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Reinforced concrete structures built for nuclear power plants, such as containment vessels, 
reactor support structures, piping systems, and facilities for storing high-level radioactive 
waste, are designed under the assumption that they will be exposed to high-temperature 
conditions. In a previous paper, the author elucidated the temperature dependence of the 
properties of concrete and reinforcement, and the influence of differential thermal 
expansion coefficient between concrete and reinforcement on the behavior of reinforced 
concrete beams, thus contributing to the rationalization of the design method. In this paper 
the influence of high-temperature conditions on the flexural behavior and strength of 
reinforced concrete flexural members is clarified and estimation methods are suggested. 
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1.  INTRODUCTION 
 
The author has been carrying out research work on the basic properties of reinforced 
concrete at elevated temperatures, with the aim of rationalizing the design of reinforced 
concrete structures where exposure to such conditions is anticipated. The target structures 
include containment vessels and cooling water support structures in nuclear power plants, 
as well as structures for storing high-level radioactive waste. From the investigations so far, 
the mechanical properties of concrete, reinforcement, and reinforced concrete beams at 
elevated temperatures have been clarified [1]. At elevated temperatures (over 200˚C), 
Young’s modulus and the creep behavior of concrete as well as the mechanical properties of 
reinforcing steel (yield strength and tensile strength) are very different from those at 
normal temperature. Further, internal stresses are induced in reinforced concrete beams by 
differential thermal expansion strain between concrete and reinforcing steel, and these have 
an influence on the load-deformation relation [2]. 
 
In this study, the effects of such changes in the physical properties of concrete and 
reinforcement and the differential thermal expansion strain on the mechanical behavior of 
reinforced concrete (RC) flexural beams are elucidated experimentally. A method of 
estimating the deformational behavior of RC beams, covering the plastic range as well as 
the elastic range, is also proposed and validated. 
  
 
2. OUTLINE OF FLEXURAL TESTS 
ON RC BEAMS AT ELEVATED 
TEMPERATURES 
 
(1) Test specimens 
The test specimens measure 380 cm in total 
length. The tested length is 220 cm and they 
have a cross section of 20 cm x 40 cm, as 
shown in Fig. 1 .  Deformed bars of diameter 
16 mm and 6 mm are used, respectively, as 
the tensile reinforcement and web 
reinforcement. The concrete mix proportion 
is listed in Table 1  and test specimens are 
cured for 2 to 6 months before heating. 
(2) Test method 
Test specimens were enclosed in a heating 
furnace as shown in Fig. 2 and a test area 
measuring 220 cm in length was heated. 
Temperature in the furnace was controlled 
by twelve electric heaters, spaced equally 
around the inner surface and controlled 
individually. 
 
For testing, a flexural moment was applied 
to the specimen using an actuator, which 
pulled together two steel frames attached 
rigidly to the ends of the specimen. This 
introduced an uniform flexural moment and 
a small axial force in the tested area; the 
axial force was ignored as negligible. 
Constant temperature was maintained for 
two days prior to loading. 
 
Measurement points for curvature 
deformation were arranged 3 cm distant from

Fig.2 Flexural loading and heating apparatus 
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Fig.1 Reinforced concrete (RC) beam specimen
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Table 1  Mix proportion of concrete 
Uni t  content   (kg /m3 )  Compress ive  

s t reng th  
(N/mm2 )  

Max.  s ize  o f  
aggregate  

(mm) 

S lump 
 

(cm)  

Ai r  
 

(%)  

W/C
 

(%)

Fine  aggrega te
ra t io  
(%)  

Wate r Cement Fine  
aggregate  

Coarse  
aggregate  

AE 
agen t

40 20 8±2.5 3±1 43.2 43.1 160 370 789 1103 0.925

Table 2  Details of reinforced concrete beams and physical properties of concrete at normal temperature 
Temp.  Max.  Re inf .  Depth  o f Depth  o f 

No .  
 

Name  of  
spec imen  

a t  t e s t  
( ˚C) 

t emp.  
( ˚C) 

ra t io  
(%)  

lower  re inf .
d 2 (cm)  

upper  re in f .
d 1 (cm)  

Comp.  
s t reng th

(N/mm2 )

Tens i l e
s t reng th
(N/mm2 )

Young’s  
modulus  

10 4 (N/mm2 )

Notes  

1  NB-2D normal  normal  0 .57  35  - -  50 .6 3 .82 3.41   
2  NH200-2D normal  197.0  0 .57  35  - -  44 .4 3 .63 3.49  1  hea t ing  cyc le  
3  NH500-2D normal  477.5  0 .57  35  - -  43 .4 2 .86 3.43  3  hea t ing  cyc les  
4  H100-2D 101.5  101.5  0 .57  35  - -  44 .7 3 .19 3.51   
5  H200-2D 204.7  204.7  0 .45  35  - -  48 .2 3 .74 3.60   
6  H300-2D 295.8  295.8  0 .57  35  - -  45 .6 3 .18 3.52   
7  H400-2D 401.3  401.3  0 .57  35  - -  45 .0 3 .45 3.45   
8  H500-2D 506.2  506.2  0 .57  35  - -  37 .6 3 .47 3.21   
9  H200-4D 207.0  207.0  1 .13  35  - -  48 .0 3 .47 3.59   

10  H200-7D 205.2  205.2  2 .12  35  30  48 .6 3 .17 3.45   
11  H400-2DR 400.0  400.0  0 .57  35  5  42 .9 3 .38 3.54  Comp.  re inf . ;  2D16
12 H200-4DR 207.0  207.0  1 .13  35  5  48 .3 3 .22 3.62  Comp.  re inf . ;  2D16

 
the compressive fiber and 5 cm distant from the tensile fiber and at a spacing of 30 cm, as 
shown in Fig. 1 .  Changes in the spacing between each pair of points on both sides of the 
beam were measured from outside the furnace using linear differential transducer gauges. 
This was a system newly developed for measuring the deformation of RC beams at elevated 
temperatures. Changes in spacing were converted to strains, and the average curvature was 
calculated from the strains. At large deformations, average curvature was also calculated 
from changes in the separation of the steel frames shown in Fig. 2 .  
 
Test specimen temperature was measured using C-C thermocouples embedded in the 
specimens, and the measured values were averaged for use as experimental data. The 
flexural moment was obtained from the load cell attached to the actuator. 
 
The heating rate was less than 10˚C /hr, and it took about a week to reach the experimental 
temperature of 500˚C. 
(3) Test parameters 
The main test parameters were temperature and reinforcement ratio. Details of the test 
specimens are listed in Table 2 .  The yield strength and tensile strength of the tensile 
reinforcement were 384.2 N/mm2 and 564.5 N/mm2, respectively and its Young’s modulus 
was 2.03 105 N/mm2. 
 
 
3. DEFORMATIONAL BEHAVIOR OF RC BEAMS AT ELEVATED 
TEMPERATURES 
 
3.1 Thermal expansive deformation of unrestrained RC beams 
 
The relationships between amount of temperature rise and longitudinal expansion strain of 
the RC beams are shown in Fig. 3  and those between amount of temperature rise and 
curvature are shown in Fig. 4 . In Fig. 3 ,  the expansive strains of concrete and 
reinforcement due to temperature rise are also shown, while in Fig. 4  the curvatures 
calculated at the full (non-cracked) section and the cracked section are shown.  
 
