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The level of damage to the reinforced concrete members that comprise a structure can be 
used as an index of the structure's seismic performance. The rational seismic-resistant 
design of structures therefore requires a suitable method of evaluating the relationship 
between plastic deformation and level of damage. Further, it is necessary to obtain a 
quantitative evaluation of ductility, which represents the level of damage. To this end, the 
authors carry out reversed cyclic loading tests on model RC columns with large 
deformational capacity and examine the influence of the major parameters on their 
deformation capacity. This paper reports the resulting quantitative evaluation of the 
ductility of RC column members. 
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1.  Introduction 
 
The aseismic performance of reinforced concrete (RC) structures is measured in terms of 
the ease/difficulty with which they can be restored after an earthquake [1], [2], and this is 
closely related to the damage suffered by structural members. Consequently, rational 
aseismic design depends on clarifying the relationship between plastic deformation and 
the level of damage to members, and assessing their deformational capacity at different 
damage levels. 
 
In view of the damage caused by the Hyogo-ken Nambu (Southern Hyogo) Earthquake, it 
has become necessary to greatly improve the aseismic performance of RC structures. This 
requires assessment of the aseismic performance of RC members in the region of large 
deformation, or at about 10 times the yield displacement [1]. However, the behavior of RC 
columns at extreme deformations, such as beyond the maximum strength, has not been 
sufficiently clarified as yet. 
 
To evaluate damage levels and their correlation with the degree of plastic deformation [3], 
the authors have previously performed reversed cyclic loading tests on RC columns 
modeled on those of a rigid-frame railway bridge in the region of large deformation, at a 
ductility factor of 10 [3]. A method of calculating the degree of pull-out of the axial 
reinforcement in the large deformation area has also been proposed [4]. 
 
In this paper, the authors discuss the factors that influence the deformation capacity of 
model RC specimens with a dense arrangement of hoop reinforcement based on reversed 
cyclic loading tests. A method is proposed for calculating the deformation capacity of an 
RC column at a ductility factor as high as 10. 
 
 
2.  Outline of reversed cyclic loading tests 
 
(1)  Specimen dimensions 
 
Table 1, Fig. 1, and Table 2 show the dimensions of a specimen, a typical reinforcing bar 
arrangement, and the results of material strength tests, respectively. The specimen cross 
section was generally about half that of a rigid-frame railway viaduct column. The web 
reinforcement ratio (pw) was 0.6% or more in most of the specimens. Other parameters 
were the shear span ratio (a/d), tensile reinforcement ratio (pt = ΣAs/(B·d), where ΣAs is 
the total area of axial reinforcement at the outermost edge of the tension side; B is the 
column section width; and d is the effective column height), and axial compressive stress 
(σn0). The actual value of strength obtained from material strength tests was used to 
calculate the strength ratio (Vy/Vmu, where Vy is the shear strength of the member; Vmu 
= Mu/a; Mu is the flexural strength; and a is the shear span) given in Table 1 [5]. To 
calculate the shear strength (Vc) of linear members without shear reinforcement, we used 
an expression proposed by Niwa et al. [6] and Ishibashi et al. [7] that reflects the effects 
of a/d. 
                            
(2)  Loading method 
 
Figure 2 shows the configuration for reversed cyclic loading tests. An axial force (axial 
compressive stress of 0.49N/mm2 to 5.88N/mm2) was applied using a vertical jack, with 
each specimen consisting of a column and its footing attached to the floor with PC steel 
bars. 
 
