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SYNOPSIS

Convection under the large Rayleigh number is studied through experiments and
theoretical analysis. Flow visualization shows that buoyancy flux is transported
to the convective motion by the form of vortex rings in an initial stage and then
by sheet-like plumes in an equilibrium stage which is further classified into
steady cell region and turbulent cell region.

The formation of initial vortex rings is explained by the extension of a
linear stability theory. The representative velocity and length scales in the
equilibrium state are derived in the functions of the flux-type Rayleigh number.
Tt is also shown that the ratio of the average horizontal scale of cells to the
water depth is explained by the Reynolds number defined by the maximum convective
velocity in the cell.

INTRODUCTION

In lakes and reservoirs, the temperature of the water becomes uniform in
winter. ‘Diurnal stratification and nocturnal destratification near the water
surface are occasionally observed in summer. This is mainly attributed to the
layer-scale convection formed by the heat loss due to conduction, radiation and
evaporation to the air. Since Bénard first observed renowned hexagonal cells in=-
duced by the heating, many papers have been presented and characteristics of con-
vection with the small Rayleigh number are considerably clarified. However, con-
vection under the large Rayleigh number has not been completely clarified because
of the increase of complexity in the flow structure.

Let us review several previous results obtained under the condition of the
large Rayleigh number. For the case of experiments heated from below the formation
of the heat-diffusion layer in the vicinity of the bottom has been known. The mean
temperature structure near a fixed boundary was predicted by Howard (8) based on the
boundary-layer instability and the theory showed sufficient agreement with the
measurement of Townsend and Elder. Then Sparrow et al. (16) showed that the tem—
perature of the diffusion layer varies periodically due to the occurrence of the
thermal. The occurrence of thermals was extensively examined by Spangenberg and
Rowland (14), Katsaros (9), and Katsaros et al. (10) by the experiment with the
cooling of an upper boundary. According to their results, sheet-like flow occurs
from the cooled boundary layer just below the surface.

The mean temperature profile within the bulk of the medium and the horizontal
length scale were obtained by Deardorff and Willis (4) and Fitzjarrald (6).
However, the relation between sheet-like flow from the boundary and the cell struc-



38

tures have not been clarified yet. The purposes of this study are to determine the
condition of the onset of the thermal convection in a large water body and to
clarify the mechanism of the convective motion including fluctuation under the
large Rayleigh number.

A part of this paper was originally published in the reference (.

EXPERIMENTAL PROCEDURE

The experiments were performed in three types of tanks which had different
scales and function. Experiments in which the maximum vertical scale of cells was
smaller than about 5cm were performed in a tank of 25em by 25cm in horizontal dimen-
sions and 50cm high and its bottom plate was made of a 1.0mm~thick aluminum plate.
As for the large scale convection whose vertical scale was 45cm at most, a tank of
90cm by 90cm in horizontal scales and 70cm high, with a 3.0mm-thick aluminum bottom
plate, was utilized. On the lower side of the bottom plate, a plate rubber heater
was mounted. Plates of polystyrene foam were mounted on both sides of walls and
below the plate rubber heater to prevent heat exchange through the tank wall.
Thickness of polystyrene plates is 3cm for the side walls and 6cm for the bottom.
On. the surface of the water a 3cm~thick plate was provided except the time when we
took photographs from above.

Heat exchange due to conduction and radiation from the side walls of experi~
. mental tanks was estimated to be less than 1% of the heat supplied from the bottom
plate, because the temperature of the water was kept within 1.3°C below that of the
atmosphere,

Temperature variation on the bottom plate could not be detected by a thermig-
tor probe the sensitivity of which was 0.05°C. The heat flux from the bottom plate
was calibrated by measuring the increase of the water temperature. There was no
significant difference between measurements with and without stirring.

Water temperature was measured by a thermistor linearizer circuit (Takara
Thermistor Instruments Co. Ltd. E311~312-321). The probe was constructed by a cir-
cular rod of 1.0mm diameter and the time constant was less than 0.7 sec.

