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This paper presents the experimental results on shear deformation of concrete beams with shear 
reinforcement, which was measured by laser speckle method.  The results indicate that, besides flexural 
deformation, a significant amount of shear deformation occurs after shear cracking, as a result of localized 
shear deformation along shear cracks.  Based on the experimental results, a rather simple mechanical model 
for prediction of the deformation is proposed.  The model consists of a truss model that calculates the shear 
deformation and a modified Branson’s model with the tension shift concept to calculate the flexural 
deformation.  The model can predict the experimental results well. 
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1. INTRODUCTION 
 
Recently accurate prediction of deformations of reinforced concrete members has been considered more 
important because the performance-based design will be introduced as the next generation of design of 
structures.  The performance-based design clearly specifies what are required performances of structures 
for serviceability, many of which are related to deformations of structures. 
 
It is well known that flexural deformations of concrete members can be calculated with reasonable accuracy 
by the Branson’s equation [1], which is based on the Euler’s beam theory.  At the same time it is known that 
the Euler’s theory, assuming that a plane in a beam remains after its flexural deformation, is no longer 
applicable after shear cracking [2]; in such cases, the neutral axis depth after shear cracking is smaller than 
predicted by the Euler’s beam theory. 
 
It is considered that after shear cracking shear deformation is no longer negligible.  However, there is no 
method commonly accepted for prediction of shear deformation.  The truss theory, which is often used for 
predictions of shear strength and shear reinforcement stress, has seldom been used for the prediction of 
deformation.  One reason for the lack of a method for evaluating shear deformation seems to be the 
difficulty in measurement of shear deformation in experiments. 
 
In this study, the laser speckle method is applied to measure shear deformation of beams with shear 
reinforcement.  Based on the experimental results, a rather simple model to calculate deformation of beams 
is proposed.  This model consists of a truss model for calculating shear deformation and a modified 
Branson’s model for calculating flexural deformation.  In the truss model tension stiffness of concrete 
surrounding shear reinforcement is considered.  The influence of tension force increment in tension 
reinforcement induced by truss action after shear cracking, which is conventionally called moment shift, is 
considered in calculation of flexural deformation.  In this paper, “moment shift” is called “tension shift”. 
 
 
2. OUTLINE OF EXPERIMENT 
 
The experimental specimens consisted of four small and one large beams with shear reinforcement.  The 
experimental parameters are shear span to effective depth ratio, tension reinforcement ratio, and shear 
reinforcement ratio.  Details of the specimens are given in Fig.1 and Table 1.  Specimens No.1-4 are the 
small beams.  Specimens No.2, 3, and 4 are identical to specimen No.1, the reference beam, except for 
shear span to effective depth ratio (or effective depth), tension reinforcement ratio, and shear reinforcement 
ratio, respectively.  Specimen No.5 is the large beam.  The concrete strength for each specimen is shown 
in Table 1.  The maximum aggregate size was 15 mm.  Young’s modulus and the strength of tension and 
shear reinforcement are shown in Table 2.  High strength tension reinforcement was chosen for specimen 
No.3, so as to ensure that flexural yielding would not occur. 
 
Deflection at the loading point was measured using displacement transducer for all the specimens and at 
additional three points in shear span for specimen No.5 (see Fig.1 (c)).  Shear deformation in shear span in 
the small specimens (specimens No.1-4) was measured by the laser speckle method [3].  The laser speckle 
method is an optical measurement method for in-plane displacement. 
 
Movement in any direction of any point within a target area can be measured with an accuracy of 1µ m 
order using the laser speckle method.  The size of the target area depends on the specifications of the laser; 
in this test the area was approximately 300×300 mm, and this was the reason why shear span was chosen to 
be 300 mm for the small specimens.  The movements of sixty-six nodes (fifty-five nodes for specimen 
No.2) shown in Fig.2 were measured by the laser speckle method to calculate strains, xε , yε  and xyγ  of 
100 triangle elements (80 elements for specimen No.2).  The strains of the upper triangles were calculated 
using the nodal movements u and v  as follows: 
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( ) xuu ijx ∆−=ε            (1a) 

( ) yvv iky ∆−=ε                (1b) 

    ( ) ( ) yvvxuu ijikxy ∆−+∆−=γ   (1c) 

 
An explanation of the notation used here is given 
in Fig.3.  Strains for the lower triangles can be 
calculated in a similar way.  The location of the 
neutral axis was obtained from distribution of 

yε .  The shear deformation of the specimen, 
sδ , was calculated as the average shear strain in 

the shear span multiplied by the shear span 
length, a , as follows: 
 

aa xyxy
xys 2

21 γγ
γδ

+
==            (2) 

where ( ) ( ) avvhuuxy 14121 −+−=γ  (3a) 