Horizontal loading was then applied with an actuator near the column head by means of 
load control in both positive and negative direction until the reading of a strain gage 
pasted to an axial reinforcement bar at the column foot exceeded the yield strain as 
obtained in tensile tests of the reinforcement. The horizontal displacement at the 
horizontal loading point was taken as the measured reference yield displacement (δytest),  
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Ta b l e  1   D i m e n s i o n s  o f  s p e c i m e n  

 
 Spe

 
 
 
 
 
 
 
 
 

Diameter Quantity Diameter Quantity Diameter Span

h b c d a a/d (one side) σ'no
(mm) (mm) (mm) (mm) (mm) (pieces) (%) (pieces) (mm) (%) (N/mm2) Vy/Vmu

No2 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 70 0.905 0.98 2.26 A
No4 400 400 40 360 1150 3.19 D16 5 0.690 D16 3 D13 90 0.704 0.49 2.46 A
A1 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 80 0.792 0.98 2.05 B
A2 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 60 1.056 0.98 2.52 B
A3 400 400 40 360 1150 3.19 D16 5 0.690 D16 3 D13 70 0.905 0.49 2.94 B
A4 400 400 40 360 1150 3.19 D13 5 0.440 D13 3 D13 80 0.792 0.98 3.86 B
A5 400 400 40 360 1150 3.19 D13 5 0.440 D13 3 D13 140 0.453 0.98 2.66 B
A6 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 50 1.267 0.98 2.87 B
A7 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 60 1.056 0.98 2.51 A
A8 400 400 40 360 1150 3.19 D16 5 0.690 D16 3 D13 120 0.528 0.98 1.98 B
A9 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D16 60 1.655 0.98 3.94 B

A10 700 400 40 660 1000 1.52 D19 5 0.543 D19 4 D13 60 1.056 0.98 2.01 B
A11 500 500 40 460 1150 2.50 D19 5 0.623 D19 3 D13 60 0.845 0.98 2.36 B
K1 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 65 1.056 0.98 2.56 B
R1 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 70 0.905 2.94 1.96 B
R2 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 60 1.056 5.88 2.04 B
R3 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 80 0.792 0.98 1.90 A
R4 400 400 40 360 1150 3.19 D19 5 0.995 D19 3 D13 70 0.905 2.94 1.94 A
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Ta b l e  2   R e s u l t s  o f  m a t e r i a l  s t r e n g t h  t e s t s  

 
 
 
 
 
 
 
 
 
 

Sp

 

Hoop
ecimen No Column Footing Yield strength Tensile strength Yield strain Strain hardening initiation point Yield strength

(N/mm2) (N/mm2) (N/mm2) (N/mm2) εy  ×10-6
εsh ×10-6 (N/mm2)

No2 23.5 28.2 378.5 543.0 2068 18409 359.3
No4 28.2 24.3 397.5 556.5 2153 19341 359.3
A1 26.4 31.4 378.6 543.0 2069 18920 358.5
A2 23.3 29.0 378.6 543.0 2069 18920 358.5
A3 26.8 24.8 397.5 556.5 2156 20449 358.5
A4 28.4 27.6 358.5 514.7 1980 19459 358.5
A5 29.1 29.4 358.5 514.7 1980 19459 358.5
A6 30.9 28.6 378.6 543.0 2069 18920 358.5
A7 30.7 30.3 378.6 543.0 2069 18920 358.5
A8 23.8 30.0 397.5 556.5 2156 20449 358.5
A9 21.7 22.2 378.6 543.0 2069 18920 397.5

A10 22.4 21.8 378.6 543.0 2069 18920 358.5
A11 24.6 24.4 378.6 543.0 2069 18920 358.5
K1 19.4 19.6 375.4 554.2 2061 18689 358.5
R1 28.2 30.4 389.5 587.8 2339 13914 368.2
R2 30.8 34.7 389.5 587.8 2339 13914 368.2
R3 32.5 32.3 389.5 587.8 2339 13914 368.2
R4 35.2 36.2 389.5 587.8 2339 13914 368.2

Strength of concrete Axial reinforcement

 
 
 
 
 
 
 
 
 
 

F i g .  1   E x a m p l e  o f  b a r  a r r a n g e m e n t  
( s p e c i m e n  N o .  2 )  
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F i g .  2   C o n f i g u r a t i o n  o f  r e v e r s e d   

c y c l i c  l o a d i n g  t e s t s  
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Ta b l e  3   S u m m a r y  o f  t e s t  a n d  c a l c u l a t i o n  r e s u l t s  