In most experiments the water was heated inpulsively at a constant flux. But
in order to investigate the effect of the way of heating, the heat flux was gradu-
ally increased at a rate of 2.62x10™% cal/(cm®sec?) in some runs of experiments.

The horizontal scale of the convection cell at the initial stage of the forma-
tion was observed with three ways of flow visualization. The first is the utiliza-
tion of a thin film of dye solution injected on the bottom plate of an experimental
tank., When a thermal begins to rise, the elongated dye film shows a periphery of a
rising thermal. Several thermals tend to converge to an organized cell before long.
In this converging zone the color of dye becomes dark and we can detect the outer
edge of cells. The second is the phenolphthalane-method which is the modification
of the one described by Baker (2). The third is the use of aluminum powder dis~-
tributed in the water body. Particles of aluminum powder shine in a horizontal
slit-beam of light. -But if the vertical flow is strong, aluminum powder does not
shine by this method. Therefore, at the ceiling level of convection cells dark
lines on the picture are regarded as the converging and sinking lines of particles.
No appreciable difference was found among the data obtained by these three tech-
niques. ) )

The vertical flow pattern and the vertical velocity of the convection were. ob-
tained by the flow visualization employing streak photography. The movement of
aluminum powder was observed by utilizing an array of a vertical slit-beam of light.
The falling velocity of the aluminum powder was negligibly small during the exposure
time of one second at most.

FORMATION PROCESS OF CONVECTION CELLS

When the constant heat flux is added impulsively to the bottom plate, heat be-
gins to uniformly diffuse upwards. Consequently, a thin sheet is formed on the .
bottom plate. The thickness of the sheet, however, does not grow indefinitely.
After some quantity of heat is accumulated in a thin layer, uniformity of the layer
breaks due to instability and some pairs of convection occur in the layer.
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Then some plumes appear from the upward
flow of convections with vortex rings

on the top of them. So at the incep-
tion many vortex rings appear simulta-
neously. Behind each vortex ring, heat-
ed water flows into it from the bottom
and deforms it into a mushroom-like
shape (see Fig.l)

In a horizontal plane the position
of rising vorticies constitutes vertexes
of polygons. A rising vortex is associ-
ated with a strong sheet-like upward
plume. In a plan view from the top of a
tank, many dark polygonal patterns are Fig.l Vortex rings at the onset of
observed accompanying a rising vortex convection
ring at each vertex (see Fig.2).

Fig.2 The horizontal view of the bottom plate at the onset of convection

(a) Polygonal patterns appear at the beginning. (b) Vortex rings begin to rise at
vertexes of the polygonal patterns. (c) Soon after the rising water reaches the
surface, convections become in an equilibrium state.

Among these vortex rings, weak ones disappear or are absorbed into stronger
ones during the rising. Associated with this process, the convective pattern on
the bottom changes gradually, that is, the scale of a polygon under a strong vortex
ring becomes larger, and vice versa. Between the two rising columns of water,
downward flow exists to satisfy the conservation of mass. Consequently, these two
neighboring flows compose a cell structure.

Soon after the front of the rising vortex reaches the water surface, the cell
system enters into equilibrium conditiom.

INITTIAL FEATURE OF VORTEX RINGS

During the initial, short period after the onset of heating, heat is trans-—
ported uniformly to the water mass just above the bottom plate by not convection
but diffusion and radiation. When the Rayleigh number of this layer reaches some
critical value, this layer is considered to become unstable and the convection
forms in the layer. The development of instability in the layer formed just above
the bottom plate to which constant heat is supplied is analyzed by a linear theory
with the following non-dimensional variables.

x = x*n t= t*(hz/K); u=u*k/h; T = T*Fh/ (pck)

where h is the vertical characteristic length scale; X a position vector;

U a velocity vector; p the density; c the specific heat of water; v the kinematic
viscosity of water; k the coefficient of thermometric conductivity of water;

T the temperature; F the heat flux from the bottom plate; and a superscript * means
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a nondimensional variable.
Then the dimensionless form of governing equations for the system ig given
as follows.

