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In order to clarify the features of various seismic design codes, nonlinear dynamic analysis of RC piers
designed using standard seismic design codes of Japan, the United States, Europe, and New Zealand is
carried out. The Lattice Equivalent Continuum Model (LECM) is adopted as the analytical method. A
comparison of the analytical results clarifies the features of these various seismic design codes, and LECM is
shown to be suitable for application to solving the dynamic problem.
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1. Introduction

The Hyogoken-Nambu Earthquake, which struck the Japanese city of Kobe on January 17, 1995, caused
severe damage to a large number of civil structures, demanding substantial review of Japan’s design codes
for major structures including roads and railways. Since damage to reinforced concrete structures was
particularly serious, the Japan Society of Civil Engineers (JSCE) promptly revised the Standard
Specification for Design and Construction of Reinforced Concrete Structures. The sections related to seismic
design, which had until then formed part of the “Construction” volume of the standards, were rearranged into
a separate volume specifically for seismic design in July 1996, about a year and a half after the earthquake.
The damage caused by this great earthquake included devastation of reinforced concrete structures such as
the pilz bridge of Hanshin Expressway and the ramen bridge of Sanyo Shinkansen (Bullet Train) Line. This
was primarily because the design code applied to these structures in the 1960s assumed a maximum design
earthquake motion of 0.2 G rather than the forces caused by an inland near-field earthquake such as the 1995
Hyogoken-Nambu event. Another critical factor was inferior knowledge at the time of construction of the
properties of reinforced concrete members, resulting in overestimation of the allowable unit shear stress — a
consequence of overestimating concrete shear capacity and lack of consideration of member ductility. Since
then, design codes have been come up for revision one after another as various phenomena have been
elucidated. Meanwhile, techniques for the numerical analysis of reinforced concrete structures have steadily
progressed, contributing to further elucidation of their behavior.

Against the background of growing interest in comparing seismic design codes for reinforced concrete
structures, design codes from four areas of the world were discussed at an international seminar held in
Tokyo in April 1999 entitled “Comparative Performance of Seismic Design Codes for Concrete Structures.”
Researchers and structure designers representing the four codes reported on them [1], and trial design of
bridge piers was then conducted by JSCE members using these codes. This was followed by an attempt to
assess the characteristics of the codes by numerical analysis. However, the setting of certain design
conditions was left to the discretion of each group of designers to allow for the characteristics of each code.
This resulted in differences between the conditions under which each code was tested, such as different pier
cross-sectional dimensions. As a result of this, distinctions between the codes could not be clarified by
comparison of the numerical analysis results [2], [3]. In this study, the trial design of bridge piers is once
again carried out, in this case with identical cross-sectional dimensions of the piers, with the aim of
elucidating the characteristics of each code. The dynamic properties of the piers were examined by nonlinear
numerical analysis.

The accuracy of techniques for the numerical analysis of concrete structures has improved as progress has
been made in the modeling of the constitutive laws of concrete, which is a heterogeneous material. Highly
accurate analysis is now available using models derived from precise theoretical considerations. However,
numerical analysis techniques have yet to be established for static behavior of concrete under repeated
loading and for dynamic behavior in the true sense of the word, since the mechanical properties of concrete
under alternating loading as well as opening/closing behavior and boundary stress transfer at cracking have
not been fully elucidated. A clarification of these phenomena is crucial to establishment of more accurate
dynamic analysis techniques useful in verifying the dynamic performance of structures, streamlining the
design procedure, and determining residual deformation and available performance immediately after an
earthquake (which affect post-earthquake repair and retrofitting).

The lattice equivalent continuum model (LECM) is a modeling method for reinforced concrete members in
which cracked concrete and reinforcement are replaced by lattices so as to derive an equivalent continuum
constitutive equation. LECM has been proven capable of accurately expressing the static behavior of
reinforced concrete members even under repeated loading [4], [5]. This model is used as an analysis
technique in this study.

2. Four seismic design codes

(1) Overview

This study involved the trial design of bridge piers using seismic design codes from four parts of the world:
Japan’s Standard Specification for Design and Construction of Concrete Structures published by the Japan
Society of Civil Engineers (JSCE), the USA’s California Department of Transportation Standard (Caltrans),
the EC’s Eurocode 8 (EC8), and New Zealand’s Standards New Zealand (NZs). Editions of these standards
current in April 1999, as introduced in the above-mentioned seminar, were used in the study.

