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SYNOPSIS

Particle-to-particle interactions in a solid-liquid shear flow at high concen-
tration are investigated experimentally in detail, in order to obtain information
that could guide the formulation of the constitutive equations. Most of the grains
in the flow collide at the “upstream” quadrant on the surface of the relatlvely
lower grains, and then override them until the grains separate at the “downstream”
quadrant. )

The interparticle stresses are conveniently divided into collision stress and
contact stress. The former is evaluated theoretically by estimating the momentum
transfer in many-body collisions, starting from the analysis of binary collisioms.
On the other hand, the latter is considered to be isotropic pressure expressed by
the grain concentration and be related to the excess immersed weight of grains
which can not be supported by the collision normal stress.

By using these results, the characteristics of debris flow such as depth,
velocity and concentration are analyzed.

INTRODUCTION

Debris flow is a sediment gravity flow which rapidly carries high’concen-
tration of clasts (silt, sand, gravel and boulder) and the interstitial water.

For such a granular shear flow, the concept of interparticle stress due to
particle-to-particle interactions was introduced by Bagnold (1). He carried out
experiments in which neutrally buoyant particles were sheared in a coaxial rotating
cylinder apparatus, and obtained semi-empirical formulas for the stresses with some
physical considerations.

By applying his formulas for the “grain-inertia” region to debris flow ,
several studies were made recently (2,10), notably by Takahashi (10). Since the
mechanism of debris flow is closely related to the mechanics of interparticle
stresses, more quantitative studies on the interparticle interactions should be
made to reach a physically consistent conclusion.

In the mechanics of granular materials, there have been some analytical
studies on these stresses. For example, Mctigue (7) attempted to analyze the
stresses by making use of the dynamics of binary collisions as interactions among
grains. Kanatani's study (6) should be noted in that the quantitative continuum
equations were developed on the basis of microscopic properties of the constituent
particles. However, his model was simplified under the assumption that frequent
collisions between particles were replaced by a succession of random and elastic
collisions of a single particle against a rigid spherical wall. Daido (3)
attempted to improve Bagnold's simple flow model by applying Kanatani's model to
the stresses in debris flow . Recently, Savage and Jeffrey (9) expressed the
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stress tensor as an integral containing probability distribution functions for the
velocities of the particles and for their spatial arrangement.

Although various approaches to evaluation of the stresses have been proposed
so far, there is the lack of experimental information on the mechanism of inter—
particle interactions in the granular shear flow, especially those in solid- liquid
flow.

In the present paper, the interparticle stresses in two-dimensional solid-
liquid flow at high concentration

and high enough shear rate are Table 1 Experimental conditions of Case A
theoretically evaluated, based on 5 3 q. T C 0 T
the microscopic observations of 0 w0 i £ T £ c
interaction mechanism among grains. (em”/sec)(cm”/sec)(cm/sec) (cm) (sec)
By using these results, the charac- 59 203 16 52.8 0.341 10 0.259
teristics of debris flow such as 79 201 19 57.1 0.417 11 0.293
velocity, depth and grain concen- g0 206 on 68.4 0.466 14 0.302

tration are analyzed.

EXPERIMENTS ON INTERPARTICLE INTERACTIONS

%

Experimental Procedure

A series of experiments (Case A) has been
made to obtain information on the generation of
interparticle stresses in a solid-liquid shear
flow with high concentration of large particles.

The flume used was 15cmwide, 30cm deep and 7m long
with a transparent acrylite wall on one side, and

the slope was variable from 0° to 25°. Nearly
spherical mesalite particles were used as a bed
material whose mean dlgmeter d is 1.74cm and b4
density o is 1.25 g/cm”.

Prior to the start of tests, the sediment o
bed with 8cm depth was saturated with seepage Fig. 1 Definition Sket?h for
water. By supplying water suddenly at the contact angle and coordinate
upstream end of the flume, a flow of the mixture system
of grains and water started in a bore and
traveled rapidly downstream. The flowing

profile and the propagation velocity of the 4 6 5° 10

bore were recorded by two V.T.R. cameras. (cm)
Close-up view of the moving grains was '“'"""“'“-~—§L-..-f\.--u~ ~
. . N é—"flow =
taken with a 16mm high~speed camera running o \ (1 -
at a rate of 100 frames/sec, in order to — /:5 \\\ \ —
study the mechanism of interparticle \\! >
~— - O
Fig. 2 Example of contact angles

contacts. *\ \;k,/fNN‘:\\ }\y

The experimental conditions of Case A
are summarized in Table 1, in which 6_ is
slope angle of bed, q; and 9,4 are dis-
charges of seepage water and %resh water
supplied respectively, and Uf Hf and C
are velocity, height ‘and grain concen-

tration flux of the bore, respectively. g§20
>
Mechanism of Interparticle Contacts §
=
To describe the direct interactions g
among grains quantitatively, we introduce Py
contact angle 6 defined by the angle L Sn WSS TN WINENEN TSNS WO N N
- -90
between the sloplng bed and the tangen 6, (in degree) 90
tial plane at the contact point of two
contiguous particles, as shown in Fig. 1. Fig. 3 Frequency distribution of