1
Bo 5t = AW = - RaghT 5
Nulor = DT = - w 2

where Py is the Prandtl number; Raf the flux-type Rayleigh number (=o0Fgh"/pck?v);
Ny the Nusselt number (=Fh/pckTq); Tq the temperature difference between two
boundaries; o the coefficient of volume expansion due to unit temperature change;
w the vertical velocity; A=52/0x%+32/3y2+32/322; £,=32/3x2+32/3y?; x and y the
horizontal coordinates; z the vertical coordinate; and the superscript is omitted
for the simplicity.

As the convection occurs very rapidly, boundary conditions are

w=Q; %‘Z"O at z =0 (3)
2.
w=0,~§—z~‘§=o at oz =1 (4)

There are several amalyses for the
critical Rayleigh number Rac, for exam- T T T
ple, Reid and Harris (13), Foster (7)
and Sparrow et al. (15). If we follow L

the result of Reid and Harris, c / ]
mor s @o %9 °

R;.=1100.7 and the representative hori-

L B e e 4
i

zontal scale of a cell L, is given by #f o © o

L=3.31h for the rectangular cell and L < ®,24°8 -
L=1.56h for the hexagonal cell, 053 3
Therefore, L is rewritten by the R i
following equation through the defi- - "4111 -
nition of the flux-type Rayleigh i 4 ]
number. In this expression h explains . """_6 bbbt hemersnlama b
the thickness of a conduction layer on 10 vt 16°

the bottom. aF g

pc - cm
~ pcyk2 1/4
L = K; (Rac agF ) 5 Fig.3 Average distance between vortex

rings (Different symbols represent results
where K1=3.31 for the rectangular cell obtained by different methods as follows:

and 1.56 for the hexagonal cell. © Schlieren method, @ aluminum powder
Figure 3 shows the average horizontal by the vertical slit beam, ® aluminum
distance of the generated vortex rings. powder by the horizontal slit beam,

The results obtained by the Schlieren ® dye method, @ phenolphthalane method.)

method are concerned with two-dimen-
sional experiments, and so the results are a little different from other results.
According to our experimental results, the following relationship is obtained.

2 1/h
L = 40 6(RacP o) / (6)

The proportinal conmstant in Eq.6 is a little larger than predicted value as
shown in Eq.5. This tendency is attributable to the following reason. If the vor-
tex ring appears as soon as Rayleigh number reaches the critical value, the propor-
tional constant should be nearly the same value described by Eq.5. To develop the
vortex ring, however, more heat flux is needed after the threshold of instability
is reached. So the Rayleigh number corresponding to the appearance of the vortex
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ring is larger than that obtained in the linear stability theory. Moreover, the
vortex ring does mnot always appear at each vertex of polygons, so the measured val-
ue of L is larger than the predicted value. : )

Before the stability breaks down, heat is transferred into the water body by
only conduction. So the time scale Ty which elapsed before the appearance of vor-
tex rings may be estimated from the representative length scale in the Rayleigh
number. Assuming the proportionality between h and L, which is the result of the
linear stability theory, Ty is obtained by Eq.6 as follows. The experimental data
agreed with Eq.7. k .

‘ 1/2
Ty, = 1.0 (Rac%ig:—% ; €]

CONVECTION IN AN EQUILIBRIUM STATE

Many experiments of the steady
convection have been made in the region
where the Rayleigh number is smaller
than 100Rgc. Hereafter, the water
depth d is utilized for the representa-
tive length scale in the definition of
the Rayleigh number. In this range of
the Rayleigh number the steady cell is
observed. In this experiment it is hard
to measure the temperature difference
between the upper and the lower side of
the convective layer, so almost all
results are expressed in terms of the
flux-type Rayleigh number R,¢, which is
related to the usual Rayleigh number
R, as seen in Raf=NyR,. Here Ry is
defined by Rp=agTgd3/(kv). As the

Nusselt number is 3 to 20 in this series Fig.4 Sheet-like plumes in the vicin-
of experiments, Rgf=(3v20)Rz. With the ity of the bottom plate (Two plumes oc-
use of this relation the range of this curring near the bottom join each other

series of experiments is Ra=5XlO3%2X109, at the mid-depth.)

which covers the range between the two :
dimensional cell region and the turbulent flow region defined by Krishnamurti (11,
12).