The seismic design of a structure basically follows the procedure shown in Fig. 1 in all cases. The various
codes are distinguished by their handling of “calculation of design horizontal force” and “verification of



required reinforcement ratio” among other parts of the
procedure. Safety factors for material strengths and
load-carrying capacity also vary from one code to

another. The main characteristics of the four codes are
summarized in the following sections.
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(2) JSCE (Japan) i

The design procedure set out in the JSCE code is shown Assumption of reinforcement arrangement
in Fig. Al in the Appendix [1],[6],[7]. Earthquake T I
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motion (meaning that there is sufficient safety against I
compressive failure of the concrete during an earthquake
with no reinforcement yielding) and Seismic
Performance Requirement 2 (meaning the response
displacement and residual displacement are within
allowable limits in the case of an earthquake) or Seismic
Performance Requirement 3 (meaning the frame of the
structure is left intact) under Level 2 earthquake motion.
Figure 2 compares the response spectra used for the four
codes. The fine lines in the figure represent the spectra
under Level 1G (seismic waves causing a maximum
acceleration of approximately 400 gal and an elastic
response spectrum peak of approximately 1 G). The bold
lines represent the spectra under Level 2G (seismic
waves causing a maximum acceleration of
approximately 800 gal and an elastic response spectrum
peak of approximately 2 G). These correspond to Figure 1 Flowchart of general seismic design
response spectra under Case A and Case B earthquake
motions as described later in this paper.

Though the levels of earthquake motion to be considered at the design stage is given in the text, no specific
spectra are laid down in the JSCE code. The response spectra shown in Fig. 2(a) were therefore adopted as
the spectra by JSCE. These are elastic response spectra under Type I and Type Il earthquake motions (Type I
ground) used in the ultimate horizontal strength method during an earthquake specified in the Standard
Specification for Road Bridges, Volume V: Seismic Design [8].

According to the JSCE code, the design horizontal seismic coefficient K, is determined using the
following equation based on the equal energy rule:

K
Kh — h0 (1)

2u, —1
where K, = elastic response spectrum

M, = design ductility factor
Though the JSCE code does not consider the effect of biaxial bending, it confirms safety by separate
verifications in the direction of bridge axis and bridge width.
The specified range of longitudinal reinforcement ratio is between a maximum of 6.0% and a minimum of
0.15%, which is the widest range among the four codes. The transverse bar spacing is specified as not more
than the smallest of the following: 12 times the diameter of the longitudinal bars, half the cross-sectional
depth, or 48 times the transverse bar diameter. This is much greater than specified by the other codes. A more
stringent requirement is considered necessary from the viewpoint of preventing buckling of longitudinal
bars.
The JSCE code is characterized by the requirement for verification of response displacement of members
(ductility factor), which is not found in the other codes.

Calculation of length of plastic hinge

Verification of
hear resistance

Verification of
exural resistance
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Figure 2 Design seismic coefficients for level 1G and 2G earthquake loading

(3) Caltrans (U.S.A.)
The design procedure specified by Caltrans is shown in Fig. A2 in the Appendix [1]. Caltrans uses the elastic
response spectra shown in Fig. 2 (b). Instead of using the equal energy rule, the design horizontal seismic
coefficient is determined using a reduction coefficient, Z , as follows:
K
K, =—>¢ 2)
V4

This reduction coefficient of response spectra, Z , is obtained from the ratio of the natural period, 7' ) s
determined from the ground properties to the equivalent natural period, T , of the member. The specified
maximum value of Z is 3.0, which corresponds to ,= 5.0 if the concept of the equal energy rule is
applied.

Caltrans incorporates the effect of biaxial bending of piers by multiplying the design sectional force by 1.4.
Also, the verification of reinforcement content is more stringent than that of the JSCE code. For transverse
reinforcing bars in particular, the reinforcement content is verified separately for the plastic hinge zone, a
general zone, and the end zone. Transverse bar spacing is required to be not more than the smallest of the
following: 6 times the longitudinal bar diameter, 0.2 times the depth or width of the pier cross-section, or
20cm. This is less than half the value required by the JSCE code. The ratio of longitudinal reinforcement is
required to be within the range of 4.0% and 1.0%, the narrowest of the four codes.

(4) Eurocode 8 (Europe)
The design procedure specified by ECS8 is shown in Fig. A3 in the Appendix [1]. The EC8 code uses elastic
response spectra as shown in Fig. 2(c). EC8 does not use the equal energy rule, either. instead, the design
horizontal seismic coefficient is determined using a coefficient, g, that is similar to coefficient Z in
Caltrans:
K, =tw 3)
q

The maximum value of ¢ is specified as 3.5, which corresponds to £, = 6.67 in the equal energy rule
concept.

ECS8 incorporates the effect of biaxial bending by multiplying the acceleration of earthquake motion by 1.3.
ECS8 is also characterized by more conservative design requirements, such as underestimation of the yield
moment and ultimate moment and neglecting of the contribution of concrete to member shear capacity under
certain conditions.