An example of the contact angles observed contact angles
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in a frame of the film is shown in Fig. 2 by tangential lines at the contact points.
The frequency distribution of contact angles obtained from these figures is also
shown in Fig. 3, together with that in stationary bed.

Fig. 4 shows some examples of the variation of 8 obtained every 0.02 sec from
the beginning to the end of a grain contact. Herein, the contact angles at the
moment of encounter and separation of two grains are expressed as & , and 8',
respectively. The frequency distributions of 6 , and 8', are plottéd in Fig. 5.
Most of the grains collide at 6 , > O with few febounds“and separate at &', < O,
and the frequencies become maximum at 6 , = 45° and 6', = -45 , respectively. The
mean duration TC of a contact between two grains is about 0.28 sec as shown in
Table 1.

From these measurements, the modes of relative movements after the collisions
are classified into five types as follows:

[A] : Two grains keep in contact at constant 8 for more than 0.1 sec (% T /3).

[A']: The duration of constant 6 1is less than©0.1 sec. ¢

[B] :+ For & , > 0, especially & _ = 18° ~ 72°, the relatively upper grain over-
rides lower grain with de€rease in o _ .

[c] « For ec < 0, the relatively upper grain moves down lower grain with decrease

o
*

in & .

[p] : 1f GC* is near * 900} grains alter=— o ; -
nateiy move down and up. ] f0=5 10
-”"“““~——lr~—uf\n_—« (cm)
<—flow ¢ ~
- o O »
30 e 71770 NS\ N D
~ | o= ? W\ A AN AB
2 — - ~Ns o
L ¥
§ *
3 i * N Te Fig. 4 Variation of contact angles
e x [aalx|e
H x T las ahle |
-® ® I YYYS -
oLe.e YN [co,00lannA
-90 0cx O 90 -
6o= 7" P
EO alA S
> L |a|aB g
s ol A 3
Eg - 1% | B 3
el lolc &
g @D ®
2 - |72 | E ®
R B ®
O——._-I 1 L A
-90 90
™ o
o ~.
o= 9 z
3°r 5
) U
= ¢ [~
BN )
o 3
= o
U - [
s . 5
£ Fe oo 2 A AA g
k‘o b 0 OlaaiAADLA S G BF e
-390 0o 90 -90 oc*’G;*O (in degree) 90

6,4 (in degree)
Fig. 5 Frequency distributions of GC*

ie. 6 Frequency distribution of
Fie d 4 ~and eé*

relative movements
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Fig. 6 shows the frequency distribution of these modes versus 6 , . Types [A]
and [B] are dominant, while the others are negligibly minor. It shotld be noted
that the relative movement of most grains classified in type [A] is converted into
type [B] ([A+B]).

Consider a collision for which a reference grain is impacted by a neighbouring.
grain, as shown in Fig. 7. A spherical coordinate system (r, 6, ¢) fixed at the
center of the reference grain o is introduced. Using the above results obtained
from the close-up view of the contiguous grains near the side wall where they tend
to be in contact -at ¢%0 or w, the conclusions are .as follows:

1) Grain i being slightly higher in position and having velocity relatively faster
than grain o collides on the surface of grain o where 0 < 8 < 7/2 and #/2 < ¢ <
3n/2. On the other hand, grain i being lower in position collides on the surface
where 7/2 < 8 < 7 and -7/2 < ¢ < n/2.

2) For the two-dimensional shear flow, the frequency of collision at constant ¢ is
given by (14)

2
§2+Aesinze cost de/jg/ sinZp cose do = sin3(e+46) - sin’e

using Eq. 6 described later. The histogram in Fig. 5 is the result calculated with
Ap = 18 .

3) Most grains collide at the angle of ¢ « > 0, and then override the relatively
lower grains until the grains separate at the angle of 6', < 0. Therefore, few
rebounds at the moment of grain collisions have been obsérved.

