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SYNOPSIS

The wave motion in the finite depth of water with a vertical density gradient
is theoretically discussed.

The fundamental equation of motion which has been proposed by one of the
authors is slightly simplified and then used as the basic equation of motion.

A theoretical solution is obtained for the case where the density increases
exponentially regarding with depth. A peculiar type of wave velocity is also
obtained.

Where the density gradient has a peak in the finite depth of water; it is
theoretically shown that the stream function has an oscillatory form regarding
with depth for any type of density distribution. :

INTRODUCTION

Two-layered, or three-layered systems of internal waves are by all means too
mathematical to deal with many types of problems in the real world, such as those
in the ocean, lakes and rivers, though those multi-layered systems keep certain
important features of the density current problems. Since any of the two-layered
systems never take place in nature, except the cases of super-imposed two or three
layered ones consisting of immiscible fluids, the continuous density gradient
systems might be considered as the better models to deal with a series of real
problems.

The basic equations for wave motions in a continuous density gradient field
were perhaps first obtained by Love (6). Lamb already referred to that work of
Love in his famous book. He showed that if the density gradient was expressed by
an exponential function, the problems were to be solved analytically. There are
a lot of research works after him, and they are well sammarized by Eckart (1,2),
Phillips (9) and Yih (14,15).

It is also possible to reach an analytical solution by assuming the core of
the stream function be exponential function regarding the vertical component. In
this case the vertical density gradient may be determined later. Recently, the
authors learned the work of Palm et al (8), which is one of the works along this
line.

Tt is also interesting that, though many authors have worked on the cases of
the waves in the infinite field, very few works worked on the cases of the finite
depth of water (10,11). Since in this case, which is of the waves in the finite
depth of water, the wave velocity takes a peculiar form, such as expressed by Eq.
20 or Eq. 21 in this paper, a detailed derivation is examined later. As a
continuation, this paper deals with the general case of continuous density



gradient systems with a peak, or a maximum value in the water.
THE BASIC EQUATIONS IN TWO DIMENSIONS

The basic equation of the motion is written as

( lepyt + DA% )t"' gpy‘bxx =0 (n

where ¢ = stream function; p = mean density; and. A = 32/3x2 + 32/3y2 (6,11).
Note that p is a function of X, vy and t in general. u = “Wy and v = Yy
respectively. The suffices in Eq. 1 denote the differentiation regarding each
component. Note also that the above equation may be valid when the mean motion is
relatively small when the equation is written in a non~-dimensional form. In other
words, the small wave assumption is necessary to make use of Eq. 1.

If there is no diffusion or dissipation, p may be a function of the position
(x,y) only. Thus, Eq. 1 may be reduced to

Mg+ (Dype- gwxx)py/p =0 (2)

Note that Eq. 2 is essentially the equation obtained by Love (6).
At the free surface, the governing equation is

Yore = 8BlUgy =0 aty =0 (3
If ¥ is given by
¥y = F(y)exp (ikx - iwt) (4)

then ¢ytt = - wzF'(y)exp(ikx - iwt) and Yyexe = -kZFvexp(ikx ~ iwt). Therefore,
the surface condition is given by

Vyre = &gy = ( -w?F' + gkzF)eXP(ikx - iwt) = 0
Further, if F=Aexp(ky), then F'=Akexp(ky) and we obtain
~w?F' (y) + gk2F(y) = khexp(ky) (-w2 + gk) (5)

Eq. 5 may be equal to zero if w?= gk, which is the deep water condition.
Therefore, where there is a deep water wave on the surface of the water, the
motion is always irrotational whatever the vertical density distribution is. This
was already pointed by Lamb(6).

Writing that —py/p = B, we obtain

Awtt e Sw};tt + gB‘pX‘X =0 (6)

If we assume that

b= X(x)Y(y)T (k) (7
then we obtain the following relation.
{X"/X + Y"/Y - BY'/Y} = -(gBX"/X) (T/T") ®)
Apparently T has a form that
T" = ¢qT (9
and we obtain

ey + gRIX"/X + ¢ (Y"/Y - Y'/Y) = 0 (10)



If 8 is a function of y only, Eq. 10 becomes
X" = coX (11)
and finally we obtain
Y'"/Y - BY'/Y + cogB/cy + cp =0 ; (12)
It is natural for us to assume the form of the stream function as
X v exp(ikx); T ~ exp(iwt) (13)
where w2=—cl and k2=—c2; the governing equation for Y is

¥ - BY' + (Bgk?/w?- k?)Y = 0 (1)

Note that B=R(y), which is not constant in general. gB is often written as
Nz(y) ( Brunt-VHisili frequency ). Using N, we obtain

T - N2Y'/g + K2(N2/w= 1)Y = 0 (15)

When Boussinesq approximation is ap@lied to Eq. 15, the second term of Eq. 15
may be omitted and the equation would be that of Eckart(l).

"4+ (N2- w2)Y/c? =0 3 c= w/k (16)

Eq. 16 is equivalent to the equation for a pendulum with a variable spring
coefficient, while Eq. 15 does include a damping term. When N2/w?>1, Y is
oscillatory regarding y. Therefore, though Eq. 16 may be generally employed by
several authors (9,14), Eg. 15 should not be forgotten.