Up to 100˚C, there is scarcely a difference between the longitudinal expansive behavior of 
the RC beams and the expansion of the concrete and reinforcement itself. However, above 
100˚C, the longitudinal expansive behavior of the RC beams follows that of the concrete.  
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This is because the expansive behavior of concrete, which accounts for the larger 
cross-sectional area, governs expansion. It is thought that small internal stress cracks begin 
to occur around the reinforcement, as a result of differential thermal expansion between 
concrete and reinforcement, at around 100˚C point. The longitudinal expansive strain of the 
2D specimens (that have two 16 mm deformed bars as tensile reinforcement, see Fig. 1) 
exceeds that of the concrete above 250˚C, and at higher temperatures the strain becomes 
intermediate between that of concrete and reinforcement; here the expansive strain of the 
reinforcement is influencing the behavior. Specimens H200-4D and H200-7D behave 
similarly, while the longitudinal expansive strains of specimens H400-2DR and H200-4DR 
are a little grater than those of the 2D specimens and specimen H200-4D, respectively 
because reinforcing steels are also distributed at the upper part of the cross section in those 
specimens. 
 
On the other hand, the curvature of the 2D specimens begins to diverge from the calculated 
results for the full section and approach those for the cracked section above 120˚C or so. 
This behavior results from the small cracks caused by differential expansive strain between 
concrete and steel. However, specimen H400-2DR exhibits longitudinal expansion but no 
curvature deformation with temperature rise because the steel reinforcement is 
symmetrically distributed over the section (see Fig. 1). 
 
As with other specimens, H200-4DR also shows longitudinal expansion and curvature 
deformation with temperature rise until cracking. After cracking (see a peak point of 
curvature of H200-4DR in Fig. 4(b)), the curvatures of H200-4D and H200-7D increase 
monotonically with temperature rise, whereas the curvature of H200-4DR falls when the 
temperature exceeds 150˚C. The position of the neutral axis of H200-4DR, when calculated 
at the full section, falls outside the cross section when internal stress is balanced due to the 
differential thermal expansion strain. As a result, tensile stress occurs over the full section 
and cracks penetrate the section after initiation. Curvature at cracked sections becomes zero, 
and while curvature at non-cracked sections is close to the value calculated at the full  
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section. This means that the curvature of H200-4DR approximates that calculated for the 
full section (the solid line in Fig. 4(b)). Namely, the average curvature of H200-4DR 
decreases with temperature rise after cracking. 
 
Whether a crack penetrates the section after initiation is theoretically determined from the 
position of the neutral axis whether it falls within the section or not at the full section. 
 
3.2 Flexural behavior of RC beams 
 
Relationships between the flexural moment and curvature of RC beams (the M-φ relation) 
under various temperature conditions are shown in Fig. 5 .  Calculated M-φ relations at both 
full and cracked sections, taking into account the effects of the temperature dependence of 
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the physical properties of concrete and reinforcement, are also superimposed in this figure. 
The following features of these relationships at elevated temperatures are particularly 
noteworthy: 
(i) Initial flexural rigidity of beams at elevated temperatures is much lower than at normal 

temperature.  
(ii) No sharp change in flexural rigidity due to cracking is observed, even at relatively high 

temperatures. 
(iii) RC beam curvature at yielding is a little higher than calculated for the cracked section, 

when the calculation takes into account the effects of temperature on the physical 
properties of the concrete and reinforcement but not the effects of the differential 
thermal expansion strain. 

 
These deformational features can be easily explained. First, (i) results from the 
considerable drop in Young’s modulus of concrete as temperature rises. (ii) is possible 
because cracks occur before flexural loading at the temperatures over 200˚C. And (iii) 
results from the release of accumulated strain (compressive strain in the reinforcement) due 
to the differential thermal expansion strain between concrete and reinforcement as the 
flexural moment increases; this contributes to the higher overall flexural curvature. 
 
The behavior described in (iii) can be easily understood by comparing the M-φ relations of 
specimens H200-2D and NH200-2D. Specimen H200-2D was tested at a temperature of 
200˚C, whereas NH200-2D was tested at normal temperature after temperature cycling up to 
200˚C. Young’s modulus of both specimens is considered to be almost the same, and micro 
cracks had already occurred before flexural loading. Thus the difference in the testing 
conditions is that internal stress due to differential thermal expansion strain exists in 
H200-2D and that the volume of tensile steel in H200-2D is a little lower. The latter factor 
can be excluded from the discussion because the calculated M-φ relation at the cracked 
section is shown in the figures. 
 
The flexural rigidity of NH200-2D after cracking is a little less than that of NB-2D, but is 
considerably larger than that of H200-2D. The difference in flexural rigidity results from 
the release of accumulated reinforcement strain induced by the differential thermal 
expansion strain as the flexural moment increases. 
 
This release of accumulated reinforcement strain is observed in all specimens at elevated 
temperatures, and the amount of strain released depends on temperature and the 
reinforcement ratio. The features of this released strain can be understood qualitatively 
from the M-φ relations of all specimens, as shown in Fig. 5 .  The higher the temperature, the 
greater the differential thermal expansion strain; however, more cracks occur at higher 
temperatures, so bond performance declines. Consequently, the accumulated strain in the 
reinforcement is small at high temperatures, so the amount released is low. On the other 
hand, the accumulated strain is naturally small at low temperatures and amount of strain 
released is also low. The accumulated strain only becomes large at a particular temperature. 
 
Cracking occurs in RC beams with a larger reinforcement ratio at relatively lower 
temperatures, and the total number of cracks is greater. Consequently, the larger the 
reinforcement ratio, the smaller the accumulated strain due to temperature rise, and the 
lower the amount of released strain under flexural loading (see Fig. 5(c)). That is, large 
strain accumulations depend on reinforcement ratio as well as temperature. 
 
From the above discussion, it is clear that large strains accumulate in RC beam specimens 
at temperatures from 100˚C to 300˚C when the reinforcement ratio is relatively low. In 
these tests, the specimens matching those conditions were H100-2D, H200-2D, and 
H300-2D. Specimen H200-7D has a large reinforcement ratio and develops more cracks 
during heating, so its accumulated strain is released before flexural loading. The M-φ 
relation for H200-7D is therefore consistent with the curve calculated for the cracked 
section, which does not take into account the differential thermal expansion strain.  
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The concrete compressive strain and the 
reinforcement tensile strain within the elastic range 
of the RC specimen are discussed next. Results are 
shown in Fig. 6 .  The solid lines show the results 
calculated at the cracked section taking into 
account the differential thermal expansion strain 
(refer to Section 4.(1).b). The following behavior 
is observed:  
(i) The concrete compressive strain is close to or 
smaller than the value calculated at the cracked 
section, so no creep behavior develops during 
flexural loading.  
(ii) The measured tensile strain is smaller than the 
value calculated at the cracked section when the 
differential thermal expansion strain between 
concrete and reinforcement is taken into 
consideration. 
 
The latter behavior is the same as observed at 
normal temperature. It is concluded that changes in creep behavior at high temperatures can 
be ignored when the loading is for a short period, while the influence of differential 
thermal expansion strain on the flexural behavior of RC beams is considerable. 
 