4) According to the observation of the film, the colliding grain i is accompanied
by some grains in contact with it. Each accompanying grain also has some grains in
contact with it. Therefore, the collision is a many-body one.

ANALYSIS OF INTERPARTICLE STRESSES

From the modes of grain-to-grain interactions mentioned above, the stresses
arising from such interactions are conveniently divided into collision stress and
contact stress due to the forces acting at the grain collisions and during the
subsequent relative movements, respectively. Debris flow is also characterized as
a many-body system that grains are linked like a kind of network. Once grain i
collides with grain o, as shown in Fig. 7, the momentum must be transmitted to the
neighbouring grains through each contact point.

In order to estimate the collisional transport of momentum and to determine
the collision stresses, the binary collisions are analyzed at first, and the
analysis is extended to the problem of momentum transfer in many-body collisions.
On ‘the other hand, as the contacts during the relative movements after grain en-
counters are not collisional, contact stress
is considered to be isotropic stress ex-
pressed by the grain concentration in the
flow.

Collision Stresses

(a) Gollision stresses for two-grain
interaction
Consider a collision between grains o
and 1 of equal diameter d as shown in Fig.
7. The change in momemtum of grain i is

m(ul-u) = (nous)[f°F de (1)

in which m is mass of each grain, u, and u!
are relative velocities of grain i to grai%
o before and after the collision respective—
ly, n and s are unit vectors in the di-
rection from the center of grain o to the

Fig. 7 Definition sketch for
collision
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collision point P and in the sliding direction of grain i respectively, u is coef-
ficient of sliding friction, t is collision time, and F is normal collision force.

For two-dimensional shear flow u(z), m, s and u, can be written in terms of
the spherical coordinates & and ¢ as *

n = (sin® cosd, sin® sind, cosh) (2)
s'= {u,- (u,-n)n}/{(u,-u) - (u.-n)z}l/2
i i i i i
. . 2
-1 - cosz¢ Sinze)l/z’ B sing cos¢ sin 6 ;

(1 - cosz¢ sinze)l/z

cosd sind cos@ cosf

(3)
(1 - cos’y sinze)l/z | coss]|
u.z (d cose 22, 0, 0) ; ' (4)
i dz

By using the no-rebound condition u!-m = O at grain collisions and the orthog-
onal relation n-s = 0, Eq. 1 reduces to

m(ui - ui) = - m(ui-n)(n -~ us) (3)

Grain o receives impulse with the same magnitude as that of grain i but in the
opposite direction. The number of collisions of grain o per unit time at the angle
within the ranges & and 6+de, and ¢ and ¢+dp is

dn = - (dzsine de do n-ui)N (6)
in which N is number density of grains represented by
3 3
N = C/(F d°) = 8C/(C,d") )

in which C and C, are volumetric concentration of grains in the flow and the
stationary bed respectively, and the coefficient B is 1.14 in the present
experiments.

With Eqs. 5 and 6, the mean collision force acting on grain o is given by

F=- {m(u! - u,) dn
J i i
= —j 6 ct)mN(n - uS)(U{ n)zdzsine de d¢ (8)

The interparticle stresses in granular flow are defined as resultant forces
acting on either side of the surfaces of grains cut by the plane S of unit area.
Let us consider the collision stress t_ acting on the plane S _ perpendicular
to the z axis. The equation for ¢t is derived as follows: z
1) When a grain is cut at the ang%e g' by the plane S_ as shown in Fig. 8, the
collision force F (8') acting on the shaded surface of the grain is described by
Eq. 8. The integTrations are performed over 6§ =

Z

A

Fig. 8 Definition sketch of 8’ ' Fig. 9 Redefinition of spherical coordinate
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0 ~ 6! for w/2 < ¢ < 37/2 when O < ' < /2, and over 6 = 0O
~ T-8' for /2 < ¢ < 371/2 when w/2 < 8' < 7.

