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SYNOPSTIS

Laminar dispersion coefficients both in an elliptical pipe and a rectangular
pipe have been studied theoretically. Change in laminar dispersion ccefficient
with respect to cross-sectional shape is discussed for a wide range of aspect
ratio Ar.

Non-dimensional dispersion coefficient both in an elliptical pipe and a
rectangular pipe attains the minimal value at Ar = 1 and is logarithmically
symmetrical about it. The behavior of non~dimensional dispersion coefficient for
Ar ¥ 1, however, is remarkably different between an elliptical pipe and a
rectangular pipe: the former monotonously increasing with Ar - © and Ar 0.
whereas the latter approaching an asymptotic value as Ar = ® and Ar + O.

At Ar = 1, non-dimensional dispersion coefficient in a square pipe is greater than
that in a circular pipe. Comparison of dispersion coefficient with different
cross-sectional shapes reveals that geometrical shape of a pipe decidedly affects
the change in laminar dispersion coefficient with the aspect ratio.

INTRODUCTION

The mixing of soluble matter in the shear flow can be treated as an one-dimen-
sional dispersion, where the convection of the matter by velocity deviation in the
cross-section is balanced with the molecular diffusion. The dispersion equation,
which is one-dimensional representation of the diffusion equation, is expressed as
follows:
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where s = the cross-sectional mean concentration of a tracer; U = the cross-
sectional mean velocity; x = a longitudinal coordinate taken along the direction

of mean flow; and t = time. Dx is the longitudinal dispersion coefficient defined
as follows:
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where s' = the deviation of concentration from the cross—sectional mean; u'= the

velocity deviation from the cross-sectional mean; and A = the area of a cross-
section of a channel.

Analysis of mixing of materials by the dispersion equation (Eq. 1) is widely
used in the fields of civil engineering, chemical engineering etc.. However, the
value of dispersion coefficient for general shape of a cross-section of a channel
has not been obtained so far. The definition of Eq. 2 shows that the value of dis-
persion coefficient may have a wide variation dependent on the velocity distribution
in a cross-section. In the case of turbulent flow, which bears a practical impor-
tance, the dispersion coefficient is deduced from the results of the field observation



66

or laboratory experiments, because theoretical evaluation of velocity distribution
is often different from the real distribution. On the contrary, in the case of
laminar flow, velocity distribution is known for pipes with many kinds of cross-
sectional shape. Therefore, it is possible to investigate theoretically the
dispersion coefficient in some kinds of pipes.

In this paper, analytical solutions of laminar dispersion coefficient will be
obtained for the flow in pipes with elliptical and rectangular cross-section.
Moerover, the relation between the dispersion coefficient and the cross-sectional
shape of the pipe will be discussed for a wide range of aspect ratio of cross-
section.

Taylor (6) obtained the longitudinal dispersion coefficient of a laminar
flow in a circular pipe under the following assumptions: (i) the longitudinal
molecular diffusion term is negligibly small compared with the convection term,
(ii) for an observer moving with the mean flow velocity, the temporal variation of
the cross-sectional mean concentration is much smaller than the spatial variation
of the concentration deviation from the cross—sectional mean, so that the phenome-
non is considered to be steady in this system. The obtained dispersion coeffi~
clent is expressed by the following non~dimensional form:
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where D = the molecular diffusion coefficient; R = the hydraulic radius (= r/2,

r = the radius of a circular pipe); and u = the maximum velocity of the flow.
Analysis of laminar dispersion in an elliptical pipe and a rectangular pipe

will be carried out on the basis of Taylor's assumptions in the following sections.

LONGITUDINAL DISPERSION COEFFICIENT IN AN ELLIPTICAL PIPE
Fig. 1 illustrates a coordinate system of a pipe whose cross-section is an

ellipse with the major axis a and the minor axis b. Relation between the Cartesian
coordinate system (y,z) and the elliptical coordinate system (E,n) is

y = ¢ cosh £ cos n; z = ¢ ginh £ sin n
e? = a2. p?
a = ¢ cosh 50; b = ¢ sinh go
1 a+ b 1 Ar + 1
S M b v )
h, = h
€ z

=c/shm%+sm%}=ch

where Ar = the aspect ratio of the
cross—section of an elliptical pipe
(= a/b).