 
4. ESTIMATION METHOD FOR DEFORMATIONAL BEHAVIOR UNDER 
DIFFERENTIAL THERMAL EXPANSION STRAIN AND FLEXURAL MOMENT 
 
4.1 Calculation of strain at full and cracked sections 
 
The fundamental equations for calculating stresses and strains at the full and cracked 
sections of an RC beam are derived below. The required condition, that strain is 
proportional to distance between the neutral axis depth and the strain position, is satisfied 
even at elevated temperatures given the discussion in Section 3 above. 
(1) Full section 
The strain distribution in an RC beam with double reinforcement at a full section under 
high-temperature conditions is shown in Fig. 7(a). The equilibrium of sectional forces and 
the strain compatibility condition are applied in solving the equations, and then the depth of 
the neutral axis, the strain values, curvature, etc. are estimated as shown by the following 
expressions. Here, the flexural moment is considered and concrete creep is ignored. 
 
In Equation (1), if R2 related to flexural moment is zero, the depth of the neutral axis after 
heating and before flexural loading is obtained. 
 

xn = 2(αs-αc)∆T(β1+β2)h3-3{(αs-αc)∆T(β1d1+β2d2)+R2}h2+6{(αs-αc)∆Tβ1β2(d1-d2)2-6R2(β1d1+β2d2)
3(αs-αc)∆T(β1+β2)h2-6{(αs-αc)∆T(β1d1+β2d2)+R2}h-6R2(β1+β2)

     (1)
 

εc = 2(αs-αc)∆T(β1+β2)xn

h(h-2xn) - 2(β1+β2)xn + 2(β1d1+β2d2)
     (2)     ε t = h-xn

xn
εc     (3)     εs1  = (d1−xn)

xn
εc−(αs−αc)∆Τ     (4 a) 

  

εs2  = (d2−xn)
xn

εc−(αs−αc)∆Τ     (4 b)     ε l,g  = αc∆T-εc+(εc+ε t)
xg

h
     (5)     φg = (εc+ε t)

h
     (6) 

 
 

Here, β1 = np1d1     β2 = np2d2     R2 = Mex

bEc  
b: breadth of RC beam; h: height of RC beam; dｉ : depth of i-th reinforcing bar; Asi: 
cross-sectional area of i-th reinforcing bar; αc: thermal expansion coefficient of concrete; αs: 
thermal expansion coefficient of reinforcement; ∆T: amount of temperature rise; εc: stressed 
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strain of concrete at the compressive fiber of RC beam (>0 = compression); ε t: stressed strain 
of concrete at the tensile fiber of RC beam (>0 =  tension); εsi: stressed strain of i-th 
reinforcing bar (>0 = tension); Ec: Young’s modulus of concrete at elevated temperature; Es: 
Young’s modulus of reinforcement at elevated temperature; xn: depth of neutral axis; pi: 
reinforcement ratio of i-th reinforcing bar (Asi/bdi); n; Young’s modulus ratio (Es/Ec); xg: 
depth of centroidal axis; ε l ,g: longitudinal deformation of RC beam considered along 
centroidal axis; φg: curvature of RC beam; and Mex: flexural moment. 
(2) Cracked section 
The strain distribution of an RC beam with double reinforcement at a cracked section under 
high-temperature conditions is shown in Fig. 7(b).  Eqs. (7) and (8) are the equilibrium 
conditions for sectional forces and Eqs. (9), (10), and (11) give the compatibility 
conditions for strain. The depth of the neutral axis, strains, flexural moment, etc. are 
determined by solving these simultaneous equations. Explicit expressions of hc and xn can 
not be obtained, so these equations are solved numerically. 
 
1
2

xnbEcεc-1
2

(hc-xn)bEcε tu-As1Esεs1-As2Esεs2 = 0     (7) 
 

1
3

xn
2bEcεc-1

3
(hc-xn)2bEcε tu-As1Esεs1(d1-xn)-As2Esεs2(d2-xn) = Mex     (8) 

 

εc = xn

hc-xn
ε tu     (9)     εs1 = d1-xn

hc-xn
ε tu-(αs-αc)∆T     (10a)     εs2 = d2-xn

hc-xn
ε tu-(αs-αc)∆T     (10b) 

 

xn = hc
2ε tu 2(β1d1+β2d2)ε tu-2hc(β1+β2)(αs-αc)∆T

2[hcε tu+(β1+β2){ε tu-(αs-αc)∆T}]
     (11)  

ε l,cr = αc∆T+{(αs-αc)∆T+εs2}xg-xn

d2-xn
     (12)     φcr = εc + ε tu

hc
     (13) 

 
 
Here, ε tu: ultimate tensile strain of concrete; hc: distance between compressive and tensile 
fibers at cracked section; ε l , c r:  longitudinal deformation of RC beam considered along 
centroidal axis; and φcr: curvature of RC beam. 

 
Stresses and strains of RC beam at the full and cracked sections are calculated using the 
equations. Drying shrinkage strain should be added to the differential thermal expansion 
strain if it is to be taken into consideration. 
 
4.2 Estimation method for deformation of RC beam based on ACI method of average  
flexural rigidity 
 
(1) Unrestrained deformation during heating 
The M-φ relations for RC beams after cracking and subjected to a flexural moment are 
obtained using the following formula as adopted in the ACI code[3] for the average flexural 
rigidity. 
 

 
EcIeff = EcIg(Mcr

M
)

3
 + EcIcr{1 - (Mcr

M
)
3
}     (14) 

 
 
Here, Ec: Young’s modulus of concrete; Ig and Icr: moments of inertia at full and cracked 
sections; Mcr: flexural moment at cracking; and M: flexural moment considered. 
 
This formula is suggested by ACI on the basis of the experimental finding that the flexural 
rigidity of RC beams after cracking begins to diverge from the full sectional rigidity and 
approaches that of the cracked section as the flexural moment increases. 
 
It was shown in a previous paper [2] that the differential thermal expansion strain has an 
influence on the cracking and deformation of RC beams in a similar way. Hence, the basic 
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concept of the ACI method might be applied 
in estimating unrestrained deformation 
during heating. The differential thermal 
expansion strain, (αs-αc)∆T, is taken into 
consideration instead of the flexural 
moment and (similarly to the ACI formula) 
the following formula for estimating the 
unrestrained deformation during heating is 
suggested: 
 

Keff = Kgηm+Kcr(1-ηm)     (15a)  

η = (αs,cr-αc,cr)∆Tcr

(αs-αc)∆T
     (15b)  

 
Here, modulus K corresponding to the 
flexural rigidity is defined (see Fig. 8(a)). 
Modulus K including Kg, Kcr, and Keff is 
substituted for the fundamental quantities 
at the section of the RC beam under 
consideration, and then the following 
formula is obtained: 
 

φT,ave = φT,gφT,cr

φT,crηm+φT,g(1-ηm)
     (16) 

 
 
Formula (17) expresses the unrestrained curvature induced by the differential thermal 
expansion strain under high-temperature condition, and the difference between φT,cr and 
φT,ave can be treated as the latent curvature released with flexural loading. This latent 
curvature results in the same deformation as the release of accumulated strain described in 
Section 3. 
 
The unrestrained longitudinal deformation during heating can also be estimated using a 
similar approach. It is defined along the centroidal axis at the full section of a RC beam 
(see Eqs. (5) and (13)) because of the strain gradient at the cross section. The experimental 
results of longitudinal deformation are given for the location of the centroidal axis. 
 