Though no amount of longitudinal reinforcement is specified, verification of the minimum transverse
reinforcement content is strictly required from the standpoint of preventing buckling of longitudinal bars.

(5) NZs (New Zealand)

The design procedure specified by NZs is shown in Fig. A4 in the Appendix [1]. In contrast to the other
codes, NZs adopts non-elastic response spectra, as shown in Fig. 2(d). Response spectra are therefore
selected according to the design ductility factor of the member.

The design horizontal seismic coefficient is determined by multiplying the response spectra by zone
coefficient Z , risk coefficient R, and structure coefficient S »

K,=Z-R-S,-K, )



NZs takes into detailed account the influence of the P-A effect in calculating the design section force.
Moreover, in consideration of the simultaneous vertical acceleration that may occur during an earthquake,
the axial force is multiplied by 1.3 and 0.8 in the downward and upward directions, respectively, assuming
respective accelerations of 0.3 G and 0.2 G in these directions. Verification is carried out under more
stringent conditions.

The effect of biaxial bending is incorporated by multiplying the design moment by 1.04. The longitudinal
reinforcement ratio is required to be between 5.2% and 0.8%. The transverse bar spacing is required to be no
more than 6 times the longitudinal bar diameter and not more than 1/4 the depth of the pier cross-section,
which is almost equivalent to the requirements of Caltrans and EC8. In addition, a minimum transverse
reinforcement content is specified.

3. Trial design of reinforced concrete piers

(1) Overview

Two types of piers were designed in accordance with the four seismic design codes, using the same input
ground motion, ground type, superstructure weight, materials, and pier shape. The shape and dimensions of
the pier cross-section were also equalized so as to prevent wide variations in pier rigidity, thereby facilitating
the comparison of analysis results.

(2) Design conditions

(a) Earthquake load

There are regional differences in the characteristics of historical earthquake motion, so the specifications
made in each code vary. This makes it very difficult to set up common earthquake load conditions. Two
types of earthquake motion, leading to maximum response accelerations of 1 G and 2 G as shown in Fig. 3,
were selected for this study. These waveforms, which result in maximum accelerations of 400 and 800 gal,
are referred to as Cases A and B, respectively. They correspond to Type I and Type II seismic waveforms as
specified in the Japanese Standard Specification for Road Bridges [8].

The Case B waveform is the N-S component of the record taken at Kobe Maritime Observatory during the
Hyogoken-Nambu Earthquake.

(b) Form of structure

The structure under analysis is a single pier 7 m in height designed to support an elevated expressway as
shown in Fig. 4. The square cross section of the pier measures 1.5 by 1.5 m in Case A and 2.0 by 2.0 m in
Case B. The superstructure has a span of 40 m and a width of 10 m, and is assumed to impose a load of
7,000 kN corresponding to the dead load of an expressway typical of those constructed in Japan.

In this analysis, the live load is ignored, and only seismic action in the direction of the road axis is
considered.

(¢) Ground conditions

Since evaluating the compound behavior of structure and ground is very complicated, it is assumed that the
pier is constructed on rigid bed-rock and that the earthquake motion acts directly on the base of the pier.

(d) Materials

The concrete used in the design is of compressive strength 24 N/mm”. The reinforcing steel is JIS SD 345
with a yield strength of 345 N/mm’. The common design conditions are tabulated in Table 1.

(e) Bar arrangement

For the reasons mentioned above, the shape and dimensions of the pier section are equalized. The
characteristics of each code are therefore represented only by the bar arrangement. Longitudinal bars are
arranged uniformly in the road axis and road width directions so as to impart equal load-carrying capacity
and deformation performance in both directions.

(3) Specifications of designed pier

Table 2 gives the specifications of the eight piers designed according to the requirements of the four codes.
The bar arrangements are shown in Figs. A5 to AS8. In cases where the elastic response spectrum for the more
intense seismic waves, corresponding to Case B, is not indicated in the code, the spectrum given in the code
is simply multiplied by an appropriate factor.

The load-carrying performance and deformation performance of a pier vary widely depending on the
ductility factor adopted in design. Whereas the JSCE and NZs codes require the design ductility factor to be
determined, no such value is required in Caltrans and ECS. It is therefore difficult to deal with the design
ductility factor at the condition setting stage of the procedure. As stated in the previous section, the spectrum
reduction coefficient is set at between 1 and 3.5 depending on ground conditions. In the equal energy rule,
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the spectrum reduction coefficient is determined
by the design ductility factor, ,,. A reduction
coefficient between 1 and 3.5 corresponds to
=1 to 6.67 when converted by the equal energy
rule. An intermediate value of 4 is therefore
adopted as the design ductility factor for the trial
design in accordance with the JSCE and NZs
codes.