  ( ) ( ) avvhuuxy 32342 −−−−=γ  (3b) 
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Table 2  Material properties of reinforcement 
 

Type sA  
(mm2) 

yf  
(MPa) 

sE  
(GPa) 

D6 31.67 355 183 
D10 71.33 791 197 
D13 126.7 355 170 
D22 387.1 392 178 

 

Table 1  Specimens and test results 
 

Specimen cf ′  

(MPa)
da sp  

(%) 

wp  

(%) 

uV  

(kN)
No.1 40.2 2.5 4.22 0.63 67 
No.2 54.7 3.3 4.22 0.63 39 
No.3 41.0 2.5 2.38 0.63 60 
No.4 40.5 2.5 4.22 0.32 48 
No.5 31.7 2.92 4.46 0.72 235 

1) cf ′ : concrete strength, da : shear span to depth ratio,  
sp : tension reinforcement ratio, wp : shear reinforce- 

ment ratio, and uV : ultimate strength 
 

Fig.1  Specimens 
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The notation used here is explained in Fig.4.  The flexural deformation of the specimen, fδ , was 
calculated by subtracting the shear deformation from the deflection at the loading point, δ , namely: 
 

sf δδδ −=                                  (4) 

 
Strains of the tension reinforcement were measured at maximum moment region and at points between shear 
reinforcement (see Fig.1 (a)).  Strains were measured at one point of each shear reinforcement in the small 
specimens and at two points of each shear reinforcement in the large specimen. 
 
The load was monotonically increased with a displacement increment of 200µ m at the loading point until 
the specimens failed. 
 
 
3. EXPERIMENTAL RESULTS 
 
3.1 Failure characteristics 
Specimen No.1 failed in flexure with yielding of the tension reinforcement, while all other specimens 
showed shear failure without yielding of the tension reinforcement. 
 
3.2 Deformation characteristics 
The relationship between applied shear force and 
deflection at the loading point in specimen No.2 is 
shown in Fig.5.  It is seen that deflection at the 
loading point up to onset of shear cracking can be 
predicted using the following equation derived from 
the Euler’s beam theory in which the Branson’s 
equation for effective moment of inertia is applied: 
 

{ }xcaax
IE

Va

ec
f )2(3

6
3

3

++−=δ          (5) 

 
where V  is the applied shear force, cE  is Young’s 
modulus of concrete, x  is the distance from support 
to the point considered ( ax ≤≤0 ), a  is the shear 
span, c  is half of the distance between two loading 
points, and eI  is the effective moment of inertia that 
can be calculated as follows: 
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Fig.4  Calculation of shear deformation
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where gI  and crI  are moment of inertia of 
concrete gross and cracked section, crM  and 

maxM  are cracking and maximum moment at 
loading point under applied shear force, V .   
 
It can be said, therefore, that before shear cracking 
deformation is mostly flexural deformation. 
However, after shear cracking, the observed 
deflection is significantly greater than that 
calculated by the Branson’s equation.  Shear 
cracking clearly has an effect. 
 
The ratio of shear deformation to total deformation 
( δδ s ) for the smaller specimen is shown in 
Fig.6.  The shear deformation is calculated by 
Eq.(2).  This ratio is larger for specimens with a 
smaller shear span to effective depth ratio, smaller 
tension reinforcement ratio, and smaller shear 
reinforcement ratio. 
 
3.3 Concrete strain characteristics 
 
Cracking pattern observed in specimen No.1 is 
shown in Fig.7.  Its distribution of shear strain for 
specimen No.1, calculated as average of shear 
strains in a pair of upper and lower triangle 
elements (see Figs. 2 and 3), is shown in Fig.8.  
The corresponding distribution of principal strains 
is shown in Fig.9.  It can be said that after shear 
cracking took place at 22 kN, large, localized shear 
strains appeared along the shear crack.  The 
normal strain distribution in specimen No.1 is 
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indicated in Fig.10.  It is clearly seen that the observed neutral axis depth (indicated by solid lines) is 
smaller than that predicted for an Euler beam with no concrete stress in tension (broken lines). 
 