 
 
 
 
 
 
 
 

No2 5.23 1.83 3.66 5.49 59.31 12.11 1.24 45.96 0.000152 0.000140 55.79 70.43 15.44 0.95 54.04 0.000179 0.000184 72.23
No4 4.17 1.56 3.68 5.24 36.70 7.68 1.28 27.75 0.000092 0.000122 45.78 60.47 11.70 0.97 47.81 0.000158 0.000171 64.50
A1 6.28 1.68 3.59 5.27 62.40 11.75 1.22 49.44 0.000163 0.000130 52.42 75.04 14.85 0.93 59.26 0.000196 0.000177 69.49
A2 6.68 1.81 3.67 5.48 73.47 13.59 1.24 58.64 0.000194 0.000152 60.71 84.19 17.05 0.95 66.19 0.000219 0.000193 76.30
A3 5.50 1.56 3.48 5.04 57.04 9.67 1.21 46.16 0.000153 0.000140 53.32 78.19 13.85 0.90 63.45 0.000210 0.000184 70.59
A4 3.12 0.93 2.80 3.73 46.72 7.94 0.90 37.88 0.000125 0.000130 48.30 77.10 10.02 0.60 66.48 0.000220 0.000177 64.33
A5 2.94 0.88 2.79 3.67 39.05 6.56 0.90 31.59 0.000104 0.000089 34.42 56.93 9.56 0.60 46.76 0.000155 0.000148 54.95
A6 5.41 1.73 3.48 5.21 76.04 13.93 1.19 60.92 0.000201 0.000165 65.07 94.27 16.28 0.90 77.09 0.000255 0.000202 78.39
A7 5.50 1.67 3.49 5.16 48.81 9.22 1.19 38.40 0.000127 0.000152 56.29 71.37 13.85 0.90 56.62 0.000187 0.000193 73.05
A8 4.28 1.44 3.59 5.03 50.10 8.14 1.21 40.75 0.000135 0.000100 39.75 65.08 11.25 0.90 52.93 0.000175 0.000156 59.39
A9 5.58 2.19 3.72 5.91 79.47 16.57 1.25 61.65 0.000204 0.000185 73.74 89.57 20.77 0.97 67.83 0.000224 0.000216 87.20
A10 4.11 0.85 1.38 2.23 43.57 9.26 0.03 34.29 0.000084 0.000072 38.80 47.99 8.76 0.02 39.21 0.000096 0.000091 46.28
A11 5.68 1.34 2.60 3.94 53.28 10.85 0.55 41.88 0.000115 0.000106 49.90 72.57 13.40 0.40 58.77 0.000161 0.000142 65.32
K1 5.19 2.41 3.77 6.18 63.75 15.52 1.26 46.98 0.000155 0.000152 62.66 78.58 16.45 0.98 61.15 0.000202 0.000193 80.84
R1 5.62 2.33 3.80 6.13 63.97 14.41 1.18 48.38 0.000160 0.000140 58.03 80.45 18.71 0.91 60.83 0.000201 0.000184 75.45
R2 5.88 2.35 3.97 6.32 61.02 13.73 1.07 46.22 0.000153 0.000152 60.68 81.66 18.07 0.88 62.71 0.000207 0.000193 77.25
R3 4.90 2.01 3.55 5.56 52.44 11.25 1.22 39.97 0.000132 0.000130 51.93 62.47 13.50 0.92 48.05 0.000159 0.000177 68.13
R4 5.41 1.98 3.60 5.58 59.14 11.06 1.14 46.94 0.000155 0.000140 54.64 68.01 14.52 0.86 52.63 0.000174 0.000184 71.22