ε lT,ave = αc∆T+ (ε lT,g-αc∆T)(ε lT,cr-αc∆T)
(ε lT,cr-αc∆T)ηm + (ε lT,g-αc∆T)(1-ηm)

     (17) 
 

              
The above derivation of the formulas has been done for RC beams with a non-symmetrical 
arrangement of reinforcement, so both curvature and longitudinal deformation with 
temperature rise were considered. On the other hand, no curvature occurred in the RC beam 
with a symmetrical cross-sectional reinforcement arrangement (see H400-2DR in Fig. 1), 
while longitudinal deformation did occur as the temperature rose. A concept similar to the 
ACI’s was applied to estimate the unrestrained longitudinal deformation, leading to 
derivation of the following formula: 
 

ε lT,ave = αc∆T+ (αs-αc)∆Tε t

(αs-αc)∆Tηm+ε t(1-ηm)
     (18)  

 
Here, αc ,c r  and αs ,c r: thermal expansive coefficients of concrete and reinforcement at the 
temperature when initial cracking occurs, respectively; ∆Tcr: amount of temperature rise 
from normal temperature at initial cracking; φT,ave and ε lT ,ave: average curvature and average 
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longitudinal deformation of RC beam with heating; φT,g and φT,cr  : Eqs. (6) and (14) derived 
under the condition that the flexural moment is zero, respectively; ε lT ,g and ε lT ,c r: Eqs. (5) 
and (13) derived under the condition that the flexural moment is zero, respectively; ε t  : 
tensile strain of concrete calculated for the full section; m: power constant  (=2 for RC 
beams with non-symmetrical arrangement of reinforcement and =3 for symmetrical 
reinforcement arrangement). 
 
The power constant, “m” (explained later) is determined based on comparing the calculated 
results with the experimental ones. In doing this, a number of considerations were necessary. 
First, since strain due to differential thermal expansion, including drying shrinkage strain, 
can cause cracks and has a self- restraining property, less energy is released under initial 
cracking and continuous crack propagation. Accordingly, less deformation occurs as 
compared with deformation caused by a flexural moment. Therefore, power constant m is set 
at 2 in formulas (17) and (18), while power constant m in the ACI formula for estimating 
average flexural rigidity is set at 3. However, this value of m equal to 3 gives better 
estimation with formula (19), which estimates the longitudinal unrestrained deformation of 
RC beams with a symmetrical reinforcement arrangement. Symmetrical and non-symmetrical 
reinforcement arrangements lead to different cracking patterns: cracks that penetrate and do 
not penetrate the cross section. Different power constants should be applied to these cases. 
(2) Curvature due to flexural moment  
a) Estimation formula for average flexural rigidity 
The ACI method might also be extended to cases where a flexural moment is applied at 
elevated temperature. In this case, two special factors have also to be considered: 
(i) The differential thermal expansion strain between concrete and reinforcement. 
(ii) Internal stress or cracks induced by the differential thermal expansion strain before 

flexural loading. 
Here, (i) is the part of the accumulated compressive strain of the reinforcement induced as 
a result of the differential thermal expansion that remains after cracking during heating.  
 
Figure 8(b)  shows the basic concept underlying the estimation of the M-φ relation for a RC 
beam at elevated temperature, including the effects of the strain released during flexural 
loading. The average flexural rigidity under high-temperature conditions is introduced 
using the following procedure: 
(i) Calculate the curvature of the RC beam at the cracked section when the yield flexural 

moment is acting, taking into account the temperature dependence of physical properties 
and the differential thermal expansion strain, φy,cr.  

(ii) Subtract the unrestrained curvature during heating (φT,ave) from the curvature at the 
cracked section: φy,cr- φT,ave. 

(iii) Define the secant modulus between yield flexural moment and (φy,c r- φT,ave). 
(iv) Take the secant modulus to be the flexural rigidity at the cracked section: Ec(T)･Icr ,h. 
The release of accumulated strain begins at initial cracking during heating, so the 
difference between φy,cr and φT,ave can be considered the released deformation due to 
flexural loading as described in Section 4.(2)a) (see Fig. 8(c)). The effect of internal 
stresses or cracks prior to flexural loading can be estimated from the equivalent moment, 
M0, under the temperature condition of interest. 
 
The average flexural rigidity of an RC beam at elevated temperature can then be expressed 
using the following formula based on the above discussion: 

 

[EI]eff,h = Ec(T)Ig( Mcr
M+M0

)
3
+Ec(T)Icr,h{1-( Mcr

M+M0
)
3
}    (19) 

 
 
Here, [EI]eff ,h: average flexural rigidity of RC beam at elevated temperature; Ec(T)･ Ig: 
flexural rigidity at full section considering only temperature dependence of physical 
properties; Ec(T)･ Icr,h: flexural rigidity at the cracked section as discussed above; Mcr: 
cracking moment at temperature when initial cracking occurs during heating as calculated by 
the conventional method;  M0: equivalent moment estimated using Eq. (21), which is 
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introduced to account for the influence of 
internal stress during heating, ; at initial 
flexural cracking; φy: yield curvature of RC 
beam calculated at the cracked section at 
the loading stage, {My/(Ec(T)･Icr,h)-φT,ave}. 
b) Estimation of M0 
Since stresses or cracks occurred during 
heating prior to flexural loading, the 
equivalent moment, Mo, is estimated using 
Eq. (21), in which the influence of internal 
stresses or cracks is considered. 

 

M0 = Mcr - MT,cr     normal temp.=<T< Tcr   
                              (20a) 
M0 = Mcr   Tcr =<T    {when T=Tcr, MT,cr=0}  
                              

(20b) 

Mcr = Ec(T)Igε tu

y
     (21) 

 
 
Here, Mcr: cracking moment calculated by 
the conventional method; ε tu: ultimate 
tensile strain of concrete; y: depth of neutral 
axis calculated at the full section 
considering the temperature condition at 
initial cracking but not considering the 
differential thermal expansion strain; MT,cr: cracking moment; Mex in Eq. (3) when ε t  is equal 
to ε tu, considering the differential thermal expansion strain; Tcr: temperature condition at 
cracking (MT,cr is calculated at this temperature.); and T: temperature in question. 

 
Cracking during both heating and loading stages is judged according to the criterion that 
the strain at the tensile fiber estimated using Eq. (3) exceeds the ultimate tensile strain of 
the concrete at the temperature in question. Here, a value of 100 10-6 is adopted for the 
heating stage, while during loading the value is taken to be the tensile strength of the 
concrete divided by Young’s modulus at the temperature in question. 
 
4.3 Applicability of estimation method 
 
 (1) Unrestrained deformation during heating 
The applicability of the proposed formulas for an RC beam with a non-symmetrical 
reinforcement arrangement was investigated by estimating two cases of unrestrained 
deformation during heating: (i) longitudinal deformation and, (ii) curvature. The drying 
shrinkage strain before heating, εsh=200 10-6, was take into account in the calculations. 
The results are plotted in the figures. The temperature dependence of the physical 
properties of the concrete and reinforcement material used was as given in the appendix. 
a) Unrestrained longitudinal deformation 
The unrestrained longitudinal deformation of RC beams at the centroidal axis as estimated 
using formula (18) is given in Fig. 9 , in comparison with measured values. The power 
constant, m, is set at 2 in formula (18) because these RC beams have non-symmetrical 
reinforcement arrangements. 
 
The estimates agree with the experimental results at various high temperatures and with a 
number of different reinforcement ratios, so the validity of the proposed method is 
confirmed. Drying shrinkage has a tendency to promote cracking at an earlier stage of 
heating and thus cause an increase in longitudinal deformation, but this effect is minor. 
 