3.4 Reinforcement strain characteristics 
 
The relationship between applied shear force and strain in the tension reinforcement for specimen No.4 is 
shown in Fig.11.  The strain in the tension reinforcement at point 4 (see Fig.1 (a)) increases more quickly 
and becomes larger than the predicted by the Euler’s beam theory with stiffness of cracked section.  This 
quicker increase can be explained by so called “moment shift”.  Moment shift is explained by truss action 

 

 

 

 

Fig.9  Principal strain distribution 
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in which horizontal component of force in diagonal compression strut is balanced with force in tension chord 
(tension reinforcement).  Since diagonal strut does not exist in beam action, additional force would act in 
tension reinforcement once truss action begins acting. 
 
The shear reinforcement strain of specimen No.3 is shown as with respect to applied shear force in Fig.12.  
The measuring point was point 3 in Fig.1 (a).  It is known that the relationship between applied shear force, 
V , and shear reinforcement strain, wε , can be expressed by truss action as follows: 
 

 ( ) szEAVVVV wwwcsc θαε cotcot ++=+=                  (7) 

 
where cV  is the applied shear force at shear cracking, sV  is the shear force carried by truss mechanism, 

wA  is the cross sectional area of the shear reinforcement within spacing, s , wE  and α  are Young’s 
modulus of shear reinforcement and its angle to the member axis, θ  is the angle of compression diagonal 
strut, and z  is the distance between centroids of forces in the compression and tension chords.  The 
observed strain in Fig.12 is much smaller than that predicted by Eq.(7). 

 

 
4. PROPOSED MODEL FOR SHEAR DEFORMATION 
 
In this section proposed model for calculation of shear deformation before and after flexural and shear 
cracking of beams is presented.  Shear deformation includes additional flexural deformation due to shear 
cracking. 
 
4.1 Model for additional flexural deformation due to shear cracking 
 
It is considered that the Branson’s method can be used to calculate flexural deformation with consideration 
of tension force increase in tension reinforcement induced by truss action occurring after shear cracking (see 
Fig.11).  Since this is actually a change in tension force in the tension reinforcement rather than a change in 
the moment acting on the beam, the new terminology, “tension shift” will be adapted in this study instead of 
the conventional “moment shift”. 
 
The amount of the tension shift, T∆ , can be calculated from truss mechanism, which carries part of the 
total shear force, sV .  For this purpose, a free body of the truss mechanism is considered as shown in 
Fig.13.  Line CD is parallel to the diagonal compression strut whose angle to the member axis is θ .  
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From the equilibrium of tension forces across the line CD, tstT ,  and sV , the following equation is derived: 
 

αsin,
s

tst
VT =                                                                 (8) 

 
where α  is the angle of the shear reinforcement to the member axis. The equilibrium of moments around 
point D induced by tension forces acting in the tension chord, cT , tstT ,  and sV  is, 
 

 ( ) ( ) 0sin
sin2

1cot , =+−−+ tstcs TzzTzxV αθ
θ

θ                      (9) 

 
where x  is the distance of point C from the support. Substituting Eq.(8) in Eq.(9), the following equation is 
then obtained: 
 

( )
sc V

z
xT 



 +

−+=
αθ

αθθ
sinsin2

sincot                               (10) 

 
If it is assumed that beam action carries the total shear force subtracted by the shear force carried by the truss 
mechanism, sVV − , the tension force in the tension reinforcement (or the tension chord in truss) at point C 
is 
 

( )sb VV
z
xT −=                                               (11) 

 
On the other hand, if beam action carries all the shear force, tension force in the tension reinforcement at 
point C is 
 

V
z
xT =                                                    (12) 

 
From Eqs.(10), (11), and (12), the amount of tension shift, T∆ , that is the tension force increase in the 
tension reinforcement is as follows: 

( )
sbc VTTTT 



 +

−=−+=∆
αθ

αθθ
sinsin2

sincot                           (13) 
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Fig. 13  Free body for calculation of tension shift, T∆  
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However, the total tension force in tension reinforcement never goes beyond the maximum tension force 
induced by moment.  Additional flexural deformation due to the tension shift is calculated by assuming that 
the tension shift creates additional deformation whose amount is the same as that caused by moment 
inducing the same amount of tension force in tension reinforcement.  This assumption is in fact 
conservative.  The reason is as follows.  Actually additional deformation due to increase in moment in 
beam action is different from that due to tension shift in truss mechanism.  The moment increase causes 
increase in elongation in tension zone and contraction in compression zone, while the tension shift increases 
elongation in both tension and compression chords of the truss mechanism.  The elongation of the tension 
chord is much greater than that of the compression chord because the tension chord is cracked concrete (or 
tension reinforcement) and the compression chord is uncracked concrete.  This difference in elongation 
induces additional flexural deformation, which is smaller than that induced by an increase in the moment in 
beam action. 
 