The longitudinal reinforcement ratio in Case B
according to the Caltrans code is 6.48%,
exceeding the specified maximum of 4.0%. Since
reducing the ratio to the specified level would
require an increase in pier cross section, a higher
longitudinal reinforcement ratio was adopted so
as to avoid excessive difference between the
cross-sectional areas in Case A and Case B
designs.

4. Numerical analysis by LECM

(1) Overview

Table 1 Common design requirements

Reinforced concrete pier

Structure (square cross section,
length= 7m and 30m)
Type (?f Direct foundation
foundation
Weight of 7000 [kN]
superstructure (live loads not considered)

Design ground
acceleration

400, 800 [gal]

Grade of concrete

24 [N/mm?] (JIS)

Grade of steel

345 [N/mm’] (SD345, JIS)

Table 2 Summary of Designed Pier Sections

\ Case A (7m column, 400gal wave)
JSCE | Caltrans | Euro NZ
Section 1500%1500
[mm>xmm)]
Main Bars 52-D51 96-D32 96-D29 40-D32
Ratio of
Main Bars [%] 4.68 3.38 3.38 1.41
Tie Bar 4-D22 8-D16 8-D19 8-D13
Ratio of
Tie Bars [%] 0.69 0.71 0.76 0.38
Natural Period | o7, 0.694 0.713 0.852
[sec]
\ Case B (7m column, 800gal wave)
JSCE Caltrans Euro Nz
Section 2000%2000
[mm>xmm)]
Main Bar 60-D51 128-D51 112-D51 112-D41
Ratio of
Main Bars [%] 3.04 6.48 5.67 3.75
Tie Bars 4-D25 8-D16 8-D22 10-D19
Ratio of
Tie Bars [%] 1.01 1.47 1.03 0.71
Natural Period | 3¢ 0.223 0.330 0.375
[sec]

To make the complex structural problem easier to solve, an attempt is made to model the continuous
structural member with lattice members as shown in Fig. 5. Structures are assumed to be collections of




lattices, and the behavior of the structure can be clarified by appropriately selecting the number, orientation,
and rigidity of these lattices. Even if the structure to be analyzed is non-elastic, as in the case of reinforced
concrete, highly accurate analysis is possible by adding nonlinearity to the stress-strain relation of the lattice.

The successful use of discrete lattice modeling of a
reinforced concrete element by Niwa et.al. [9], [10] has
led the authors to develop the Ilattice equivalent
continuum model to allow for wider and more flexible
application of the concept.

The lattice equivalent continuum model (LECM) is an
analytical method of leading the constitutive equation of
cracked RC elements by arranging the lattice in the
direction of the principal stress. As shown in Fig. 6,
lattices are used only to derive the continuum
constitutive equation, and analysis is done by normal
FEM. Unlike typical plastic theory, LECM is not
complex in that the constitutive equation of the lattice
may make use of the equivalent uni-axial stress-strain
relationship.

(2) Transformation of strain and  stress-strain
relationship

When the stress and strain caused in a contlnuous plane

body are iven by o=[o, 0 7, ] and

e=[e, &, ]/W] respectively, the stress and strain in the

E-n coordinate system at rotation angle ¢ to the

X — y coordinate system can be written as follows [12]:

cos ¢ sin’ ¢ singcosp || ¢

X

=| sin'g cos¢  —singcosp fe& )

7 y

Yey| |—2singcosp 2singcosp cos g—sin’ ¢ Y

) ¢$°

o, cos’ ¢ si"¢  2singcosg || o,
o,(=| sin’¢ cos’p —2singcosg o, (6)
z.,| |—singcosp singcosp cos’ g—sin’ ¢

In LECM, the first step is to replace each cracked RC
member with a lattice. The lattices are arranged in the
direction of principal strain in the concrete and the
direction of the steel bars. If the unlaxbal lattice strain is
assumed to be {8}— [81 RFS ] the following
expression is obtained:

cos’a, sin*a, sing, cosq,

{g}= cos’ @, sin’@, sing, cose, 6‘} :[LS]{g} )

7/ Xy

_cos2 a, sin‘a, sina, cosa, |
where 7 is the number of lattices. Similarly, if the
uniaxial stress of the lattice is assumed to be
{6‘}= Oy 00 , the following expressions are
obtained:
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where E,, A[, and b[ are the elastic modulus, sectional area, and positional interval of the lattices,

respectively. Moreover, the stress {J} of a continuous body can be written as follows in terms of the
stress {O'} of the lattices by using the stress rotation matrix:

coSeg - coSa -+ cosSa,
lo}=| sitq, - sitq - side, (6=[L]{6] (10)
sing; cosy, -+ sing coxy -+ SIng, COS,

Then Egs. (7) and (8) are substituted into Eq. (10):

to}=[LTIR][L.le}=[D]ie) an

And the stiffness matrix [D] for the continua is obtained as follows:

n n n
4 . 2 2 . 3
Y orcosta, Y rsin’a,cos’a, ) rsing, cos’ q
i=1 i=1 i=1
. - (12)
.4 23
[D]= D rsin'a, D rsin’ @ cosa,
i=1 i=1
n
2 2
sym. > 1 sin’ a, cos’

i=1
Thus, by using plane lattices, the stiffness matrix of the continua can be introduced.