A comparison of the measured longitudinal deformation for H400-2DR with an estimate 
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obtained using formula (19) is shown in 
Fig. 9(b).  The power constant, m, is set 
at 3 in formula (19) because H400-2DR 
has a symmetrical reinforcement 
arrangement. The estimated results agree 
fairly well and the validity of formula 
(19) is confirmed. 
 
It is concluded that the proposed methods 
are effective for estimating the 
unrestrained deformation of RC beams 
during heating, and that the value of the 
power constant in the formulas should be 
adjusted for the cases of RC beams with 
symmetrical and non-symmetrical 
reinforcement arrangements. 
b) Curvature 
The curvature of RC beams with single 
reinforcement arrangement as calculated 
using formula (17) is shown in Fig. 10 in 
comparison with the experimental results. 
The power constant, m, is set at 2 here 
also. The calculated results agree with the 
experimental ones except for the cases of 
H300-2D, and the validity of the 
proposed formula is confirmed. Initial 
cracking occurred at an earlier stage of 
heating in the cases of specimen H300-2D, 
and the calculated results are much smaller than the experimental results. Specimen 
H300-2D seems to be under conditions that make it susceptible to cracking. 
(2) Deformation due to flexural moment 
a) RC beams with single reinforcement arrangement 
The M-φ relations calculated using formula (20) are shown in Fig. 11(a),  Fig. 11(b) ,  and 
Fig. 11(c) in comparison with the experimental results. Curvature due to flexural loading is 
shown, being connected to those during heating (see Fig. 8(c)). This means the starting 
points of all specimens are not zero, therefore the measured and calculated values of 
curvature under no flexural moment are not consistent. The power constant, m, is set at 3 in 
formula (20) because the flexural loading stage is being considered. 
 
On the whole, it is judged that the proposed formula gives good estimates of the 
experimental result. From a more detailed perspective, some differences can be seen. For 
example, the calculated results for H500-2D are over-estimates compared with the 
experimental results, and the calculated curvatures of H300-2D and H400-2D when the 
flexural moment is zero are different from the measured values. However, the yield 
curvatures are estimated well. The proposed formula thus provides good estimates of total 
curvature from the heating to the loading stages. 
 
The proposed formula includes a special provision related to how flexural rigidity is 
estimated at the cracked section: the accumulated compressive reinforcement strain between 
c racks ,  wh ich  i s  caused  by  d i ff e r en t i a l  the rma l  expans ion  be tween  conc re t e  and 
reinforcement,  is  released as f lexural  loading increases and contributes to increased 
curvature. This knowledge is introduced into the estimation formula for flexural rigidity at 
the cracked section (refer to Section 4.(2)b); the difference between φT,cr and φT,ave , which 
is the latent deformation released as flexural loading rises, is used to estimate the average 
flexural rigidity). The influence of this latent deformation should be considered in cases 
where the reinforcement ratio is relatively low and the temperature is around 200˚C. 
However, there may be no need to consider it in cases where temperatures are over 300˚C or 
where there is a relatively large reinforcement ratio even at a temperature of 200˚C, because 
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Fig. 11  Relationship between curvature and flexural moment 
 
most latent deformation is released during heating. Consequently, the flexural rigidity 
calculated at the cracked section in consideration only of the temperature dependence of the 
physical properties might be suitable for calculating the average flexural rigidity during the 
loading stage. 
b) RC beams with double reinforcement arrangement 
The M-φ relations for H400-2DR and H200-4DR are shown in Fig. 11(d); in these 
specimens, the cracks penetrate the cross section during heating. As a result, the curvature 
of these specimens before flexural loading is assumed to be zero. 
 
The curvature of specimen H200-4DR before flexural loading is not zero in the strict sense 
because of the non-symmetrical reinforcement arrangement, but it can be considered close 
to zero. In this study, the unrestrained curvature of the specimen, which increases as the 
temperature rises before cracking and decreases as the crack penetrates the cross section, 
has not been considered, so it cannot be estimated (see Fig. 4(b)). However, it  might be 
possible to estimate the M-φ relation using a method similar to that described in Section 
4.(2)b). First, the curvature of the beam at yielding is calculated considering the 
differential thermal expansion and the dependence of physical properties on temperature．
Secondly, the secant modulus is defined as the flexural rigidity at the cracked section using 
the yielding flexural moment and the yielding curvature, and thirdly, formula (20) is 
applied. The crucial point is how the influence of cracks penetrating the cross section on 
the curvature after cracking is incorporated into the estimation formula. Here, the flexural 
rigidity at the cracked section is calculated as mentioned earlier, and the condition giving 
the maximum curvature (that is, no release of latent curvature during heating) is adopted. 

 
The calculated results of H400-2DR agree with the experimental ones very well (see Fig. 
11(d)  and this confirms the validity of the above approach. On the other hand, the latent 
curvature of H200-4DR is fully released during heating because of its relatively large 
reinforcement ratio, and the measured results agree with those calculated from the flexural 
rigidity at the cracked section when only the temperature dependence of physical properties  
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Fig.12  Deformational behavior of RC beams in plastic range at elevated temperature 
 
is considered. This behavior of H200-4DR is consistent with the results for H200-4D and 
H200-7D with high reinforcement ratios (see Fig. 11)). 

 
 
5. STRENGTH AND DEFORMATIONAL BEHAVIOR IN THE PLASTIC RANGE 
 
5.1 Plastic deformational behavior 
 
(1) Yield strength of RC beams  
The M-φ relations for RC beams after yielding and up to the ultimate stage at elevated 
temperature are shown in Fig. 12(a) (the white symbols). The yield strength of the beams 
falls with temperature rise, since the yield point of the reinforcement decreases. An 
influence of reinforcement ratio on the yield strength is apparent in the case of specimen 
H200-2D because of its lower reinforcement ratio. Clear values of yield strength for RC 
beams at temperatures over 300˚C cannot be observed because the reinforcement yield point 
is unclear at these temperatures.  
 
The M-φ relations for RC beams tested at normal temperature after temperature hysteresis 
are also shown in Fig. 12(a) (the black symbols). There are clear differences between the 
M-φ relations of beams tested under the two conditions, despite being exposed to the same 
high-temperature conditions. The measured results for NB-2D, NH200-2D, and NH500-2 
are compared. These are specimens with the same reinforcement ratio but different concrete 
Young's modulus because of the different temperature conditions. The yield strengths of 
NH200-2D and NB-2D are almost the same, but that of NH500-2D is much smaller. 
Generally, the influence of Young's modulus on yield strength is small. The centroidal axis 
of an RC beam with higher Young's modulus ratio, corresponding to higher temperature, is 
deeper and so its yield strength is reduced because the moment arm for calculating the 
resisting flexural moment is reduced in length. Theoretically, the yield strengths of 
NH200-2D and NH500-2D are about 2% and 8% smaller than that of NB-2D, respectively. 
 
The yielding strengths of H200-2D and NH200-2D, and also H500-2D and NH500-2D, are 
compared respectively. The concrete Young's modulus for each pair of specimens is almost 
the same, but the yield point of the reinforcement decreases with temperature rise so the 
yield strength of the specimens at elevated temperature is smaller as compared with that at 
normal temperature. The yield points of the reinforcement at 200˚C and 500˚C are about 
92% and 57% as large as that at normal temperature, respectively [1] and the reduction in 
yield strength of the beams at elevated temperatures corresponds to this change in 
reinforcement yield point. 
 