Provided that the secondary
flow does not exist in the cross-
section, and that the flow becomes
uniform in the direction of x~
coodinate, the molecular diffusion
equation is written in terms of the
general orthogonal curvilinear coor-
dinate system as follows:

7sconst,

Fig. 1 "Elliptical coordinate in an elliptical
pipe



67

h

h .
9s 3s D 9 ds 3 m 9s 3 £ ds
et Usx T hghn{ 5% Nehax T5E By O tan e, } )

The molecular diffusion term of x-direction in Eq. 5 is considered to be negligible
because it is smaller than the convective term. Moreover, comsidering that hg= h
= ch in the elliptical coordinate system, we rewrite Eq. 5 as : n

3s s D 3%s  9%s
at 9%  c2h? ( 3E2 + an2 (6)

Then, the concentration of tracer and the velocity are expressed by the sum of the
cross—sectional mean value and the deviation from it, respectively, as follows:
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Eq. 6 may be transformed by the use of the moving coordinate system with the cross-
sectional mean velocity u as follows:
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where x1= x - ut. Considering the deviation of concentration is much smaller than

the cross-sectional mean, i.e. s'<<s and temporal variation of the mean concentra-=
tion is negligibly small in comparison with spatial variation, 1.e. {85/8t|<<
!u'Ss/le‘, we obtain the following equation from Eq. 8

. 9s D 325" 3%s’ '
T =
u 9x ( ag?- + an?. ) : (9)

czh2
) The velocity distribution of the laminar flow in an elliptical pipe is given
in terms of the Cartesian coordinate system as follows (Milne & Thomson (5)):
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where u = the maximum velocity in a cross-section. The deviation of velocity from
the croSs-sectional mean is obtained from Eq. 10 as
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Expressing Eq. 11 in terms of the elliptical coordinate system and substituting
the result into Eq. 9 yields

2. 2.1 .
8t 08 Lgeem (12)
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where
£(E,N) = coshzzgocosh 28 - cosh 2€Ocosh 4E

+ cos 2n ( cosh 4§ - coshz?_E0 )
+ cos 4n ( cosh 2§, - cosh 2 ) 13>
1 u c® 3

= — (14)
4 sinh®25, D 9%y
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The boundary conditions for s' are: (i) the flux of tracer becomes zero at
the wall of the pipe, and (ii) s' 1is symmetrical with respect to £ = 0 as follows:

9s'/3E = 0 on £ = Eo and & =0 (15)

The solution of the differential equation (Eq. 12), which satisfies the boundary
conditions Eq. 15, is obtained as follows:
1

st =K { %-coshzzgccosh 28 - g cosh 28 cosh 4

+ cos 2n ( i%-cosh 4 - %~cosh Zgocosh 28 + %‘cosh 250 )

1

1
Z§—23§E~§§;'cosh 4E - ig-cosh 250)

+ cos 4n ( f%-cosh.2£~
+os, ) (16)

in which 8, an integral constant determined by the condition that the integral of
s' in the cross-section is zero.

The longitudinal dispersion coefficient may be calculated from the deviations
of concentration and velocity by the definition as Eq. 2. Eq. 2 is rewritten by

the elliptical coordinate system as follows:
Eorm/2 —
D =~ 4 s'u'h?dEdn/ + msinh 2E,98
b4 0o 2 09%,

Substitution of Eqs. 11 and 14 into the above equation and use of Eqs. 4 and 16
lead the longitudinal dispersion coefficient in an elliptical pipe as follows:

D.D 3 sinh 1450 - 11 sinhl()i0 + 13 sinh 6§, - 5 sinh 250

X
2 2 s 25
u e 73728 cosh 2&031nh 250
= F(§,) 17)
By use of the hydraulic radius of elliptical pipe R, Eq. 17 is rewritten as
Dx D c 2
= (£) rE) | as)
u?R?
m
where
/2
e 8 2 . 2
R~ 7 sioh zgo fo V/sinh EO + sin“n dn <19)

Eq. 19 includes an elliptic integral, therefore, Eq. 18 cannot be expressed
by the primary function. The non-dimensional dispersion coefficient is a function
only of Ee, that is.in turn, of Ar, because £ is a function only of Ar.