According to the visualization it is observed that the flow pattern can be
divided into two main classes and a threshold will be given by Raf=2X106.

First, when Raf<2X106, the convective pattern is in the steady state as a
whole. This region is further classified into three stages as follows. When Rg¢
is very small, no cell forms. Regular polygonal cells appear even if there is no
cell at the beginning, as Ryf increases. Then as Rgf increases further, regular
polygonal cells develop into meandering two dimensional cells soon after regular
polygonal cells are formed. The change of the cell pattern occurs simultaneously
in a horizontal plane. And these cells do not change their positions even if the
coupling and enlargement of cells occur among several polygonal cells.

Next, when Ry¢>2x106, various shapes of polygons which are composed of rising
flow lines are seen. Being different from cells observed in the range of small
Rgg the shape experiences fluctuation. .

The characteristics of the motion in a vertical plane can be described as
follows. 1In case of large Ryf the movement of each water particle shows fluctua-
tion though the macroscopic or average feature of convection changes only very
slowly. Upward convective motion is composed of many sheet-like rising plumes.
Because of the rising heated water, there is a tendency that successive plumes are
generated at about the same position and because of the horizontal flow near the
bottom, new plumes are combined with the old one on the way of rising when they
appear in the vicinity of the existing plume (see Fig.4). In this case the polygon
surrounded by these plumes disappears (see Fig.5). But a new plume sometimes
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Fig.5 Disappearance of a cell

(When sheet-like plumes combine with
one another, the cell surrounded by
them disappears.)

Fig.6 Appearance of a new rising flow‘line (A new sheet-like plume appears and
divides the existing cell.)

appears at a place where there has been no plume in the viecinity. In this case one
polygon is divided into two by a new sheet-like plume (see Fig.6). These two cases
are main processes of the fluctuating change in the polygonal pattern.

‘ When a new plume appears, a vortex ring forms on the top of rising water like
a mushroom, so that it sometimes ceases to rise and changes its direction and then
joins with another plume because the resistance against rise of vortex ring is
extremely large. But when sheet-like plumes are generated frequently, no vortex
ring appears on the top of it except the first one, so plumes reach the water sur-
face and they look like a column of rising water. Figure 7 shows the three plan
views of typical cell patterns taken at the same time, Figure 7(a) explains the
picture taken in the illuminated horizontal plane just below the surface. Dark
lines correspond to converging lines of water and along these lines downward sink-
ing motion prevails to compensate the motion of water due to rising plumes.

Figure 7(c) is:the horizontal plane in the vicinity of the bottom plate, which shows
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projected curves where upward flow exists as dark line. It is seen that polygons
of dark lines in Fig.7(a) are intersected by polygons in Fig. 7(c) when they are
superimposed, but the number of vertexes in polygons composed of converging lines
is less than that observed in polygons constituted 'of rising sheet-like plumes.
Therefore, it is considered that on the way of rising some sheet-like plumes join
one another and concentrate to stronger plumes. Because of the eddies assciated
with irregularity of the upward flow, Fig. 7(b) taken at the mid depth does not
show clear side lines between neighboring polygons.

This set of figures shows that many plumes from rising flow lines are contin-
uous between the bottom and the water surface, and the polygonal pattern of sheet-
like plumes is closely related to the convection cells.