(3) Application to two-dimensional RC element

In applying the matrix represented by Eq. (12) to a 2D RC element, it is necessary to obtain 7; inthe [D]
matrix. Here, 7, comprises elastic modulus, sectional area, and the positional interval of the lattices. The
value of 7, for the steel bar can be obtained directly, but for the concrete it must be obtained in
consideration of the influence of cracks. Given that the sectional area of a concrete part is the product of
crack interval bc and thickness w, 7; atthe concrete can be written as follows:

. E A, B E.bw
b b

c c

=E.w (13)

where E . is the elastic modulus of concrete and w is the thickness of a concrete element. Thus, 7, for
the concrete does not depend on the crack interval.

Once a crack enters a concrete part , the rigidity of the RC material is replaced with a lattice and it leads,
while both concrete and reinforced concrete are handled as elastic bodies prior to cracking.

Before the crack occurs in concrete, concrete and steel bar are handled as an elastic body, and after the crack
occurs, the stiffness of RC element is introduced by lattices. The stiffness matrix of the concrete and steel
before a crack enters the concrete element can be written as follows:

1 v 0 E. 0 0 4
pl-Lv v o | D)o £ o o
1- 1-v
00 5 o 0 O



where £, and £ are the initial elastic moduli of the
concrete and steel, and v is Poisson’s ratio for concrete.

In this technique, the element thickness is included in the
constitutive equation. If the concrete and steel thickness is
assumed to be f, and f respectively, the entire [D]
matrix is then,

[p]=t[D.]+1[D,]

The principal stress of each element is calculated, and a
crack is assumed to occur when the principal stress exceeds
the uniaxial tensile strength or 1/2 of the compression
strength of the concrete. The direction of principal stress at
this time is the orientation in which the lattice is arranged.
The stiffness matrix for cracked RC elements is introduced
by following the above procedure. The crack angle in a
particular element is different from that in adjoining
elements.

(4) Stress-strain relationship of materials

The repeated uniaxial stress-strain relationships for the
lattice used in this analysis are shown in Fig. 7. The element
stiffness matrix for RC elements can be introduced very
easily by using a simple equivalent uniaxial stress-strain
relationship.

5. Analysis results and discussion

(1) Outline of analysis

The analysis model the pier is shown in Fig. 8. In pushover
analysis, monotonic loading was applied to the pier top
under displacement control. In dynamic analysis, two
different input seismic waveforms, as shown in Fig. 3, were
applied directly to the pier base. It should be noted that the
damping matrix of the equation of motion was assumed to
be zero in the dynamic analysis to help distinguish the
properties of the different piers. The Newmark 3 method
[13] was used for numerical integration.

(2) Pushover analysis

The results of pushover analysis are shown in Fig. 9. All
piers failed in flexure.

In Case A, the JSCE code gave the greatest flexural capacity
at 3,966 kN, while NZs gave the smallest at 1,323 kN. The
added-moment effect can cause concern when displacement
exceeds 125 mm, particularly in the case of the NZs piers
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Figure 7 Equivalent uniaxial stress-strain relationship
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Figure 8 Shape of pier and analytical model (Case A)

with their low flexural capacity. However, the effect was judged marginal for the range of displacements
studied in this analysis, since the numerical analysis incorporates geometric nonlinearity and the ratio of
added moment to the horizontal loading moment is as low as 2% to 3% due to the high flexural capacity of

all piers except NZs.

The analysis results for the Caltrans and EC8 piers are almost identical, despite slightly different transverse
reinforcement ratios. This is because they have the same longitudinal reinforcement ratio. One of the reasons
for the high flexural capacity of the JSCE piers is the greater response spectrum than piers designed by other
codes near the resonance point. Figure 10 shows the response spectrum and equivalent natural period of
piers made in accordance with each code. The largest difference among response spectra among the four
codes is the range of the maximum values near the resonance point. The range is narrowest for Caltrans piers
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Figure 9 Analytical results (pushover)

and widest for JSCE piers. Though there is no
appreciable difference in the natural frequencies of
the four piers, the wide range of maximum values of
the JSCE spectrum leads to a greater horizontal
seismic coefficient than for piers designed by the
other codes, resulting in greater flexural capacity.
These response spectra characteristics are particularly
distinct in Case A.