The value of the non-dimensional dispersgon coefficient at Ar = 1 may be
calculated by the use of Eq. 18 in order to make comparison with the value of a
circular pipe obtained by Taylor (6) (Eq. 3). In this case, Ar = 1 corres—
ponds to the case of £ + « in Eq. 18. Limit operation of €, » © changes Eq. 19
as follows:

c o 1
- 27 SToh 7, Ycosh 2E

Substitution of the above equatiop into Eq. 18, and the limit operation give us



69

D D 1 cosh 250 sinh 14&0
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Eq. 20 shows that Eq. 18 includes the value of a circular pipe flow as a special
case, i.e. Ar = 1.

LONGITUDINAL DISPERSION COEFFICIENT IN A RECTANGULAR PIPE

In this section, the longitudinal dispersion coefficient in a rectangular
pipe of width a and height b shown in Fig. 2 will be obtained. Cartesian coodi-
nate system shown in Fig. 2, x being chosen
in the flow direction and y, z being in the z
plane of the cross-section is seleted. The
molecular diffusion equation by the use of a
coordinate system moving with the cross-— 2=b

sectional mean velocity u is as follows:
ds D 32s' | 3%s'
T L= =
v 8% 27 Capr * 5 )
(21)
where x,= X - Gty n = y/a; ¢ = z/b; and Ar = 0 >y
the aspect ratio defined as Ar = a/b. : y=a
The velocity dsitribution of laminar
flow in a rectangular pipe is obtained in Fig., 2 Cartesian coordinate system
terms of double Fourier series as follows: for a rectangular pipe
'00 0
u=u’' ¥ ¥ a sin(@m-1)m sin(Zn-1)7g (22)
M p=1 p=1 00

where u = the maximum velocity in the cross-section and a . is Fourier coeffi-

cient given as follows:

a = 1/1 A°(2m-1)(2n—1) {(mn-1)% + Ar?(2n-1)%} ]

I 23
A = 3 3 (-2 o, (23)
o m=1 n=1 /[ (2m-1) (20-1) {(2m-1)% + Ar?(2n-1)*}]
The velocity deviation from the mean is obtained as follows:
[oe] ©o
ut'' =u (I b cos 2pmm + I ¢ _cos 2qmg
mp=1 P g=1 4
oo o0
+3Y % d cos 2pmn cos 2qmg ) (24)
p=1 g=1 Pd
where
© 2 8 2m-1 1
bp B mﬁl nél &nm? Zn-1 (2m-1)2 - 4p2
©° 2 8 2n-1 1
Cq B m§1 ngl n T22m-1 (2n-1)2 - 4q2 (25)

® 2 a 16 (2m-1) (2n-1)

dpq= mil nil ma 72 {(2m-1)2- 4p2} {(2n-1)2 - 4q2}
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The boundary conditions for s' is given as follows:

9s'/an

]

0 onn =0, 1
(26)
ds'/3z

0 on g =0, 1

By substituting Eq. 24 into Eq. 21 and considering the boundary conditions Eq. 26,
H

s 1is derived as follows:
azum B’S‘ 00 s
s' = - == (X Bcos 2ptn + 5 C cos 2am
D Bxl p=1 P P q=1 4q ane
(o] o0
+Z I D_cos 2pmm cos 2qni ) (27)
p=l g=1 Pd

where Fourier coefficients Bp, Cq and qu are given as follows:

B =D [4p®n?; C = c /4Ar2q%n%; D =d_ J4(p%+ Ariq)m? (28
b o 4P q q asms o Do - (p q°) (28)