Hereafter, we call the region where Ry¢ is larger than 2x10° a turbulent cell
region. ~

Fig.7 Three plan views of typical cell patterns taken at the same time
CHARACTERISTIC VELOCITY SCALE

As described above, the
flow pattern of convection is
different between the steady
cell region and turbulent cell 10
region. The magnitude of the
velocity is also different in Wee |
these two regions.
(2) Turbulent cell region s

Figure 8 shows the rela-
tionship of the maximum convec-
tive velocity versus the buoyan- o ap Heating Cooling .
cy flux from the bottom plate. é o ®  240% Ry s
The maximum velocity is measured a0 e = ?w‘°§§<gig,
as follows. In the first step N :
the maximum velocity shown on a 10 . — i 1 .
particular streak-photograph is 10 10 «F gd
recorded. Then the average of : P
about ten recorded values is
defined as the maximum convec- i
tive velocity. 1In this figure Fig.8 The maximum convective velocity versus
it is found that the maximum the buoyant flux from the bottom plate (When
velocity obtained in the turbu- Raf>2X106, the maximum velocity of convection
iinihzei}sf§§$22 ;? iizpzﬁgzgnal follows the line ch=1.5(%§gd)1/3. However, for
potential energy. The follow- Raf<ZXl06, the velocity is smaller than the
ing relationship is obtained relation.)
empirically.

E
-3
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Wee = l.3(§§gd)l/3 for R,g>2x10° : (3)

The magnitude of exponent in Eq.8 is confirmed by the following consideration.
Since the moving velocity of a fluid particle reaches the maximum value around the
mid depth of the layer and remains constant, the buoyancy force should be in equi-
librium with the shear force experienced by a fluid particle. Buoyancy force is
supplied by the heated bottom plate when the fluid moves horizontally in contact
with the bottom. This relationship is expressed in Eq.9.

——= g = const.c %z (9)

where 7 is the horizontal scale of the cell; § the characteristic horizontal veloc—
ity on the bottom plate; #% the characteristic vertical velocity in the mid part of
the depth; and e the eddy viscosity coefficient. As for the averaged convection
flow, the components of velocity are related to the vertical velocity by

o 3% T ‘
YT a%xaz 0 V = aZ3ysz ' (10)

where a is the absolute value of horizontal wave number, that is , a?=a,2+a,2,

where ay and ay are two horizontal components. So,the relation #i=(1/d)% approxi-
mately holds., ~If we assume e=const.Wl, Eq.9 yields the following relation.

d = const.W,e3 (11

‘iig
0 =

In other words, this relation means that the buoyancy flux added to the bottom
plate is transferred to the kinetic emergy of the movement of the water particles
in the convection layer at constant rate in the turbulent cell region.

(i1) Steady cell region

The maximum convection velocity in the steady cell region is not expressed as
a function of buoyancy flux from the bottom plate only, as shown in Fig.8. = Since
the flow pattern of the cell in the steady cell region looks like that of the mar-
ginal state cell whose Rayleigh number is a little larger than the critical
Rayleigh number, the hydraulic features of the cell are compared with the previous
results.

The amplitude of the convection velocity in the marginal state is theoretically
derived by Chandrasekhar (3) as follows.

Tn o
2
S WA2Wdz Rap

K2
({- - Rafc) (12)
u

a
2y 2 (820) 2dz+ (S Tinidz )2

wce

where Rafe 1s the critical flux Rayleigh number and Wee is the normalized vertical
velocity. Since the vertical flow pattern is composed of concentric circles in
this region, the normalized vertical velocity is assumed in the following form
referring to experimental results.

W = sin amnz (13)

Substituting Eq.13 to Eq.l12, the amplitude of the vertical velocity is obtain-
ed as follows. :

_oxa 1 Raf  (r24a2).1/2
Hee = 2q m2pazly, ~ a7 )

Figure 9 shows the comparison of experimental results with calculated results.
As for the Nusselt number, N,, the experimental results of Silveston (Chandrasekhar
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(3)) is utilized:. The predicted result by T T
Eq.l4 is approximately in agreement with ex- o d=050¢cm
perimental results except for the data in a 075 §
the turbulent cell region. However, Eq.l4 A 100
still contains the internal parameter, a, A0‘3'; :ng h
which is proportional to the ratio of the é o 200
horizontal scale to the vertical one. & ¢ 250 ?‘
On this quantity, we will discuss later in o + v
the next section 2 L
Sool gmeme. b .
LENGTH SCALE OF THE CONVECTION g
() Turbulent cell region g
Deardorff and Willis (4) and Fitzjarrald (6) o1k @ "
defined the horizontal scale as the largest ’ o 4 T
peak of the co-spectrum calculated from the .
record of horizontal distribution of tempera- a s
ture and vertical velocity. However, since ///20
the generation of plumes is not a continuous 0 s y
stochastic process but it shows quite inter- 0 0.1 02
mittent nature, the length scale from the predicted values Wee (cris)
largest peak of the co-spectrum is considered
to be several times larger than the averaged Fig.9 The comparison of the ob-