4.2 Model for shear deformation before shear cracking 
 
It is assumed that shear deformation before shear cracking can be calculated by elastic theory for beam as 
follows: 
 

∫= dx
AG

V

ec
s κδ                                 (14) 

 
where 56=κ  a for rectangular section, cG  is the shear stiffness of concrete ( ( )[ ]ccE ν+= 12 ), cν  is 
Poisson’s ratio of concrete, and eA  is the concrete effective cross-sectional area, which is calculated as 
follows: 
 
before flexural cracking, 

ge AA =                             (15a) 

after flexural cracking, 

 



















−+








=

3

max

3

max

1
M
M

A
M
M

AA cr
cr

cr
ge                      (15b) 

 
where gA  is the concrete gross section ( bh=  for a rectangular section), b  and h  are the width and 
height of the cross section, n  is the ratio of Young’s modulus ( cs EE= ) and crA  is the cross-sectional 
area of the cracked section.  Equation (15b) is introduced under the assumption that the effective concrete 
area for shear stiffness is reduced due to flexural cracking. 
 
Although Eqs.(14) and (15) are proposed here, experimental facts indicate that shear deformation is usually 
much smaller than flexural deformation and can be neglected. 
 
4.3 Shear deformation after shear cracking 
 
After shear cracking, it is assumed that shear deformation is caused by truss mechanism.  Since 
deformation of truss due to deformation of tension and compression chord is considered in flexural 
deformation, truss deformation due to deformation of tie and compression strut is considered as shear 
deformation.  Let’s consider a truss unit ABCD consisting of tie and compression strut horizontal extent of 
( )αθ cotcot +z  and vertical size of z , as shown in Fig.14.  The truss unit is a part of a beam where shear 

cracks exist.  Line BE  is parallel to the compression strut whose angle to tension chord (or tension 
reinforcement) is θ .  Line CE  is parallel to tie whose angle is α .  The cross-sectional area of the 
compression strut crossing line CE  is as follows: 
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 ( ) θαθ sincotcot, += zbA wcst                                 (16) 

 
When applied shear force on the truss mechanism is sV , stress acting in compression strut is calculated 
under equilibrium as follows: 
 

 
( ) θαθθ

σ 2
,

, sincotcotsin +
==′

zb
V

A
V

w

s

cst

s
cst                         (17) 

 
Thus the strain in compression strut is 
 

c

cst
cst E

,
,

σ
ε

′
=′                                                 (18) 

 
Since the length of compression strut is 
 

θsin,
zl cst =                                                 (19) 

 
The deformation (shortening) of the compression strut is 
 

( ) θαθ
ε 3,,, sincotcot +

=′=∆
wc

s
cstcstcst bE

Vll                         (20) 

 
This deformation moves point B  to B′  in Fig.14.  The vertical component of the movement of point B  
that indicates shear deformation induced by deformation of compression strut is expressed by the following 
equation: 
 

( ) θαθθ
δ 4

,
1 sincotcotsin +

=
∆

=
wc

scst
s bE

Vl
                        (21) 
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Fig.14  Truss unit for calculation of shear deformation 
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Similarly, the shear deformation due to deformation of the tie can be calculated.  The cross-sectional area of 
the tie, consisting of the shear reinforcement and the surrounding concrete effective in tension, is assumed to 
be 
 

ce
w

c
wtost A

E
EAA +=,                                         (22) 

  

with  ( )3VVAA cceoce =                                           (23) 

 
where wA  is the cross-sectional area of the shear reinforcement in a spacing, s , ceA  is cross-sectional 
area of the surrounding concrete effective in tension, and ceoA  is ceA  immediate after shear cracking and 
can be calculated using the method proposed by An et al [5].  The number of shear reinforcement crossing 
line BE  is 
 

( )
s

znw
αθ cotcot +

=                                          (24) 

  
The cross-sectional area of the tie, crossing line BE  is 
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
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
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E
EA

s
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The stress in the tie can be calculated by equilibrium as follows: 
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The strain in the tie is then 
 

w
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tst E

,
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σ
ε =                                                    (27) 

 
Since the length of the tie is 
    

αsin,
zl tst =                                                   (28) 

 
The deformation (elongation) of the tie is 
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Due to this deformation, point C  moves to C ′  in Fig.14.  Vertical component of the movement, which 
is a part of shear deformation, is expressed by the following equation: 
 

( ) ααθ
α

δ
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,
2
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sin

+
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E
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Consequently, the shear deformation of the truss unit shown in Fig.14 can be calculated from Eqs.(21) and 
(30) as follows: 
 