In Case B, Caltrans and EC8 led to higher flexural
capacities than JSCE and NZs. Capacity was greatest
with Caltrans at 12,152 kN and smallest with JSCE at
6,436 kN. The greater capacity of the Caltrans design
results from the lowest reduction coefficient of the
response spectra among the four, at 1.628, which in
turn represents the greatest design horizontal seismic
coefficient.

Table 3 gives the shear capacity ratio as obtained for
each code; i.e., the ratio of shear capacity in the
plastic hinge zone obtained from analysis to the value
calculated using the equations specified in each code.
The safety of a structure against shear failure
increases as the shear capacity ratio increases.
Differences among the equations for calculating the
shear capacity are marginal, as the contribution of the
transverse reinforcement is derived from the same
truss theory [14], though the methods of calculating
the contribution made by the concrete vary slightly.
The shear capacity ratios of all piers exceeded unity,
proving them safe against shear failure. The JSCE
and NZs piers, which have low flexural capacity, are
found to possess adequate margins against shear
failure. The Caltrans pier also exhibits a good margin,
but the ECS8 pier shows a slightly lower value. This is
because, in the EC8 code, the shear capacity of a
member is calculated based only on the effect of the
transverse reinforcement without considering the
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Figure 10 Comparison of elastic response spectra

Table 3 Shear capacity ratio

Case A
JSCE Cal;ra“ EC8 | NZs
V., [IN] 4923 | 4824 | 4018 | 4507
V_[kN] 3966 | 2840 | 2839 | 1322
V.V, 1241 | 1.699 | 1415 | 3.409
Case B
Jsce | A peg | Nzs
V., [kN] 11564 | 23384 | 11691 | 10732
V., [kN] 6436 | 12152 | 10633 | 7444
V.V, 1797 | 1.924 | 1.100 | 1.442

contribution of the concrete under shear forces when the ratio of the stress resulting from the dead load and
superimposed load to the compressive strength, 1y, is under 0.1. However, since 1y exceeds 0.1 in both cases
analyzed here, the concrete contribution was incorporated. This causes a reduction in the required transverse
reinforcement, resulting in a slightly smaller margin against shear failure. However, the shear capacity of
actual piers designed in accordance with EC8 is deemed sufficient, since the cross-sectional area would be
designed such that n, would be less than 0.1. With a larger cross section, a pier designed in accordance with
ECS8 can be expected to exhibit a shear capacity greater than that resulting from the other codes.
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(3) Dynamic analysis

Figure 11 shows the results of dynamic analysis superimposed on the results of the pushover analysis. This is
the relationship between pier top displacement and shear force. In all cases, the first mode predominates over
other modes in pier deformation.

Similarly to the results of the pushover analysis, greater response displacement is exhibited by NZs in Case
A and by the JSCE code in Case B.

Caltrans and ECS led to small response displacements, particularly in Case B. This can be attributed to the
fact that Caltrans and EC8 apply a more conservative design process than the JSCE code and NZs, such as
by using a higher design horizontal seismic coefficient. This is because these codes do not include direct
investigation of the deformability of members and must also take account of the effect of biaxial bending.
Figure 12 shows the response plasticity factor, or the value obtained by dividing the maximum response
displacement in dynamic analysis by the yield displacement obtained in pushover analysis. Also shown in
the figure is the design ductility factor. The values for Caltrans and EC8 are reduction coefficients Z and q
converted by the equal energy rule for the purpose of comparison. Though the response plasticity factors of
piers are higher in Case A than in Case B, most remain within the range of the design ductility factor.

The JSCE code requires verification of member ductility at the design stage. Whereas the effect of slip-out of
longitudinal bars is incorporated in the calculation equation, it is not incorporated in the analysis.
Nevertheless, the response plasticity factors of the two JSCE piers are close to the design ductility factor, and
the differences is the smallest among the four codes. Despite arguments about the accuracy of the equal
energy rule [15], its use is considered to have led to appropriate design seismic coefficients in the trial design
of piers using the JSCE code in this case.