The M-φ relations for H200-2D, H200-4D, and H200-7D, which have different 
reinforcement ratios, are shown in Fig. 12(b) .  These specimens were all subjected to the 
same temperature conditions, so the concrete and reinforcement Young's moduli and the 
yield point of the reinforcement are almost the same among the specimens. Consequently, 
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the yield strength of the beams corresponds to the reinforcement ratio. 
(2) Ultimate strength and deformational capacity 
In the case of some specimens, flexural failure was not clearly confirmed in the tests at 
high temperature. For these specimens, consisting of 200-2D, H300-2D, H400-2D, H500-2D, 
and H400-2DR, the ultimate state was reconfirmed at normal temperature after temperature 
hysteresis (see Table 3). Except in the case of H400-2DR, these beams reached flexural 
failure at the same ultimate deformation as observed in the tests at elevated temperatures. It 
is concluded that flexural failure of the beams was in fact attained in the high-temperature 
tests taking into account the temperature dependence of the physical properties of concrete 
and reinforcement. A larger ultimate deformation was observed in specimen H400-2DR 
when tested at normal temperature as compared with that at 400˚C, and it is concluded that 
flexural failure of H400-2DR was not attained at 400˚C. The ultimate flexural deformation 
of H400-2DR at high-temperature is expected to be at least that at normal temperature, and 
the ultimate capacity can not be estimated definitely. It might be taken as a little larger 
than that measured in the test at high temperature because a slightly larger ultimate 
deformation is expected. 
a) Ultimate deformational capacity of RC beams under various temperature conditions 
The ultimate curvature of all specimens tested under various temperature conditions was 
about 1000 10-4 1/m (see Fig. 12(a)) and there is scarcely any difference in ultimate 
curvature of the RC beams. The ultimate compressive deformational capacity of concrete 
increases with rising temperature, and this contributes to the increased ultimate 
deformational capacity of an RC beam. However, the compressive area of the cross section 
of the RC beam resisting the ultimate flexural moment also increases because of the 
reduced compressive strength of the concrete. Consequently, the reinforcement tensile 
strain at the ultimate state, when the concrete compressive strain reaches the limit strain, 
falls to a small value and this contributes to the lower ultimate deformational capacity. It 
appears that the factors influencing the ultimate deformational capacity offset each other. 
b) Ultimate strength 
In the plastic range, the flexural moment resisted by specimens H200-2D and H300-2D 
increased considerably after yielding and large ultimate strength developed. This is because 
the stress-strain characteristics of the reinforcement at elevated temperatures influence the 
ultimate capacity of the RC beam. The tensile reinforcement strain in RC beams with a 
reinforcement ratio of 0.57% is judged to be about 3%-4%, and the stresses corresponding 
to this tensile strain rank in the order H300-2D, H200-2D, NB-2D, H100-2D, H400-2D, and 
H500-2D [1]. The deformational behavior of RC beams in the plastic range was observed to 
correspond to the characteristics of the stress-strain relation of the reinforcement at 
elevated temperatures. Concrete compressive strength is inclined to decrease with rising 
temperature, but this has less effect on the ultimate strength of the RC beam than the 
stress-strain characteristics of the reinforcement. 
c) Effects of varying reinforcement ratio 
The effects of different reinforcement ratios on the deformational behavior of RC beams 
tested at 200˚C are investigated (see Fig. 12(b)). The ultimate strength of the RC beams 
rises as the reinforcement ratio is increased, and the ultimate deformational capacity 
becomes small. This is the same tendency as observed at normal temperature. 
 
5.2 Estimation method for ultimate strength and deformational capacity 
 
(1) Stress-strain relation of concrete  
The concrete stress-strain relation shown in Fig. 13 is adopted; the relation is expressed by 
parabolic and straight lines [4]. Compressive strength at high-temperature is estimated 
using Eq. (1) in the appendix, and the characteristics of the stress-strain curve, ε0 and εu, 
are estimated using the equations below, as proposed in a previous paper [1]. 
(i) ε0: Strain at maximum compressive stress 
ε0(T)
ε0,n

 = 2.5x10-3T + 0.95   normal temp.=<T=<500 oC      (22) 
 

 
(ii) εu ; Ultimate compressive strain 
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Fig. 13  Stress-strain relation of concrete    Fig.14   Stress and strain distribution of RC beam at  

the ultimate state 
εu
ε0

 = 1.10~1.75     (23) 
 

 
The ratio of εu to ε0 (the strain ratio) is generally made 1.75 for normal temperature; that is, 
ε0 is 2,000 10-6 and εu is 3,500 10-6. Here, strain ratios of 1.10 through 1.75 were 
substituted in the calculation to investigate the effects of strain ratio on ultimate capacity. 
A value of ε0 equal to 1,800 10-6 was adopted based on experimental stress-strain relations 
obtained at normal temperature, so εu was made 3,150  10-6 to obtain a strain ratio of 1.75. 
(2) Stress-strain relation of reinforcement 
The stress-strain relations for normal temperature, 100˚C，200˚C，300˚C，400˚C, and 500˚C, 
as given in a previous paper are applied (as referenced in the appendix). The stress-strain 
relation at normal temperature is applied to the calculations for NH200-2D and NH500-2D 
because the experimental results showed that the mechanical properties of the reinforcement 
at normal temperature after high-temperature hysteresis to about 600˚C never change [5]. 
(3) Calculation of ultimate strength and deformational capacity 
The ultimate assumed stresses and strains in the cross section of the RC beam are 
illustrated in Fig. 14 .  The differential thermal expansion between concrete and 
reinforcement was considered and the assumption that a plane remains a plane was also 
adopted in the calculation. The ultimate strength and deformational capacity can then be 
obtained based on the equilibrium condition of longitudinal forces at the cross section. An 
iterative method of calculation was necessary because the measured stress-strain relations 
of the reinforcement were applied. 
 
5.3 Investigation of calculated results 
 
The calculated results of yield strength, deformation at yielding, ultimate strength, and 
ultimate deformational capacity for the RC beams are listed along with the measured results 
in Table 3 . The yielding curvature was obtained by subtracting the curvature when the 
flexutral moment was zero, that is the curvature due to heating only, from the calculated 
result at yielding considering the differential thermal expansion as well as the temperature 
dependence of the physical properties. The curvature due to heating is ignored in the 
calculation of ultimate capacity because of its minor influence. 
(1) Calculation of yield strength and curvature at yielding 
The yield point of an RC beam under high-temperature conditons is judged to be the state 
when the tensile strain in the reinforcement, as shown in Fig. 7(b) reaches the yield strength 
of the reinforcment. The yield strength of the RC beam is then calculated using Eq. (10). 
 