The longitudinal dispersion coefficient D in a rectangular pipe flow is
defined as *

el 55
D= - jyi} statanac g% (29)

By substituting Eqs. 24 and 27 into Eq. 29 and carrying out integration of Eq. 29
the longitudinal dispersion coefficient is derived as follows:

¥

82u2 loo lm loooo
D = m(-2—ZbB+—2—ZcC+-—-

L L d D ) (30)

The non-dimensional expression of longitudinal dispersion coefficient is obtained
by substitution of Eqs. 23, 25 and 28 into Eq. 30 as follows:

[z —{ & = :
uéRz A% b p=1 p* [ m=1 n=1 (2n-1)*{(@2m-1)2-~ 4p?}

2 0 <0 0
} +L g ~1-{ > L
Ar®q=1 q” (m=1 n=1 (2m~1)%{(2n-1)%- 4q2}

f

DD 32(+ Ar?)? o 1 { o ® 1

-t

‘{(Zm-l)2+ Ar? (2n-1)%}

) 2 o0 oo
. L +23 3 —1L1
{(2m-1)2+ Ar?(2n-1)2} p=1 q=1 p*+ Ar?q?

00 0 2
dro3 L
m=1 n=1 {(2m-1)*- 4p*}{ (20~1)%~ 4q?}{ (2m-1)%+ Ar? (2n-1)2}

(3D)

where R = the hydraulic radius defined as R = ab/2(a+b).

Eq. 31 tells us that the non-dimensional form of the longitudinal dispersion
coefficient in a rectangular pipe flow is a function of Ar only in a similar
mannar to that in an elliptical pipe flow.



71

RESULTS AND DISCUSSION

Fig. 3 shows the theoretical value of the non-dimenéional longitudinal dis-
persion coefficient DXD/(umR)2 in a laminar flow which is obtained by Eq. 18 for

an elliptical pipe and by Eq. 31 for a rectangular pipe. In Fig. 3, the value of
the non-dimensional dispersion coefficient for two-dimensional (plane) Poiseulle
flow D D/(u R)%= 8/945 is also plotted. In this case, 2R is the distance between
two plgtes and the aspect ratio cannot be defined. Non-dimensional dispersion
coefficient is, as is expected, symmetrical about Ar = 1 for both cases. It is
already stated that the value of non-dimensional dispersion coefficient becomes
minimum at Ar 1 where it coincides with the value obtained by G.I.Tayloxr (6).
For an elliptical pipe, the value of non-dimensional dispersion coefficient
increases as either Ar -+ © or Ar + 0. On the contrary, in the case of a rectangu-
lar pipe, non-dimensional dispersion coefficient has a minimal value at Ar 1 and
increases to a constant value as either Ar » ® or Ar » 0. The asymptotic value
DXD/(umR)2 = 0.064 is about 7 times the value of plane Poiseulle flow.  Comparison

of the case for a circular pipe with the case for a square pipe reveals that the
latter gives a larger value of non-dimensional dispersion coefficient. This is
considered to be rational because the velocity deviation from the mean in a square
pipe flow is relatively large compared with that in a circular pipe flow.

Two questions arise from results shown in Fig. 3.
(i) For the limit cases of Ar - © or Ar + 0, the flow in a rectangular pipe is

considered to coincide with the plane Poiseulle flow.

There is, however, a

considerable differenc between those two case regarding the non-dimensional

dispersion coefficient.

(ii) For the limit cases of Ar
+ © or Ar > 0, the value 102 S e . —r
of non~-dimensional disper-— - ' R
sion coefficient in a rec~ DD L
tangular pipe converges U2R? /
m .

to a constant value. On

the contrary, the corres-—
ponding value for an

elliptical pipe diverges.

- The following discussion is to

answer to the above problems.

