding amounts of 10% of the average
of five peak discharges by the reverse calculation. The system noise variances
were given corresponding amounts of 10% of the average of the peak storages; they
were obtained from the peak discharges by the reverse calculation in which c i's
were fixed and qi's were adjusted. We assumed they were invariant all over ghe
period of flood. ) ‘

In the case of b) (Fig. 4(B)), we assumed that the observed discharges and
the states contain 10% error and set a=0.1 and 8=0.1. From the comparison between
(A) and (B), the result of Fig. 4(A) is not reasonable, because the prediction
error variance during low flow period can be considered relatively small. It is
reasonable to estimate the prediction error small during low flow period and large
during high flow period as Fig. 4(B).

Considering the above results, we will assume that the noise statistics (vari-
ances) depend on the states and change with time after this.
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Fig. 4 Comparison of 1-Hour-Ahead Prediction at Fukuchiyama
( (A)steady noise, (B)unsteady noise )

Effects of the Noise Variances on Prediction

As stated in the previous section, the variances of observation noise and
system noise are defined by the values of o and B, respectively. Changing these
values, we confirmed the effects of the noise variances on the results of predic-
tion.

Fig. 5 shows l-hour-ahead prediction (at Fukuchiyama) of the same flood as
Fig. 4. Pay attention to the difference between the observed value and the pre—
dicted value after and quite near the peak, and 10 prediction error. In the case
of Fig. 5(C), the observation error was assumed to be equal to the case of Fig. 4
(B) (2=0.1) and the model error was greater ( (B)B=0.1, (C)B=0.3 ). What is evi-
dent on comparing the two results is that the greater B is, the greater 10 predic-
tion error becomes. As for the predicted mean, however, it is closer to the ob-
served value in the case of (C) than in the case of (B).

When the magnitude of the observa-

tion noise is relatively small, the ob- g
served output (discharge) at each time 5 b=
is relied much on and contributes so much 0 ) (©
to state estimation., This is character- N=
istic of Kalman filter. Note that in o, 8
this way, the prediction depends on not ~ o
only the absolute magnitude but also the g
relative magnitude of the observation =] 8_
noise and the system noise. 5 81,
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Fig. 5 1-Hour~Ahead Prediction at Fukuchiyama with Various Noise Statistics
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error becomes small. From the comparison between the results of (B) and (D) the
same things can be ascertained.

Paying attention to the correction of the former prediction at the twelfth
hour when the discharge was first observed, we recognize that the correction is
sharper in the case of (D) and (E) than in the case of (B) and (C). This is also
characteristic of Kalman filter.

In Fig. 4 and Fig. 5, all of the predictions after and quite near the peak are
lower than the observed values. This shows that the original deterministic model
(namely, the existing flood prediction model) do not describe the runoff phenomenon
after and quite near the peak of this flood sufficiently.

The magnitude of the observation error varies with each gauging station sub-
stantially. Though we assumed 1% amount of observation error in the case of (D)
and (E), such a high accuracy is not realistic for the stations of the large basin
whose area is more than hundreds km?. As far as the existing model is concerned,
it is best to assume that the model error is 10-20%.

Under the circumstances, we suggest that ¢ and f be 0.05-0.1 and 0.1-0.2,
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respectively.
Relation between Lead Time and Prediction Accuracy

Fig. 6 shows the prediction of the flood at Ayabe (A) and at Fukuchiyama (B)
on Sep. 18 in 1965. The upper part of each figure shows 10 prediction error and
the observed hydrograph; the lower part shows the observed and predicted hydro-
graphs and the deterministic off-line prediction (which does not use discharge data
observed every hour). :

The greater the lead time becomes, the greater 10 prediction error becomes.

Form the comparison between the deterministic off-line prediction and our on-
line prediction before the first peak in the lower part of Fig. 6(B); in spite of
starting with the same initial conditions, the on-line method corrects error of
prediction at onmce. It is important to make use of discharge data obtained every
hour. Since the observation error during the high flow period is greater than the
low flow period, the result of prediction is not so close to the observed hydro-
graph. We assumed that the observation contains about 10% error (a=0.1), so that
we consider the prediction is good at least theoretically when the residuals of
1-hour~ahead prediction is about 10% of the observed discharge.

As for 3- and 4-hour—ahead predictions in Fig. 6, they fit the observed hydro-
graph well.

Apparently the persistence of the prediction residual is recognized in Fig. 4
~Fig. 6. This indicates the fact that these predictions are not optimal and the
model identification is not satisfactory. It is important to improve the existing
model. It is also important to make the rainfall and discharge observation more
accurate. In addition to these points, the rainfall prediction with high accuracy
is required to improve the accuracy of several-hour-ahead runoff prediction.

CONCLUSION

We developed a general theory of flood prediction in a basin consisting of
several sub-basins, and applied it to the Yura River basin. Our method is useful
as a stochastic method of real-~time flood prediction.

Flood runoff is a phenomenon in which the magnitude of the states and outputs
changes rapidly. When describing it by a stochastic state-space model, it is rea-
sonable to consider that the noises incorporated into the model are unsteady. As
one method of considering the unsteadiness, in this study, we assumed they are cor-
related with the state and outputs, and obtained satisfactory results.
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APPENDIX - NOTATION

The following symbols are used in this paper:

Cpi» 4
N(m,s?)

= constants (see Eq. 6);

. , . . . 2
= Gaussian distribution with mean m and variance s“;

colored system noise vector (Np—dimensional);
input vector (N,-dimensional);

signum function;

time (continuous);

time (discrete), k=0,1,°*° ;

lag time defined in Kimura's storage function method;
observation noise vector (Ny—dimensional);~
system noise vector (Nx—dimensional);

state vector (Ny-dimensional);

augmented state vector ((NX+Nr+Np)—dimensional);
observation vector (Ny-dimensional);

computation time-interval;

discharge observation time-interval;

constant denoting the magnitude of observation noise;
constant denoting the magnitude of system noise; and

Dirac delta function.