2) The number of grains cut by S of unit area at the angle
within the range ©' and 6'+de! i% given by N(d/2)sine'de’.
Thus, T, is

— [ ] i 1 ]
T, = je‘=0F (6')N(d/2)sinb'de
3m/2 w/2 Zd du,2
- —j¢:n/2d¢(j =0 Se 0 Xeu.n/zg Dy (&
“F(0,9)de sin6' do’ 9)
. . 2 .3 2
in which F(6,¢) = (n-us)cos 6 sin"6 cos ¢. x
The collision stress T acting on the plane S perpen—
dicular to the x axis is also given as . Fig. 10 Definition
n/2 n/z e' - 2d” du.2 sketch of 8!
[l ISYPLLS M +§e'=n/zje=0 ™y (&)
+F(08,0)de sing' de’ (10)

in which the spherical coordinate system is redefined as shown in Fig. 9, and the
angle 6' is shown in Fig. 10. Therefore, the following equations must be used for
n and s in F(8,¢) of Eq. 10.

n

i

( cos®, sin®sing, - sinbcosd)

cosd

s = ( - sin®, cosbsing, - cosecos¢)$CO5¢]

After some complicated calulations, stress components are described by

2m C 2, du 2 .
T fa ) Ca ) A D
A A -0.0898-0.089u 0.0762-0.076y
XX X2 _
A A 0.0762+0.102u ~0.0898+0.067q
zx " zz

(b) Momentum transfer for many-grain interaction

Let us term grain i impacting grain o “lst-order grain”. “2nd-order grain” is
defined to be grains in contact with lst-order one, 3rd-order grain” be grains in
contact with 2nd-order one, and so on. If the collision between grains o and i
happens, then the change in momentum of each grain is

m du1 =(n - us) F dt + % E 1dt
Ny 7
m duz = EI,Zdt + ¥ E3 Zdt
- - - ® - ° ® 2N3 - e - - s .
: (12)

m dul = E1~1’ldt + ¥ E1+1,1dt

. 1N141
m duhl: E1,1+1dt + X El+2 hPt

1410142
in which du. is velocity change of jth-order grain, E, is force acting on

(j+1)th- orddr grain from jth-order one, and N is ﬁu&ber of (j+1)th- order grains
in contact with jth-order one.

Obviously E, ——EJ je1 and we assume the following relation in Eq. 12.

+1

i+l

s a0

F>3 R, 1L B Ll > X IE I, I

1o N3 1410142
Adding each equation in Eq. 12 and considering the above relations yields

1+2,1+1l
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m(dul + 0z du, s cere o3 5 seee 3y du, )

1+1
N2 N 2N3 1M1
= (n - pus)F dt + X y eves b E dt
1+2,1+1
1Ny oN3 LML 2
“ (n - ps)F dt (13)

For the process of the momentum transfer, the following relation is assumed.
¥ duz/du1 = 5 dus/du2 = eesr = ¥ duhl/du1 = €
12 N3 1N
in which 0 < e < 1. Eq. 13 thus reduces to

M1 4 e+ el 4 seesns 4 el)duy = (n - us) Fdt (14)

As 1 » », Eq. 14 becomes

(u} - ul) = (n - ps)gch dt . (15)

m

l1-¢
in which u, and ui are velocities of grain i before and after the collision with
grain o, respectively.

Comparing Eq. 15 with Eq. 1, it is found that the mass of a grain in many-body
system must be replaced by M=m/(1-¢) due to the effects of many-body collisions on
momentum transfer. Since e approaches 1 as C + C, ,e may be expanded in a Taylor
series about C=C, . \

E=1+%%(C-C*)+avs-'___.1+_]_~_c'c.k

kM c*k
in which k. is a constant determined later. As a first approximation, M is
described gy

Ky

M=m T,

(16)
Thus, collision stress components are given by Eq. 11, into which M is substituted
for m.

Contact Stress

Contact stress due to the grain contacts during the relative movements after
the collisions may be determined by both the number of contact points n_ on a
single particle and the contact force exerted on it from a neighbouring one. Con-
sidering that the geometrical distribution of contact points except those of col-
lisions is nearly uniform (Fig. 3) and neglecting the minor role of contact shear
stress, the contact pressure p can be obtained on referring to Eq. 9 and Fig. 8 as
follows:

n_ F! 2
b o' ¢ d d ,
P :SO [KO 5 cos T3 sin® de]E-N sin6' 4o’
7T d
Lo
=% ncd F'N
C
= (C*néF’)(E ) 17)

in which n'=n /(ﬂdz) is density of contact points on a grain and F' is the normal
contact foFce“at each contact point. Since the strict estimation of n'F' is very
difficult, it may be evaluated under the following physical considerat%on:

1f the collisions were elastic, the dispersed grains could be supported by only the
collision stress. However, because of completely inelastic collisions as
aforementioned, n'F' may be generated by the excess immersed weight of grains which
cannot be supportéd by the collision normal stress, and related to the grain
concentration.