value of the horizontal distance between
sheet-like plumes, which corresponds to
representative length scale of convection
cells. Here, we examine the characteristic
length scale of the distance between sheet-
like plumes.

The average value of the length of sides
of the polygons formed by sheet-like plumes
is defined as the horizontal scale of the ‘
cell, 7. The typical frequency distribution of
the length of sides of polygons during a second
is shown in Fig.10 where 1' is an individual length
of sides of polygons. Judging from the figure, the
distribution function is approximately expressed as
the normal distribution around the mean value, and:
so the average value of a series of records is
adopted to calculate the value of Z.

Figure 11 shows the ratio of the horizontal
scale to the vertical scale as a function of the
product of the square root of the flux Rayleigh
number and the inverse of the Prandtl number.

As for the vertical length scale the whole depth of
the layer is taken when the temperature of the
layer is homogeneous, and the average thickness of
the moving layer is taken when there is a thermo-
cline in the layer.

In Fig.ll it is seen that 7/d decreases with
Ryr and is expressed by a function stated below,
for the turbulent cell region.

served

~-1/6
)

)+ N
—é- 7.1(Ragl/2 P, 1)"1/3 = 7.1(%5—%%— (15)

In order to verify the suitability of the

convective velocity with

prediction by Eq.14 (] means the
results for Raf>2x106, which is
off the caluculated results.)

ll
15 F =
10}
5 .
o 0
0 2 4 6cm
1= 25cm ¢=10cm

Fig.1l0 The distribution
of length of sides of pol-
ygons (The average value
of the horizontal scale 1
is 2.5cm and the standard
deviation is 1.0cm.)

definition of the horizontal length scale, we checked the appliability of Eq.15

using sl/2 instead of 1, where S is area of each polygon.

showed the same relationship as Fig.ll.

The obtained diagram
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Fig.1l The ratio of the horizontal scale to the vertical scale

of the convection as a function of Rafl/z P.~l (@ ®Orepresent the
results of rapid constant heating, and others represent the

results of the gradual heating. A shows the experimental result

by Farhadieh and Tankin (5), O the results by Willis et al.(17) and
B the results of experiments utilizing air by Willis et al. Ry,
used in previous papers is converted to Raf.)

The theoretical basis of Eq.l15 is explained as follows. TFor the sake of
simplicity let us consider only one representative cell. Since the convective mo-
tion is strong in the turbulent state, almost all heat supplied from the bottom is
transferred by the advective type of motion. Therefore, the temperature in the
convective layer is supposed to be uniform and the contribution of conduction of
heat is negligible. So the energy released by the buoyancy force due to the bottom
heating in a unit time is expressed as

P e . & E Sdg (16)
The rate of viscous dissipation in the convection layer is defined by
b = -~ vf3(<uVu> + <vVv> + <wVw>)dz-§ (17

where angular brackets signify that the enclosed quantity is averaged over the
horizontal plane and V=3/3x+3/3y+3/9z. Considering the average convection flow,
we use the cellular flow pattern proposed by Chanrasekhar for simplicity. The
horizontal components of velocity are related to the vertical ome as follows.