21 sss δδδ +=                                                 (31) 

 
Its corresponding shear strain is 
 

( )αθ
δ

γ
cotcot +

=
z
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Finally, the shear deformation of the beam can be calculated by integrating the shear strain as follows: 
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The angle of the tie, α , is given as the angle of 
the shear reinforcement to the member axis.  
However, the compression strut angle, θ , has to 
be given based on actual compression stress flow 
in the concrete.  In this study numerical 
experiment with nonlinear finite element program 
[4] was conducted to find θ .  Figure 15 shows 
the variation of θ , which was found to increase 
slightly before shear cracking and decrease 
gradually after shear cracking.  It was also found 
that the variation of θ  was influenced by some 
factors such as shear span to depth ratio, tension 
reinforcement ratio and shear reinforcement ratio.  
As a result, the following equation is proposed to 
evaluate the θ  variation with reasonable 
accuracy (see Fig.15): 
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where v  is nominal shear stress ( ( )bdV= ), cv  is 
nominal shear stress at shear cracking, tp  is tension 
reinforcement ratio, wp  is shear reinforcement ratio, 
and da  is shear span to depth ratio ( 5.1> ). 
 
Consequently shear deformation after shear cracking is 
a summation of the shear deformation of the truss 
calculated by Eq.(33) and the shear deformation 
immediately before shear cracking calculated by 
Eq.(36). 
 

∫= dx
GA
V

k
e

c
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Because of its nature, Eq.(33) for calculation of shear 
deformation can be applied to not only the case of 
point loading but also distributed loading.  In the 
latter case the shear force carried by the truss 
mechanism, sV  or cVV −  varies with different x . 
 
4.4 Verification of proposed model 
 
Figure 16 shows comparison between experimental and calculated load-deformation curves of specimens 
No.1, No.2, No.4 and No.5.  A result of specimen No.3 is shown in Fig.5.  As seen in Fig.16(b) the 
calculated flexural deformation significantly underestimates the experimental deformation after shear 
cracking. The proposed model can simulate the experimental results reasonably for specimens No.1, No.3 
and No.5.  In specimen No.2 the observed deformation is larger than calculated one from the early stage 
because displacement at supporting points could not be measured correctly.  It could be considered in 
specimen No.4 that slippage of stirrup at the hook (see Fig.1) have produced the unexpected deformation.   
 
Figure 17 shows comparison with previous study [6] in which the tension and shear reinforcement ratios, 
and a/d are varied from 1.8 to 3.7%, 0.8 to 2%, and 3.92 to 6.98, respectively (see Table 3).  It can be said 
that the proposed model can predict the experimental results with good accuracy except for higher load level 
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Fig.16  Comparison of predicted deformation 
          with observed deformation 
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in some specimen with smaller a/d ratios.  The 
discrepancy in the higher load level observed in 
specimens A-1, A-2, B-1, and B-2 may be caused by 
yielding of stirrups.  Unfortunately no information 
on the yielding is given in the reference. 
 
The proposed model will be extended to the model 
which can consider the yielding of reinforcing bars. 
 
 
5. CONCLUSIONS 
 
(1)The two-dimensional distribution of shear strain 
in a shear span was measured by an optical 
measuring method (the laser speckle method).  It 
was observed that shear strain was rather localized 
along the shear crack. 
(2)Significant shear deformation was observed after 
shear cracking in the experiment. 
(3)Due to the shear deformation the conventional 
method for prediction of flexural deformation 
(Branson’s method) underestimates the observed 
deformation significantly. 
(4)Methods to calculate additional flexural 
deformation due to tension shift induced by shear 
cracking and to calculate shear deformation were 
presented. 
(5)This prediction method for shear deformation that 
is based on truss mechanism can be applied to not 
only point loading but also distributed loading. 
(6)The proposed methods predict the observed 
deformation with reasonable accuracy. 
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Fig.17  Comparison with experimental results 
 reported in Ref.(6)  

Table 3  Test specimens in Ref.(6) 
 

Specimen cf ′  

(MPa) 
da  sp  

(%) 

wp  

(%) 
A-1 24 3.92 1.8 1.0 
A-2 24 4.93 2.3 1.0 
A-3 35 6.91 2.7 1.0 
B-1 25 3.95 2.4 0.8 
B-2 23 4.91 2.4 1.5 
B-3 39 6.95 3.1 1.5 
C-1 30 3.95 1.8 2.0 
C-2 24 4.93 3.7 2.0 
C-3 35 6.98 3.6 2.0 
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