The contact pressure should vanish as C~ CS, where Cs is the grain concen-
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tration at the free surface. C,n'F' can be expanded in power series of C about C=

e
w

Cs' The following relation is derived as a crude approximation:

CC - Csg
pcz': Cs

(18)

in which K C/C, formally corresponds to a bulk modulus in the area of continuum
mechanics.? For the functional form of K , the relation K« (o-p) ghcos6® has been
inferred dimensionally from the above cogsiderations, in which p is density of
fluid and h is flow depth.

Thus the interparticle stress components o, are given by

ik
Tik T Tik TP Shi
2
_ .2 m (C/Cx) du, 2 C C - Cg
“f akt oo (@) AT, o Sk (19)

in which sjk is the Kronecker delta.

Comparison With Bagnold's Formula (1)

Bagnold sheared neutrally buoyant spherical particles in a coaxial rotating
cylinder apparatus and measured both the torque and the normal stress in the radial
direction at the various concentration of particles. In the “grain-inertia” region
which is relevant to the present study, he gave the formulas for the stresses

o al((En 1 132y

sz = a SanB dz (20)
10 ¢
= O tano - i
zZZ B - ]
- i
in which a_ is dynamic angle of internal :____ E 20 /
friction and a is numerical constant, with the - a sg;a - 0.013 /
values of tano_=0.32 and a=0.042, respectively. On o A £ g; : /
the other hand, the collision shear stress in the o #?; 0.1 /
present analysis is %; 1k ky= 7.5 /)
w2 2 ) -
9, = (0.0762+0.102u) g B kM o d ~ -
2 ° i
(G/Cx)" ,du,2 3
1 - C/C* (dz) (21) o'
The calculated result of the present theory to- 0.1
gether with the Bagnold's one is shown in Fig. 11
in the form of nondimensional stress versus C/C*.
Since they agree well for =7.5 and u=0.1, the
value of kM is inferred as about 7.5 for debris
flow.
§
FLOW PROPERTIES OF DEBRIS FLOW 0.01 bl
0 0.4 C/Cx 0.8
Experiments on the Movement of Debris Flow Fig. 11 Comparison of present

theory with Bagnold's one
(a) Experimental method

In order to investigate the nature of debris flow in detail, two series of
experiments with mesalite (Case B) and sand (Case C) as a bed material were
conducted. The flume and the experimental procedure were almost same as those of
Case A aforementioned. Items of the experiments are summarized in Table 2, where ®
is angle of repose of grains in water, and 6_, and @ . are critical slope angles
for the occurrence of debris flow and for the instabi?ity of the whole sediment bed
layer, respectively. Both the slope angles are given by Takahashi(10) as
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Table 2 Experimental conditions for debris flow

d o] C, tand 901 60* 90 60 Uf Hf

m
(mm)(g/cm3) (cm” /sec) (em/sec)  (cm)

Case B 8.2 1.6 0.59 0.78 5.9° 11.5° 200 4°.12° 70 ~ 90 512

Case C 4.6 2.59 0.58 0.73 11.7° 19.3° 200 12%23° 100150 3 ~11

_ c.(o = 0)
can by = C,lo- o +0(1 + 1/x)

with ¢ = 0.75, and

tan®

tan @ C.lo - p)

—— tan?®
0% = C(o - p) + an

The distributions of grain velocity and concentration were measured by filming
the flow with the 16mm high- speed camera running at a rate of 100 ~ 200 frames/
sec.

Referring to the method by Hirano and Iwamoto (5), the measurements of the
grain concentration distribution were made as follows: 1) Only one layer of the
grains in contact with the side wall was photographed by supplying white water
colored by small amount of white paint; 2) From the photograph of the flow, we
divided the whole region into several rectangles of equal area and counted the
number of grains N, in each rg?ﬁaggle; 3) N, was transformed into concentration
with the relation C:C*(N /A) d" /8, in whicﬁ A is the area of a rectangle.

Discharge and concenération flux of the debris flow were measured at the down-
stream end of the flume by catching the flow in a bucket.

(b) Experimental results

In the following discussion, x is taken in the direction of flow and z is
vertically upward from the bottom, as shown in Fig. 1.

The vertical distribution of concentration C/Cb measured in Case B is plotted
in Fig. 12, in which n=z/h and C_ is concentration at the bottom n=0. Although
there is wide scatter in the expérimental values and remains doubts on the accuracy
of concentration estimated from particle number in contact with the wall, it should
be noted that the concentration gradient in debris flow becomes larger with de-
crease in the slope angle 6 .