_ 1 SZW" _ 1 3%w
Y7 3% oxez V= 3% Byez (18)

To be specific, let w be
w = W(z) f(x, y) (19)

where f is a distribution function in a horizontal plane and satisfies Ay f=-a’f,
As an example, let us take a prismatic cell. Horizontal boundary conditons are

w = W(z) at the points, (+nl,0), {i(nﬂ~%)l, %tl}, etc. (20-a)
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w = -W(z) at the points, {i(n+%)l,0}, (inl;t%l), etc. (20-b)
_ .1 3,
w =0 along the lines, x=t57, iz 1, etc. and
1 3 ; o
y=izl, erZ, ete. (20~-c)

where n is an integer. So the thrée components of the velocity are given by

u = - ;2~Ji-w(z) 51ng£x cosgﬁy
4y dz 1 A
- 2m 2m
Aty W(z) cosTx 51n7fy (21)
w = W(z) cos%gx cos%?y

Substituting Eq.21 into Eq.l7, we obtain
d 2
= VvV d _ 2 2
9] Smfo{(-&? a?) W(z)l}4dz (22)
According to Eq.8, W(z) is expressed as
W(z) = 1.3({9:%(1) Y3 sin T2 (23)

Sgince the convection is in an equilibrium state, the energy released by the
buoyancy force is necessary to be balanced by the energy dissipation.
P=0 ! (24)
Substitution of Eqs.16, 22 and 23 into Eq.24 makes the following relation.

oF

32
g S&d = -——rnZszZ v gd)2/3 (—7+ -z) “a (25)

The roots of this equation are given by
1/2
. 2 1/3 _ 1 2/3_ 1 13, V2
5 = 22y R -l yw R - gy B ] .. (28

where R=Raf/Pr2. The condition which makes Eq.26 real is

Roe 2 (1.3m)6P 2 = 2.08 x 10° (27)
The value of the right-hand side of Eq.27 is considered to be the minimum

flux-Rayleigh number under which the turbulent convection cell exists. Making use
of this value described by Rgfy, we can rewrite Eq.26 in the form

= 2/3{2A - 1+2(a2/3 - al/3)y1/231/2 (28)

=M

<+ for the rectangular convection cell

Similarly for the two dimensional roll cell, we obtain
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L= 2{28 - 1 % 2(A2/3._ Al/3 )1/2 }1/2 (29)
*»++ for the two dimensional convection cell

where Raft=8(1.3w)6Pr2 and A=R ¢/Rafr. The curve which represents Eq.28 is shown
in Fig.ll by a solid line(a lower branch) and a dashed line(an upper branch). In
these two branches it is considered that the actual convection cell follows the
branch energy level of which is lower than another, since it changes its shape
easily in the turbulent cell region. As the potential energy is the same value in
these two branches, we consider the kinetic energy, considering Eqs.21l, 23, and 28.
Then, we obtain )

i

By = _392_ wce2{2A1/3+ 2(A2/3—- AL/3 )l/2+ 1} (30)
=+« for the upper branch

2{2a1/3 — 2(a2/3 - AV3)1/2 4 1} (31)

i

0
Ex §§'ch

e+« for the lower branch

Judging from Eqs.30 and 31, the lower one is more stable, so it fits more
suitably to experimental results.

As described above, the length scale ratio can be expressed as a function of
external parameters. However, taking account of Eq.8, it can be rewritten as a
function of the cell Reynolds number, as follows.

&Z-= 2/2{2B3 - 1 - 2(B2- B)1/2}1/2 , (32)

where Re=wced/v and BﬂRe/(l.Bswz). Therefore, it can be said that the shape of
convection cell is dependent on the cell Reynolds number in this region. As for
the representative velocity scale in the Reynolds number, an experimentally derived
expression of Eq.8 is utilized. A further study, however, is still needed for the
detailed discussion on the applicability of Eq.8 to a large-scale field problem.
(ii) Steady cell region

Different from turbulent cell region, Fig.ll shows that the length scale
ratio 72/d is not a simple function of Raf and P, in the steady cell region.
However, it is supposed that 7/d is strongly correlated to the Reynolds number
Re=W.ed/v just like in turbulent cell region.

Figure 12 shows the relation between 1/d and Ry with the use of the experimen-
tal result in W.e. The following relationship is obtained by this experiment.