The interesting case is that for N2>w2, since if w2>N?%, Eq. 15 or Eq. 16 is
not far different from the ordinary wave equation for the finite depth of water.
‘From this reason, the case where N2>w? is examined in this paper.

SOLUTION FOR CONSTANT N

Where N is constant, which is by all means unrealistic from the theoretical
point of views, but reasonably practical, the solution for Eq. 16 is obtained (11D
as,

Y = -cesing(ht+y)/singh a7y
under the boundary conditions such as
v =0 at y = -h (at the bottom); v =3n/3t at'y =0 (at the surface)
The stream function corresponding to Eq. 17 is
Y = —acesing(hty)cos(kx-wt)/sinh (18)
where £ is given by

£2= (N2-w?)/c? (19)

The wave velocity ¢ is obtained by using another surface condition which is
dynamic that

/3y - gk?y/w? =0 ‘ (20)

c? = gh-tanth/th (21)



From the above two equations, we obtain the tendency of Eh regarding the
change of (N?-w2)h/g.

Eh-tanfh = (N2 - w?)h/g (22)

which is graphically shown on Fig. 1.
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Fig. 1 Relation of the modified wave number £ and N.
( Non-dimensional Plot )

However, under the normal situation, Eq. 21 gives the relation that c2= gh,
since £h is small when (N2~w2)h/g is small. The wave velocity ¢ in this case
shows the surface wave velocity affected by the density gradient in the water.

For the internal waves, we must seek the solution in the form (1) that

Y = Assin(nnry/h); n = 0,1,2,3, 00 sss (23)

The stream function for this case is given by

P = assin(nnry/h)cos(kx~-wt) (24)
The corresponding internal wave velocity is given by

c? = (N2 ~ ¢2)h?/n2q2 : (25)

Note that the surface condition, Eq. 20, is not available in this case. This
motion is rotational (6, 10, 16).

THE CASE FOR ARBITRARY N
Where N is a variable of y, Eq. 16 is written as
Y4+ f(y)Y =0 (26)

‘Normally, f£(y) has a maximum value M and a minimum value m ( m=0 when N2=w2).
Consider another equation associated with Y (12) such that

'+ M =03 Z = 2(y) @7



A short mathematical procedure gives us
(Zy'" = Yz2")' = (M- £(y))YZ (28)

and integration of Eq. 28 from o to g gives

v 1B By ;
lzy' - yz'| = [ (1 - £)Yzdy (29)
where o and B are the roots of Y=0 which have not yet been obtained.
Apparently, :
¥(a) =0 3 Y(B) =0 ( -h<a<g<0 ) (30)
and also
(o) >0 ;5 Y'(B) <O (31)

Using the above conditions, Eq. 29 may be written as
Z(®)Y'(B) - 2T (o) = [P - Dzvdy (32)

Since both Z{a) and Z(B8) must have the same sign throughout the region, we
assume the sign be positive. Note that the negative sign assumption does not
cause any changes in the result. Then, the left-hand side of-Eq. 3Z is positive
except the case that Z(a) = Z(B) = 0.

The variables of the right-hand side of Eq. 32 are M-f>0, Y<0 and dy<0.
Therefore, the multiple except Z is negative. Since Z is an oscillatory function
with respect to y, there is a possibility for Z to have a root between a and B.
In conclusion, the right-hand side of Eq. 32 is generally negative, if Z has no
root between o and B, which is a contradiction. Thus, there is at least a root
of Z between two roots of Y, )

One of the solution for Eq. 29 is

Z = sin{(y - o) VYM}

which has no root between o and a+nv/M. Therefore, except the case that f(y)=M,
the following condition must be satisfied.

g =~ a > n/M (33)
From those reasoné if the value h/n is under the condition that

h/n < M < g - a (34)
Y(y) has only one root, or no root in the region (-h/n,0). In other words, the
above condition gives us the possible mode of Y which is the solution for the

arbitrary N(y). Note that only M is important in this analysis.
The maximum value of M, My,y, may be written as

Mpax = (N2 = w?)/cd (35)

where N, is the maximum value of N and c, is the corresponding wave velocity. The
above relation may be written as

h2/n? < cgnz/(Ng - ©2) (36)
CONCLUSION
The internal waves associated with the surface waves in a finite depth of

water with density gradient was discussed. Generally speaking, waves are rotatio-
nal ones and the stream function is periodical with respect to depth, and the wave



velocity shows a peculiar form, where the density distribution follows a specific
function form.

This tendency is also applied to certain types of density distribution and
the condition where the stream function shows a periodicity was theoretically
obtained.
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APPENDIX - NOTATION

The following symbols are used in this paper:
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wave amplitude;

wave velocity;

constants;

gravitational acceleration;

imaginary unit;

wave number;

mode constant;

square root of Brunt~Vdisdlid frequency; .
water depth;

constant;

maximum value of M;

time;

time dependent part of stream function;
coordinates of the space;

space dependent parts of stream function;
a function associated with Y;

one root of Y=0;

another root of Y=0;

modified wave number (£2=(N?-w?)/c?);
3.14159....3

density of the fluid;

stream function; and

wave frequency.