Examples of the grain velocity profile u/u_ are plotted in Fig. 13 (a), (b)
and (¢), in which u_is velocity at the free surface. It is clear that debris flow
is characterized by grain velocity profile, which is convex upward in the lower
part of the flow and inversely downward in the upper part, and thus has an in-
flection point. Because of the asymptotic decrease of velocity near the movable
bed, it is difficult to decide the position of the
bottom.. In the present study, z=0 has been con-
veniently taken at the elevation where the flow T

o
velocity is about 0.03u_ , after some trials. X 6 =5
The broken lines in these figures show the i O
analytical solutions which Takahashi (10) derived. n
According to the theory, the grain concentration is )
uniformly distributed with respect to z and is ex- - Case B
pressed as o.5F o s°
tan © B 9°
c=¢, = . (22) A
T o-p)/pj(tan® - tan?9 "
{( )/o}(tan an 8;) [ 0 12°
in which C. is concentration flux defined later by | —Eq. 32 u= 0.1
Eq. 39. Tﬁe velocity profile is given by 0 Ly g XS 43
3/2 0.5 ¢C/C 1
wu =1 - (1-m) / (23) 0 ot
Analysis on the Distribution of Grain Concentration Fig. 12 Distribution of

and Velocity concentration
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The basic equations for the two-dimensional
steady and uniform flow are written as
390

3z

acw

{0C + p(1 - C)}g singy + (1 - C)g;zx

3 —

- 5——2*{9(1 - C)U‘:JWV'J} =0 (24)
BGZZ

- (0 - p)Cg cosfy + 55 +1,=0 (25)

Ia the above equations, both the viscous stress

o__ and Reynolds stress - u' w' in the inter-
sf¥tial fluid are assumed fo Pe negligibly minor.
IZ in Eq. 25 is due to an interaction force be-
tween grains and fluid. It consists of two main
forces caused by relative velocity between grains
and fluid and by added mass at the grain col-
lisions. While the former force is neglected
because of minor role, the latter is considered
by substitution of m(1+p/20) for m in o__ of Eq.

19. The stresses o and © are expregged as
zX zz
o = = cdzi(—:lgi-)-z(ég)2 (26)
zx © lzx KM 1-¢/C, “dz
. _m 2
with KM~6(O-O762+0-1OZH)B kM, and
92 = T2z TP
27)
¢ (G -Cg)
p=K ¢
p C, CS
For convenience, we put
2x Y
= e e = o (28)
s 1 + p/(20)

0.0762+0.102H

in which Y=g age 5 0671

B

(a) Distribution of grain concentration
Substituting Egs. 26 ~ 28 into Eqs. 24 and

25, the concentration gradient is given by

Kp dc o - tanfg
C (o0 - plgh cosB_ dn =«
s 0
C - C
. [ o
30 -c, (29)

in which C_denotes the concentration for p=0 (K =
0) and is written as P

_ tanfg
o {{o - p)/pt(la - taneo)

C

1—-9:160

— 0
t=0.142sec

4] 0.5 o/ug 1
(b) Following flow
r 18°
— 00"
. t=0.233sec
n

A Q=1.5 1/sec
] 2 1/sec
[T W T N O T

0 0.5 ulug !

(¢) Velocity profile together
with that by Takahashi (12)

Fig. 13 Velocity profile (Case
C); t is elapsed time from
passage of the front of debris
flow past the measuring station.

(30)

The boundary condition of debris flow over movable beds is taken to be u=0 and C=C,
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at the bottom z=0. Putting

K
p Y o~ tan@o _ ‘
Cs(c - p)gh cos o, X o =V (D)

and assuming y to be a constant, the integration of Eq. 29 yields

- C* - C 20 - Cs C - Co _)_(' (32)
n (2 C:’: C?’: e ‘Cv’: - CO’) ¥
Putting C:CS atn=1 in Eq. 32, the surface concentration is given by
Cs - Co Ci -Gy ‘ !
__—C* — Ca = exp{(2 MC* - X)C*/(ZCOI - Cs)} (33)
Integrating Eq. 32, average concentration C becomes
- X :
C=C¢C - & 4
o * Gy -G " ’(3 )

(b) Velocity profile
Integrating Eq. 24 by use of Egs. 26 and 29, the following equation 1is ob-
tained.

/2
dwy _hb o b . y-12 (1 - c/c)! s
dn( 7,:) ~d (KM o X C‘-‘C) C/C_’,: [(C - CS){ o (G + ZCQ) + 2}
o-0 ., C - Caql/2
+ (1 + - ¢y -c) 1n_—--——cs — Ca] (35)

in which u*:ﬂgh sin 6 is shear velocity. It is found that velocity gradient be-
comes zero at both the free surface and the bottom.