The curavature at yielding at normal temperature is obtained conventionally from the yield 
flexural moment and the average flexural rigidity expressed by formula (15) considering 
the contribution of concrete to the tensile resistesnce. The same approach can be applied to 
high-temperature conditions. The curvature at yielding is obtained from the yield flexural 
moment and the average flexural rigidity expressed by formula (20), in which the effects of 
tensile resistance of the concrete and the differential thermal expansion on curvature are 
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Table 3  Calculated results of curvatures of RC beams at yielding and ultimate states 
Yie ld ing  s t reng th

(kN-m)  
Curva ture  a t  
yie ld  po in t  

φ y ( 10 - 4 /m) * 4

Ul t imar te  s t reng th  
(kN-m)  

Curva ture  a t  u l t imate
φｕ ( 10 - 4 /m）  

 
Spec imen  

Compress ive  
s t reng th * 1  

(N/mm2 )  

 
ε 0

* 2
 

ε u
* 3  

 
 ε u  
 ε 0  

Exp . Ca l . ra t io Exp . Cal . ra t io Exp . Cal . ra t io  Exp .  Ca l . ra t io
NB-2D 50.6 1800 3150 1.75 57.5 49.3 1.17 73 56 1.30 68.6 70.3 0.98 1066 1054 1.01
NH200-2D 38.5(87%) 2600 3640 1.40 57.5 48.2 1.19 78 65 1.20 64.0 66.8 0.96 883 908 0.97

28.3(65%) 4400 1.10 45.4 1.00 99 97 1.02 62.8 0.84 771 0.97
21.7(50%) 5200 1.30    60.9 0.87 758 0.97

NH500-2D 

17.3(40%) 

4000 
 

5900 1.48 

45.5

   

52.8

58.6 0.90 

737 
 

730 1.01
H100-2D 42.1(94%) 2150 3220 1.50 53.6 46.7 1.15 87 67 1.30 69.6 63.0 1.10 933 958 0.97

41.6(87%) 2600 3640 1.40 42.8 36.5 1.17 97 89 1.09 63.2 58.6 1.08 1058 1126 0.94H200-2D 
tested  at  normal tenmp. * 5      65.4   1076   

35.5(78%) 3000 4500 1.50 42.8 34.1 1.26 90 76 1.18 69.5 71.3 0.97 992 981 1.01H300-2D 
tested  at  normal tenmp.  * 5      69.8   1036   

32.0(71%) 4900 1.40 31.9 1.07 78 73 1.07 65.1 0.86 1035 1.00
27.0(60%) 5600 1.60    64.1 0.88 1038 1.00
22.5(50％ )  

3500 

6125 1.75 

34.2

   

56.2

62.1 0.90 

1033 

992 1.04

H400-2D 

tested  at  normal tenmp.  * 5      50.4   1034   
23.7(63%) 5200 1.30 27.5 0.97 77 72 1.07 48.5 0.71 1063 0.96
18.8(50%) 6000 1.50    47.3 0.72 1032 0.99
15.1(40%) 

4000 

7000 1.75 

26.7

   

34.2

46.0 0.74 

1017 

1015 1.00

H500-2D 

tested  at  normal tenmp.  * 5      41.7   1024   
H200-4D 41.4(86%) 2600 4550 1.75 97.0 88.2 1.10 97 94 1.03 128.4 122.4 1.05 791 682 1.16
H200-7D 41.9(86%) 2600 4160 1.60 136.7 140.0 0.98 121 113 1.07 170.9 156.4 1.09 447 435 1.03

30.6(71%) 4550 1.30 32.9 0.94 107 97 1.10 66.7 0.88 1193 1.01
25.8(60%) 4900 1.40    66.3 0.89 1220 0.99
21.5(50%) 

3500 

5250 1.50 

30.8

   

58.8

65.6 0.90 

1210 
(1005) 

* 6  1216 1.00

H400-2DR 

tested  at  normal tenmp.  * 5      65.1   1210   
H200-4DR 41.6(48.3) 2600 4550 1.75 91.3 87.8 1.04 108 113 0.96 133.8 129.9 1.03 1030 869 1.19

*1) Strength at high temp. is calculated by Eq.(1) in the appendix. Value in( ) is ratio of strength at high temp. to that at normal temp.. 
*2) Strain at maximum stress on stress-strain curve  
*3) Ultimate strain on stress-strain curve   
*4) Values calculated by the suggested method. Drying shrinkage is not considered.  
*5) Since flexural failure of RC beam was not confirmed at high temp., failure test was performed after cooling. Using the data for H200-2D，Ｈ300-2

Ｄ，H400-2D, and H500-2D, measured data at high temp. are judged to be ultimate curvatures.  
*6) Maximum curvature obtained from the test of H400-2DR at normal temp. is considered to be the ultimate curvature under high-temp.conditions. 

Value in ( ) is measured data at high temp.. 
 
taken into account. 
 
The calculated values of yield strength and curvature at yielding as listed in Table 3  show 
the good agreement with the experimental results, though they are generally a little small. 
Under-estimation of the yield flexural moment leads to the rather small curvature. The 
calculated M-φ relations for most of the RC beams are consistent with the experimental 
ones, as shown in Fig. 11 ,  so it is deduced that the effects of differential thermal expansion 
strain as well as the temperature dependence of the physical properties of the concrete and 
reinforcement on curvature under flexural loading need to be taken into account in the 
curvature estimation method at yielding. 
(2) Calculation of ultimate strength and deformatonal capacity 
Calculated values of ultimate strenth and deformaional capacity for the RC beams were 
investigated by considering three test parameters. Concrete creep at elevated temperatures 
was ignored, since the results of short-term loading given in Section 3.(2) indicate that the 
effects are minor. 
a) Test temperature 
The ultimate strength of H500-2D and NH500-2D is considerably underestimated as 
compared with the experimental results, as Table 3  shows, but the calculated ultimate 
strength and deformational capacity of other specimens are estimated well as long as 
suitable strain ratios are selected. The strain ratio is inclined to be lower as temperature 
rises, and it is judged from the experimental results that the strain ratio is 1.75 at normal 
temperature, from 1.40 to 1.50 at 200˚C -400˚C, and from 1.10 to 1.20 at 500˚C. 
b) Compressive strength of concrete 
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The formula for estimating compressive 
strength at elevated temperatures is a 
regression equation derived from 
experimental data [6], a part of which 
include experiments performed at 400˚C 
and 500˚C at 28 days. The age of the RC 
beams at testing was two to six months, 
so it might be expected that the 
estimation formula will over-estimate the 
residual compressive strength as 
compared with the actual value. 
Moreover, the calculated ultimate 
strength of H400-2D and 500-2D is 
considerably overestimated, so the 
influence of estimated compressive 
strength at elevated temperatures on the ultimate strength of RC beams was investigated. 
 
A concrete compressive strength lower than that estimated using Eq. (1) in the appendix 
was adopted. Namely, in the case of H400-2D, compressive strength was calculated from 
the strength at normal temperature using ratio(strength ratio) of 0.6 and 0.5. Strength ratios 
of 0.5 and 0.4 were used for the calculation in the cases of H500-2D and NH500-2D. The 
accuracy of the estimated ultimate strength and deformational capacity remains unchanged 
even when these reduced compressive strengths are used, so strain ratios of 1.5 and 1.75, 
corresponding to the good estimate, are selected. 
c) Arrangement of reinforcement 
The RC beams with reinforcement in the compressive area, specimens H200-2DR and 
H400-2DR, develop greater ultimate curvature than those without compressive 
reinforcement because the reinforcement shares the compressive stress. The caculation 
reflects this tendency. When compressive strength is calculated using Eq. (1) in the 
appendix, the strain ratios corresponding to the good estimate of ultimate capacity are 
around 1.3 for H400-2DR tested under high-temperature conditions and 1.75 for H200-2DR, 
the results of which are consistent with the results so far. 
  