Fig. 4 shows the distribu-
tion of velocity on the major
axis and the deviation disribu-
tion of concentration at which
the mean concentration decreases
with time, both in a rectangular
pipe and an elliptical pipe of
the same value of aspect ratio
Ar. 1In a rectangular pipe of
large value of Ar, velocity
becomes small near side wall by
viscous effect. However, veloc~
ty on the major axis becomes

10°

10°

10!
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constant for wide region except

for the side wall region and
velocity distribution in the
direction of the minor axis be-
comes similar to that of the
plane Poiseulle flow. At the
larger values of Ar, the region
approximated by the plane
Poiseulle flow becomes expanded,

107
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Fig.

while the side wall regions still

e e o 5 T S s o .
e

“Rectangular pipe._

p.

Plane Poiseuille flow
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Ar

3 Relation between the non-dimensional
dispersion coefficient and the aspect
ratio of cross—section of a pipe
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Velocity distribution
on the majar axis

| / \ Conceptmtipn. )
L -l deviation distribution

on the majar axis

{1) Rectangular pipe {2) Elliptical pipe

Fig. 4 Velocity and concentration deviation distributions on the major axis

exist. Therefore, tracer is retarded in the side wall regions and this mechanism
makes non-dimensional dispersion coefficient become larger than that of the plane
Poiseulle flow. As Ar becomes large, the area of the side wall regions becomes
relatively small, and then the value of the non-dimensional dispersion coefficient
converges to a constant. On the contrary, for the case of an elliptical pipe, the
thickness to the direction of the minor axis varies continuously in the direction
of the major axis and velocity also varies continuously corresponding to the thick-
ness. Therefore, as Ar becomes large, the velocity deviation from the mean becomes
large. This is the reason that non-dimensional dispersion coefficient becomes
large as Ar becomes large.

Fischer (3) pointed out that the dispersion coefficients in natural rivers
become about 10 times larger than those obtained by Elder (1), in which the log-law
for the velocity distribution was assumed. He considered that in natural rivers;
depths vary in the lateral direction and so the velocity deviation becomes large in
that direction. Although large differences between laminar flow and turbulent
flow exist, it is an interesting fact that at large (or small) value of Ar, the
dispersion coefficient in an elliptical pipe, where the velocity deviation in the
lateral direction is relatively large, is remarkably larger than that in a rectangu-
lar pipe.

CONCLUSION

The longitudinal dispersion coefficient of laminar flow both in an elliptical
pipe and a rectangular pipe is theoretically studied and the relation between the
dispersion coefficient and the aspect ratio of a pipe is discussed.

The conclusion obtained in this study is as follows:

1. The non-dimensional longitudinal dispersion coefficient in an elliptical pipe is
analytically obtained. 1Its value is symmetrical about Ar = 1 and increases
noticeably as both Ar > @ and Ar -+ 0. At Ar = 1, its value coincides with the
value of a8 circular pipe obtained by Taylor (6).

2. The non-dimensional longitudinal dispersion coefficient in a rectangular pipe is
also symmetrical about Ar = 1 and gradually increases to a constant value of
about 0.064 as both Ar = «© and Ar - 0. At Ar = 1, the value of non~-dimensional
dispersion coefficient in a square pipe is greater than that in a circular pipe.

3. Comparison of the dispersion coefficients in two kinds of pipes which have
different shapes of a cross-section shows that the longitudinal dispersion of
laminar flow is noticeably affected by the geometrical shape of a pipe.
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APPENDIX - NOTATION

The following symbols are used in this paper:

a = major axis of an ellipse or width of a rectangular pipes

= area of a cross-section;

Ar = aspect ratio of a cross-section;

b = minor axis of an ellipse or height of a rectangular pipe;
D = molecular diffusion coefficient;

DX = longitudinal dispersion coefficient;

hg, hn = gcale factors of elliptical coordinate system;

R = hydraulic radius;

s = cross—sectional mean concentration of a tracer;

s' = deviation of concentration from the cross-sectional mean;
t = time;

u = cross-sectional mean velocity;

u' = velocity deviation from cross—sectional mean;

u = maximum velocity in the cross—seetion;

X = longitudinal coordinate taken along the mean flow direction;
V, Z = Cartesian coordinates;

£, n = elliptical coordinates; and

N, C = non-dimensional Cartesian coordinates.