The response plasticity factor of the NZs pier in Case A exceeded the design ductility factor. Similar results
have been reported by numerical analysis using a model different from that used in the present study [2], but
this is not attributable to the numerical analysis technique. According to the numerical analysis of multiple
piers in these cases of trial design, piers designed in accordance with NZs tend to permit slightly greater
deformation than piers by other codes. This is particularly evident in the Case A pier.

a00f T T “md ] 4000f 'l' r ] ' T 1' ]
JSCE ! Caltrans | 10000 FISCE 4 10000} Caltrang 4
2000 i 4 2000f ; . _
g 0 - 0 .§ 0 W 0
3 £ 3 £
-2000 -1 -2000 | 1
I
: i 10000 - 1 -10000 [ ]
-4000 | L : L 1 -4000 L : L ] | | Il Il | | | Il
-200  -100 0 100 200 -200 -100 0 100 200 -100 -50 0 50 100 15 -100 -50 0 50 100 150
Displacement [mm] Displacement [mm] Displacement [mm] Displacement [mm]
r T T T] T T T T T : T T T
NZs 10000 [ EC8 1 ]
)
= 0
g
=
-10000 - 1
. [ ! L /] ! ! | I I 1 I ! I
-200 -100 0 100 200 -200 -100 0 100 200 -100 -50 0 50 100 150 -100 -50 0 50 100 150
Displacement [mm] Displacement [mm] Displacement [mm] Displacement [mm]
—— Dynamic
(a) Case A == Push-Over (b) Case B

Figure 11 Analytical results (Dynamic)
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6. Conclusions

In this study, four seismic design codes from different
parts of the world were selected and applied to the design
of two types of pier. Numerical analysis of this total of
eight piers led to the following conclusions:

(1) Piers designed in accordance with the JSCE and NZs
codes exhibited lower flexural capacity than those
designed in accordance with Caltrans and ECS, but
had sufficient shear capacity.

Piers designed in accordance with Caltrans and ECS8
exhibited higher flexural capacity than those designed
in accordance with the JSCE and NZs codes. Though
the EC8 pier in Case B showed a slightly lower shear
margin, this was due to the method of selecting
cross-sectional dimensions for the trial design. In an
actual design procedure, piers designed according to
the EC8 code would have a sufficient safety against
shear failure.

Trial design and numerical analysis of the piers
revealed that the JSCE and NZs codes offer
economical design approaches that ensure adequate
safety against shear failure by relying on the plastic
deformability of the member. On the other hand,
Caltrans and EC8 are conservative design approaches
that rely on the load-carrying capacity of the member.
Since there are an unlimited number of solutions that
meet the requirements of each code, the results
obtained do not represent general solutions using the
four seismic design codes. However, this comparison
of the codes does reveal their notable characteristics.
The lattice equivalent continuum model (LECM) was
applied to the nonlinear dynamic analysis of
reinforced concrete structures in this study. This
model gives results that are similar to those obtained
with other models, as shown in Fig. 13, with no
appreciable defects arising during calculation [2].
LECMs are therefore considered applicable to the
nonlinear dynamic analysis of reinforced concrete
structures.
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Appendix
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Figure.12 Response plasticity factor of pier
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Figure 13 Comparison of analytical models

The flowcharts for seismic design by the four design codes are given in Figures Al to A4. And The bar
arrangements in piers designed by the four design codes are shown in Figures A5 to 8A.
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| Set initial design conditions

Assumption of
reinforcement arrangement

7 M, /M, <10

yd =

M, design moment
M, yield moment

7i structural factor (=1.0)

* Not exceeding 12 times the
diameter of main bar

Assumption of

Verification of
main bars

Calculation of

Mu 7¢y 7My

Ratio of main bar

Max. 6.0 %
Min. 0.15%

Calculation of equivalent
natural period

tie bar arrangement

* Not exceeding half of the
minimum cross section of the
member .

* Not exceeding 48 times the
diameter of transverse
reinforcement

Vi Vou/Via <1.0

Verification of spacing
tie bar

V.. ultimate shear strength
Vyd design shear strength

NG Verification of

I
Calculation of seismic
coefficient
I
Calculation of design
sectional forces

M, =W,

Calculation of length
of plastic hinge

®

xK,, xH+W,xK, x(H/2)

Ky =Ko/ 20, =1

K, seismic coefficient
K, elastic response spectrum
Haq  design ductility

Vi=W,xK, +W, xK,
N, =W,+W,

W, weight of pier
H  height of pier
W, weight of superstructure

* 2D area from bottom of pier

Figure A1 Flowchart of seismic design by JSCE

| Set initial design conditions

Assumption of
reinforcement arrangement

Verification of
main bars

Calculation of

M M

us’Y sy

Ratio of main bar
Max. 4.0 %

Calculation of equivalent
natural period

Min. 1.0 %

Calculation of design
sectional forces

N, =W, +W,

M =W, x ARSx H + W, x ARS x 11/
V =W,x ARS+W,x ARS

shear resistance ¥; structural factor (=1.0)