φpmtest φpmcal δutestδmcal δucal

δy'test: Measured yield displacement (mm), δy1: Rotational displacement due to pull-out of axial reinforcement at yield displacement (mm), δy0: Displacement of the skeleton at the yield displacement (mm), δ
ycal: Calculated yield displacement (mm), δmtest: Measured maximum displacement to maintain maximum load (mm), δm1: Rotational displacement due to pull-out of axial reinforcement at the maximum
displacement to maintain the maximum load (mm), δmb: Displacement of skeleton away from plastic-hinge at maximum displacement to maintain maximum load (mm), δmp: Displacement due to rotation of

plastic hinge at maximum displacement to maintain maximum load (mm),

φpucalδu1 δub δup φputestδmp

φpmtest: Measured average curvature of plastic hinge at maximum displacement to maintain maximum load (1/mm), φpmcal, Calculated average curvature of plastic hinge at maximum displacement to maintain
maximum load (1/mm), δmcal: Calculated maximum displacement to maintain maximum load (mm), δ utest: Measured ultimate displacement (mm), δ u1: Rotational displacement due to pull-out of axial
reinforcement at ultimate displacement (mm), δub: Displacement of skeleton away from plastic-hinge at ultimate displacement (mm), δup: Displacement due to rotation of plastic hinge at ultimate displacement
(mm), φputest: Measured average curvature of plastic hinge at ultimate displacement (1/mm), φpucal: Measured average curvature of plastic hinge at ultimate displacement (1/mm), δucal: Calculated ultimate
displacement (mm)

δycal δmtest δm1 δmb
Specimen

No
δy'test δy1 δy0

 
while the vertical load was taken to be the measured yield load (Pytest) at the point when 
the axial reinforcement at the outermost edge reached the yield strain. 
 
                           
After the specimen yielded, reversed cyclic loading was applied in the horizontal 
direction by means of displacement control. Reversed loads were applied at even 
multiples of δytest with one cycle in each of the positive and negative directions first, and 
then at integer multiples of δytest with on cycle in each direction once the horizontal load 
began decreasing under loading pattern A in Table 1. In the case of loading pattern B, 
loading was at integer multiples of δytest with one cycle in each direction once the 
horizontal load began to decrease. Loading pattern A was used in the initial stage of the 
tests.  At large displacements beyond 10·δytest, however, the axial reinforcement yielded 
after few cycles and this governed the deformation capacity of the specimen. Failures of 
this type have rarely been recognized during actual earthquakes, and other researchers 
have also pointed out that the possibility of such failure is very small [8]. Since the 
purpose of these tests was to evaluate deformation capacity in the absence of 
reinforcement failure, it was decided to adopt loading pattern B to avoid fatigue failure of 
the axial reinforcement. 
 
 
3.  Load-displacement relationship in reversed cyclic loading tests 
 
(1)  Load-displacement curve 
 
Figure 3 shows a typical load-displacement curve obtained in the tests. The 
load-displacement envelope reaches a maximum load at a displacement equivalent to 
about twice the yield displacement. Thereafter, the horizontal load remains approximately 
constant until the displacement reaches about 80% of the ultimate displacement (the 
lateral maximum displacement on the envelope of the load-displacement curve where load 
falls to the calculated yield load ) with all specimens. 
 
Table 3 summarizes the test results. Here, the measured value of yield displacement 
(δy'test) is the horizontal displacement corresponding to the calculated yield load (Pycal). 
The effect of P - δ due to axial force is taken into account in evaluating loads in this study 
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F i g .  3   Ty p i c a l  l o a d - d i s p l a c e m e n t  c u r v e  
( s p e c i m e n  A 1 )  

 
 
 
 
 
 
 
 
 
 

F i g .  4   R e l a t i o n s h i p  b e t w e e n  m e a s u r e d  
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[9]. 
 
(2)  Yield and maximum loads 
 
Figure 4 shows the relationships between measured and calculated yield load (Py) and the 
maximum load (Pu). The calculated yield load (Pycal) is defined as the load at the 
horizontal loading point when the axial reinforcement at the outermost tension edge 
reaches the yield strength, as in most past studies (such as references [3], [4] and [10]). 
The maximum load (Pucal) was calculated at the concrete ultimate strain of 0.0035, 
according to the Standard Specifications for Design of Concrete Structures for Railways 
[5]. Values obtained from material strength tests were used to calculate the yield strength 
of the reinforcement and the compressive stress of the concrete. 
 