Utilizing Eq. 29, u/u, can be solved under the boundary condition of u=0 at
n=0, i.e. C=C_.

u _ b (b y3yl/2 .
u_k*deM( ¢’y SF(C) dc (36)
in which
F(gy = 26 = Cs (1 - c/cp'/? [(c-c)HZ=L (c+20) +21
T Tt-c, ~clg, T st e O
o-p C - Caq1/2
£ (1w 2=20)20 ) 1n—————~CS ¢, ]

Eq. 36 becomes a function of n by using Eq. 32. Putting C= CS and u=u_ in Eq. 36,
the surface velocity is obtained. The dimensionless velocity profile may be
written as

-5 * F(C) dc /{* F(C) dC (37

S s

Integrating Eq. 36 with respect to n, average velocity U becomes

. =R (0 ‘”Zj S Cs(j F(C) do)dc (38)

(¢) Grain concentration flux .
Writing fluid velocity as u s concentration flux CT is defined by

6y =f; Gudn/f{Cu+ (1-0u }dn (39)
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Considering u%uw, Eq.” 39 becomes

Cp = Sé Cudn / f; u dn
% cl2c - c) (™
= XC “"E"jfg”i— (}C F(C) dc)dc /
o ;
v 20 = cg (%
jC —C_—:_—Cj- (j‘C F(C) dc)dc (40)
5 o

Fig. 14 shows the experimental results of C_ in Cases B and C. In order to calcu-
late the above equations, we must determine the values of the coefficient y -of
sliding friction at collisions and x defined by Egq. 31. After some trial calcu-
lations of Eq. 40, the following two features of u and y have been found. First,
the gradient between C_ versus tan®( is determined predominantly by y. Secondly,
bed slope such that CT:C* is prescribed by wu.

Noting these features, C_ is calculated versus tan®_ for various values of yu
and X. As a result, good agreement is found between calctlated and experimental
values if p=0.1 and x=1/3, as shown in Fig. 14. The theoretical curves of concen-
tration distribution and velocity profile calculated by using these values are
shown in Figs. 12 and 13, respectively. Agreements between the theory and the
experiments are reasonable.

Characteristics of Debris Flow
According to Takahashi's theory (10), the average velocity is given by

2 h p
= == { C + (1 - C) =}
s 5 a.sinaB d o

1/2

cled

- 1} 41)

in which assina, is assumed to be 0.02 (11). The average velocity by the present
analysis is described as Eq. 38. The equations for the moving velocity and the
height of the bore are obtained as follows: Replacing u and h in Eq.38 by Ug and He,
dimensionless moving velocity (UfA/ngsin(%)d/Hf becomes a function of C_ (or
tan 6 ) with parameters of o /o, u, x and k_. Figs. 15(a) and (b) show thé results
of the dimensionless velocity calculated %y Eq. 38 withu=0.1, x =1/3 and kM=5,
together with the experimental results.

The total discharge per unit width at the debris front q.= Ufo is prescribed
by the supplied water discharge 9., @8

0.6
L @
0.4 1~
cr I ) - — Eq. 22
i Eq. 40
[} Case B
0.2}~ o} Case C
n [ ) Takahashi
- (1977)
0 1 | i ] { ] | i ¢ |
0 0.2 tan fg 0.4

Fig. 14 Concentration flux versus bed slope



79

1 1,
i = ~
_.LI.F.S.. - Uf_d_ - pé%
u, He u, Hf
B 5 Y
0.1~ 0.1 \
» O Case C
O Case B \ 38 \
—— Eq. 38 p=0.1x=1/3 — FEa. \
B ky=5 e = Eq. 41 i
—=— Eq. 41 a sin®;=0.02
0.01 | { | i i i 0.01 { { ‘I i | {
0 0.2, 0.4 0.6 0 0.2 0.4 0.6
i Cy
(a) Case B (mesalite) (b) Case C (sand)

Fig. 15 Nondimensional moving velocity of debris bore versus CT

-
P ® Case B
- 6 O
3 O Case C
[~
©® L —— Eq. 43 e
S u=0.1 00
e, X=1/3
S 41 ky =5
E — —Takahashi
&l - (1978)
=
= 2+
P
- -
o I | | ] I : 1 I J
0 0.1 0.2 0.4

tan 000'3

Fig. 16 Nondimensional bore height versus bed slope

?_‘_:_ ) Ufo B 1 (42)
q.,. 4., I -C./C,
w0 w0 T %

Substituting Eq. 38 into Eq. 42, nondimensional bore height is expressed as

0.2
H. (g sine6. ) C,
: b 2k, G
(d qw()) ° * T
& 2¢ - Cs b 0.4 ‘
fcs = ¢ J. F(oraoyac)® (43)

Fig. 16 shows the theoretical curve together with the experimental results.