Weed
%fz 2.0 (_%9_)1/35 2.0 Rel/B (33)

Utilizing Eqs.l4 and 33, we have

Lyge (L 2. 20 rRaf 2% w1, 003
@U@ 8 = (5 @ - F (8] (34)

In the case of Rae/N,» 1/d, the length scale ratio 1/d and the cell Reynolds number,
that is, nondimensionalized velocity are rewritten by external parameters as
follows.

-ga VZI(L + -8—7‘? N) /2 1312 (35)
Weed /7 8v7Z o 3
T A SR w2 1y (36)
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Fig.l2 The scale ratio rearranged by the Reynolds number (A solid
line shows Eq.33, and a dashed line shows the process of variation
when heat flux is gradually increased.)
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Fig.1l3 The scale ratio ex-

pressed as a function of the
external parameters in the
range of Raf<2X106 (A solid
line shows Eq.35.)

Fig.1l4 The nondimensional
velocity expressed as a func-
tion of the external param-
eters in the range of Raf<2><106

(A solid line shows Eq.36,)

where N=(Raf/Nu)1/2/Pr.

Figures 13 and 14 show the comparison of Eqs.35 and 36 with the experimental
results. They show that Eqs. 35 and 36 are fairly good prediction for the ratio of
length scale and the maximum convective velocity in the steady cell region.

Tt is concluded that Z/d is expressed by not a simple function of Ryg but a
function of Rg in both the turbulent cell region and the steady cell region, though
the functional form differs in each region.

CONCLUSIONS

1) At the onset of convection, many vortex rings appear and their separations from
the bottom plate occur almost simultaneously. The functional forms for the spacial
interval of vortex rings and the time scale of the vortex formation are deduced
from the linear stability theory. Numerical coefficients are determined by the
measured data.

2) In an equilibrium state, the characteristics of convection change when Raf
exceeds the value of 2x10%. 1In the region that Raf is less than 2x10% the cell
pattern is regular and streamlines in a vertical plane are coaxial. When R,¢ is
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larger than ZXlOG, on the other hand, convective motion shows the nature of turbu-—
lence. Convective cells are composed of many plumes rising from the bottom and
hydraulic quantities concerned are fluctuating. Even in this turbulent cell region
it is seen that the depth scale convection exists as a whole.

3) The characteristic velocity of the convection is derived from marginal state
theory in the steady cell region and from the balance of shear stress and buoyant
force in the turbulent cell region. In order to determine the coefficients, we
need to refer to the experimental results.

4) The ratio of the horizontal scale to the vertical scale is found to be a func—
tion of Re defined by the motion of a convective cell both in steady cell region
~and in the turbulent cell region.
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APPENDIX-NOTATION

The following symbols are used in this paper:

a

ay, ay

[« 9

[ - T B = N« S I =2
= =

wWeodoow =
a]

@

1]

the

two

absolute value of the horizontal wave number;

horizontal components of aj;

Raf/Rafes
Ro/(1.3312);

the
the
the
the
the
the
the

specific heat of water;

water depth;

kinetic energy of a convection cell;
heat flux from the bottom plate§
acceleration of gravity;

vertical characteristic length;

horizontal scale of a cell;

average distance between vortex rings on the bottom plate;

an integer;

the

Nusselt number;

®RIND Y2 = (Ryg/ (NgPy2) }1/2;

the
the

the usual Rayleigh number defined with the temperature difference

energy released by the buoyancy;

Prandtl number;

between the boundaries;

the
the

critical Rayleigh number;

flux~type Rayleigh number;
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the minimum flux-type Rayleigh number in the turbulent cell region;

the cell Reynolds number;
2.

Raf/Pr E

the temperature of water;

the

time scale elapsed before the appearance of vortex rings;

a velocity vector(u,v,w);

= the

the

= the

characteristic velocity components in a cells;
vertical convection velocity in a cell;

maximum vertical velocity in a cell;

a position vector(x,y,z);

the
the
the
the
the
the

coefficient of volume expansion of water due to temperature;
eddy viscosity;

coefficient of thermometric conductivity of water;

kinematic viscosity of water;

density of water; and

energy dissipation due to viscosity.