OK Vi =B By Bu frea b dl7,
Vy=A,-f,,(sin8, +c0s8,)/S, -2/,

Verification of
ductility

Vit Mo g <1.0
Vi Vo /Vya 1.0

yd =

ty =Ly + A= )04/ )} 7,
Check of Level-I Ho=12(0.5V,+V )/ V,, =3
ground motion

NG design ductility
M4 ductility calculated using
equation specified in code
Vi tructural factor

* Not exceeding 6 times the
main bar diameter

* Not exceeding 20% of the
minimum cross section of the
member

+ less than 20cm

@ 1,=0.8l,+9d,

Calculation of length I, length of pier
of plastic hinge

dy  diameter of main bar

M, <¢-M,
M,

u

M

flexural resistance

design moment

Assumption of yield moment

strength reduction
factor (=1.0)

tie bar arrangement

* Not exceeding 6 times the
main bar diameter

* Not exceeding 20% of the
minimum cross section of the
member

* less than 20cm

Verification of spacing

Verification of
shear resistance

NG V.<¢-V,

strength reduction factor (=0.85)

¢

W, weight of W weisht of pier OK '« value of larger one of Vn and MwH
B superstructure ” € P V. shear force calculated usin;
height of pier  4ARS response spectrum " &
g p M =(1+04)xM/Z equation specified in code
=(14+ X
Calculation of the influence of biaxial u ’ F, 7

bending and force reduction factor Vo =(1+04)xV/Z Ve= 2|:O.5 " 20004 }/ZAC

N, =1.0N ard

d) VA force reduction coefficient V,= (Vc + VS) / ¢0 V.= Sy :

(1+0.4) magnification of effect of

biaxial bending

¢0 over-strength factor (=1.4)

Figure A2 Flowchart of seismic design by Caltrans
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| Set initial design conditions |

— Assumption of
reinforcement arrangement

| Calculation of

Mu 7¢y ’M,V

Calculation of equivalent

| Sd(T)=a-Sﬂ[5j .
q

Calculation of seismic T

coefficient 9=H/B, *=a,/G
§=10, f,=25, T.=04
T natural period

a; 1.3 times design seismic
coefficient
(considering biaxial bending)

Calculation of design

@ sectional forces

M, =W, xS, (T)x H + W, xS,(T)x L
V =W, xS,(T)+ W, x5,(T)

N =W, +W,
W, weightof  p  weight of pier
superstructure  *

A H  height of pier

natural period S

Myp<M,

Calculation of length
of plastic hinge

M, =M,+AM

AM =W, -d,

M+ design moment

y  yield moment
displacement of the
bottom of pier

value of larger one of 20% of length

| and width of cross section of pier

Assumption of
tie bar arrangement

A!

Verification of spacing
tie bar

@D,y > O minimum value

> A, [, 11.6f,S

prevention of buckling

OK

Dy = Py 'fyd ! fua
®,,=012 4

, area of tie bar

Ac area of main bar

Verification of
shear resistance

Ve V.0 >V, : inside hinge
Vcd +de > Vc : outside hinge

OK V. =7,V

v

cde

Figure A3 Flowchart of seismic design by EC8
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Sowa (45, 1'8)

2/3

@ M =H\V*+(0.3V) =1.04VH

| Set initial design conditions |

Calculation of design bending moment
considering biaxial bending

9| Calculation of longitudinal loading |
I W, =W,+W,
Assumption of N" =0.8W, or 1.3W,

arrangement reinforcement

Calculation of
M > ¢y ’ M ¥

u

Verification of
ongitudinal loading

NG

+ within 1D from bottom

of pier

| Calculation of length of plastic hinge

Verification of
exural resistance

Assumption of

N" <0254 fA,
N"<0.7N,
No=onf(A.—4)+ [, 4,

Verification of
main bars

@ Calculation of equivalent

natural period

| V=C,ZR-S,W,

Calculation of design W,=W,+0.5W
sectional forces “ ?

ratio of main bar

Max. 5.2 %
Min. 0.8 %

C,, response spectrum Z  Zone factor

tie bar arrangement

M <g-(M,~M,,)

M, ultimate moment

n

M pp : moment of P- A effect

: strength reduction
factor (=0.85)

41s
4> 25 1.d,

Verification of spacing
tie bar

* Not exceeding 6 times the
* Not exceeding 1/4 of the

main bar diameter

minimum cross section of the
member

Verification of
shear resistance

=0.85
OK ¢

Vi<e¢-v,
Vi=¢p-M,|H

4= {1.25+2[N* /(]:Ag)—o.l]z} 0.85

V.=Af,dlS V.=v.b,d

R Risk factor S p structural factor V-V 4V
W, weight of W, weight of pier e
superstructure

Figure A4 Flowchart of seismic design by NZs
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