A solid line is the result calculated by Eq. 43 and the broken line is the one
deduced by Takahashi's theory. From Figs. 15 and 16, good agreement is found
between the present theory and the experiments.



80

Lastly, it has been known that the layer of water is formed over the dense
mixture of grains and water at the slope angles such that 6 <o (8, 13). On the
other hand, the authors (4) have pointed out that the layer of plug flow is formed
over the shear flow at & >6 ,. Therefore, this theory developed on debris flow is
suitable for the angles getween eOi and 60*

CONCLUSIONS

The interparticle stresses and the characteristics of debris flow have been
investigated theoretically and experimentally. The results are summarized as
follows:

1. From the microscopic observations of interparticle interactions, the mecha-
nism of grain collisions and the modes of the subsequent relative movements are
made clear.

2. Most of the grains in the flow collide at the “upstream’ quadrant on the
surface of the relatively lower grains, and then override them until the grains
separate at the ~downstream” quadrant.

3. The interparticle stresses are divided into collision stress and contact
stress, The former is evaluated theoretically by extending the analysis of the
binary collisions to the problem of momentum transfer in many-body collisions. The
latter is treated as the isotropic pressure expressed by the grain concentration.
Thus, the interparticle stress components are given by Eq. 19.

4. The distributions of grain concentration and velocity in debris flow show
the following features: 1) the concentration gradient becomes larger with decrease
in the bed slope, 2) the velocity profile is convex upward in the lower part and
inversely downward in the upper part, and thus has an inflection point in a flow.
These experimental results agree well with the theoretical ones obtained by
applying the above stresses to the basic equations for debris flow.

5. The characteristics of debris flow such as concentration flux, velocity and
depth are predictable, as shown in Figs. 14, 15 and 16, respectively.
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APPENDIX -~ NOTATION

The following symbols are used in this paper:

a = numerical constant in Bagnold's formula;

G, C, = grain concentrations in the flow and the bed;

Cb = grain concentration estimated from NA at the bottom;

CT’ 9 = concentration flux and average concentration of grains;

d = grain size;

dn = number of collisions against the small surface of a grain per
unit timej; )

Ej,j+1 = force acting on a (j+1)th-order grain from a jth-order grain;

F, F . = normal and mean collision force;

Fz(e') = mean collision force acting on a either side of the grain
surface cut by the plane SZ;

F(e,9) = function of 6 and ¢ in Eq. 9;

h = flow depth;

Hf = height of debris bore;

IZ = vertical component of stress due to the interaction force
between grains and fluidj;

kM = numerical constant related to &3

KM = coefficient in Eq. 26;

Kp = coefficient related to contact stress;

m = grain mass;

N = number density of grains;

NA = number of grains in contact with the side wall;

n, né = number and density of contact points on a grainj;

JNj+1 = number of (j+1)th-order grains in contact with jth-order one

n, s = unit vectors in the direction from the center of grain o to the
collision point and in the sliding direction of grain i;

P = contact stress;

45 90 = discharges of seepage water and fresh water per unit width;

q, = total discharge of debris flow per unit width;

Sx’ SZ = planes of unit area perpendicular to the x axis and z axis;

t = time; '

t = collision time;
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a © =

Q

mean duration of a contact between grains;

flow velocities at a level z and the free surface;

average velocity;

shear velocity;

relative velocities of grain i to grain o before and after the
collision;

moving velocity of debris bore;

cartesian coordinate system as defined in Fig. 1;

ratio of collision shear stress to the normal stress;

dynamic angle of internal friction in Bagnold's formula;
coefficient in Eq. 7;

coefficient in Eq. 28;

Kronecker delta;

coefficient concerning momentum transfer in many-body collisions;
dimensionless form of the ordinate z;

spherical coordinates as defined in Fig. 7;

slope angle of bed;

critical slope angles for occurrence of debris flow and for the
instability of the whole sediment bed;
numerical constant in the equation of 6015
coefficient of sliding friction;

fluid density;

grain density;

interparticle stress component;

collision stress vectors on the planes,SX and SZ;
collision stress components;

angle of repose of grains in water; and

numerical constant related to Kp.