The application of the reduced compressive strength to the calculation of H400-2DR was 
also investigated. The strain ratio corresponding to the good estimate for the ultimate 
capacities increases and that of 1.4 through 1.5 was selected.  
(3) Consideration of ultimate compressive strain 
The ultimate compressive strain derived from the strain ratio discussed above; 
corresponding to the good estimate of ultimate capacity for RC beams at elevated 
temperatures, is investigated in relation to temperature. Here, the ratio of concrete ultimate 
compressive strain at elevated temperature to that at normal temperature is the factor 
investigated. 
 
The ultimate compressive strain discussed above is plotted in Fig. 15 against temperature. 
The investigated results concerning the reduced compressive strengths for spcimens tested 
at 400˚C and 500˚C are also plotted. Though there is some dispersion in the plotted data, 
the trend is for concrete ultimate compressive strain at elevated temperatures to increase 
with temperature, and this behavior is considered to be valid qualitatively. These estimates 
of concrete ultimate compressive strain at elevated temperature (see Eq. (25)) cannot be 
expected to be as accurate as estimates of the temperature dependence of strain at maximum 
compressive stress (as expressed by Eq. (23)). However, Eq. (25) does provide a rough 
guide to the temperature dependence of ultimate compressive strain at elevated 
temperatures. The gradient of ultimate compressive strain against temperature is a little less 
than that of the strain at maximum compressive stress against temperature. 
 
εu(T)
εu,n

 = 1.7x10-3T + 0.97     normal temp.=<T=<500 oC     (24) 
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These investigation clarify that, in order to estimate the ultimate strength and deformational 
capacity of RC beams at elevated temperatures, the temperature dependence of the physical 
properties of the concrete and reinforcement, and especially the stress-strain relations of the 
reinforcement in the plastic range, must be taken into account. It is concluded that the 
calculation using the temperature dependence of physical properties, the strain at maxumum 
compressive stress, and the ultimate compressive strain suggested in this paper (see Eq. (25)) 
leads to the good estimation of ultimate strength and deformational capacity. 
 
 
6. CONCLUSIONS 
 
The following conclusions are derived from this study: 
 
6.1 Strength and deformational behavior of RC beams at elevated temperatures 
 
(1) The internal stresses caused by differential thermal expansion strain between concrete 
and reinforcement result in unrestrained deformation of RC beams at elevated temperatures, 
with the deformtion depending on the reinforcement arrangement. When the tensile stress in 
the concrete exceeds the tensile limit, cracks occur. RC beams with single reinforcement 
arrangement develop flexural cracks, while those with symmetrical double reinforcement 
develop cracks that penetrate the cross section. 
(2) The M-φ relations of RC beams at elevated temperatures exhibit certain special features. 
・ Lower flexural rigidity under high-temperature conditions than at normal temperature 

becausee of the drop in Young's modulus of the concrete and cracking during heating. 
・ Release of accumulated compressive strain resulting from differential thermal expansion 

contributes to curvature when loaded. 
(3) The yield strength of RC beams at elevated temperatures depends mainly on the yield 
point of the reinforcement, and both deformational behavior in the plastic range and 
ultimate strength are dependent on the stress-strain relation of the reinforcement. However, 
ultimate deformational capacity barely changes with temperature and is almost the same as 
at normal temperature.  
 
6.2 Estimation of deformational behavior considering differential thermal expansion 
strain 
 
(1) Equations expessing stress and strain at the full and cracked sections of RC beams were 
introduced. These equations take into acount the temperature dependence of the physical 
properties of the concrete and reinforcement, as well as the differential thermal expansion 
strain. 
(2) An estimation method for the deformational behavior of RC beams at elevated 
temperatures was proposed, following the basic concept of average flexural rigidity used by 
the ACI. This method also takes into consideration differential thermal expansion and the 
temperature dependence of the physical properties of the concrete and reinforcement. The 
proposed method was confirmed to be valid through comparison with experimental results 
obtained for beams subjected to heating and flexural loading.  
 
6.3 Estimation of ultimate strength and deformational capacity 
 
(1) An estimation method for the ultimate strengh and deformatinal capacity of the RC 
beams at elevated temperatures was proposed. This method takes into account the 
temperature dependence of compresion strain capacity, the stress-strain relation of the 
reinforcement in the plastic range, and the differential thermal expansion strain. The 
validity of the method was verified by comparison with experimental results. 
(2) The temperature dependence of ultimate compressive strain as well as the strain at 
maximum concrete compressive stress at elevated temperatures must be taken into account 
when estimating the ultimate strength and deformational capacity of RC beams using the 
conventinal stress-strain relation consisting of parabolic and straight lines. The equation 
for estimating the temperature dependence of concrete strain at maxumum compressive 
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stress was proposed by the author in a previous paper [1] and that of ultimate compressive 
strain is also propsed by the author for the first time in this paper. 
 
 
Appendix  Physical properties of concrete and reinforcement 
 
The temperature dependence of the physical properties of the concrete and reinforcement, 
as used in calculating the strength and deformation of the RC test specimens, was estimated 
on the basis of results obtained in previous studies by the author [1],[6],[7]. The various 
dependencies are outlined below. 
 
1. Temperature dependence of physical properties of concrete 
 
(1) Compressive strength {f’c(T): high temp.; f’c ,n: normal. Temp.} 

   
f'c(T)
f'c,n

=-7.69x10-4T+1.02     normal temp.=<T=<500  
oC     (1) 

 
 
(2) Young’s modulus {Ec (T): high temp.; Ec,n: normal temp.} 

   
Ec(T)
Ec,n

=-4.03x10-3T+1.08     normal temp.=<T=<100  
oC     (2a) 

 

   
Ec(T)
Ec,n

=-1.24x10-3T+0.802     100  
oC<T=<500 

oC     (2b) 
 

 
(3) Tensile strength {ft(T): high temp.; ft ,n: normal temp.} 

   
ft(T)
ft,n

=-5.42x10-4T+1.01     normal temp.=<T=<280  
oC     (3a) 

 

   
ft(T)
ft,n

=-1.82x10-3T+1.36     280  
oC<T=<500 

oC     (3b) 
 

 
(4) Thermal expansion coefficient {αc(T); defined as secant modulus} 

   αc(T)=(12.4-0.330x10-1T)x10-6/ 
oC     normal temp.=<T=<207 oC     (4a)  

   αc(T)=(3.73+0.895x10-2T)x10-6/ 
oC     207 oC<T=<500oC     (4b)  

                                       
2. Temperature dependence of physical properties of reinforcement 
 
(1) Yield and tensile strengths described as ratios (high temp. value to normal temp. value) 
 
Temp.( ˚C) 100 200 300 400 500 

f ’y(T) 0.95 0.92 0.69 0.65 0.57 
f ’u(T) 0.98 1.15 1.14 0.96 0.70 

Yield  s t rength:  384.2 N/mm2 ;  tensi le  s t rength:  564.5 N/mm2  at  normal  temp. 
 
(2) Young’s modulus {Es(T): high temp.; Es,n: normal temp.} 

   
Es(T)
Es,n

 = -3.30x10-4(T-20)+1.0     normal temp.=<T=<500  
oC     (5) 

 
 
(3) Thermal expansion coefficient {αs(T); defined as secant modulus} 
 

   αs(T) = αs,T0 + 6.25x 10-9(T-T0)      normal temp.=<T=< 500oC     (6)  
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(4) Stress-strain relationship of  
   reinforcement  [1] 
   See Fig. 1  in the appendix 
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