From Fig. 4, it is inferred that the calculated values of load approximately reflect the 
measured values. 
                           
(3)  Effect of various factors on load-displacement envelope 
 
All of the RC specimens tested in this study underwent flexural failure (with flaking and 
gradual pulverization of the concrete cover on the loading plane, followed by loss of 
strength after yielding of the axial reinforcement, before eventually reaching the ultimate 
state). 
 
The effects of several variables on the load-displacement curves obtained in the tests are 
summarized here. Since each specimen had a different yield load due to variations in these 
factors, the Y-axis in the figures given in this section represents a non-dimensional value 
obtained by dividing the horizontal load by the calculated yield load (Pycal). 
 
a)  Effect of web reinforcement ratio 
Figure 5 shows the load-displacement envelopes for three specimens with different web 
reinforcement ratios, A1 (0.792%), A2 (1.056%), and A3 (1.655%) and a tensile 
reinforcement ratio of 0.995. Axial compressive stress was 0.98N/mm2  and all specimens 
were subjected to the same reversed cyclic loading pattern. The ultimate displacement is 
clearly larger at higher web reinforcement ratios. 
 
b)  Effect of axial compressive stress 
Figure 6 shows load-displacement envelopes for three specimens, K1, R1, and R2, with a 
tensile reinforcement ratio of 0.995% and a strength ratio of about 2.0 under axial 
compressive stresses of 0.98N/mm2, 2.94N/mm2, and 5.88N/mm2. The same reversed 
cyclic loading pattern was applied. Within the range of axial compressive stresses tested 
in this study, ultimate displacement was little affected by variations in axial compressive 
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F i g .  5   E n v e l o p e s  o f  l o a d - d i s p l a c e m e n t  
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c)  Effect of tensile reinforcement ratio 
Figure 7 shows the load-displacement envelopes for two specimens, A1 and A4, with 
tensile reinforcement ratios of 0.995% and 0.440%. In this case, the axial compressive 
stress was 0.98N/mm2 and the web reinforcement ratio was 0.792%, and the same reversed 
cyclic loading pattern was applied. Within the range of tensile reinforcement ratios tested 
in this study, ultimate displacement was little affected by variations in tensile 
reinforcement ratio. 
 
d)  Effect of the frequency of reversed cyclic loading at different displacements 
Figure 8 shows the load-displacement envelopes at an axial compressive stress of 
0.98N/mm2, a tensile reinforcement ratio of 0.995%, and a web reinforcement ratio of 
1.056% for specimen A7 subjected to three cycles of loading at different displacements 
under loading pattern A (as explained in section 2.(2) "Loading method") and for 
specimen K1 subjected to one cycle of loading at different displacements under the 
loading pattern B. The ultimate displacement of specimen A7 was less than that of 
specimen K1. 
                            
e)  Effect of shear span 
Figure 9 shows the load-displacement envelopes at an axial compressive stress of 
0.98N/mm2 and a strength ratio of about 2.0 for three specimens under the same reversed 
cyclic loading pattern: K1 (shear span ratio: 3.19), A11 (2.50), and A10 (1.52). The 
ultimate displacement tended to decrease as the shear span ratio decreased. 
 

 
 
 
 
 
 
 
 
 
 

F i g .  8   E n v e l o p e s  o f  l o a d - d i s p l a c e m e n t  
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F i g .  6   E n v e l o p e s  o f  l o a d - d i s p l a c e m e n t  
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F i g .  7   E n v e l o p e s  o f  l o a d - d i s p l a c e m e n t  
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F i g .  1 0   M o d e l e d  s k e l e t o n  c u r v e  

 
 

 
 
 
 
 
 
 
 

 
F i g .  9   E n v e l o p e s  o f  l o a d - d i s p l a c e m e n t  
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4.  Deformation capacity of RC columns subjected to reversed cyclic loading 
 
(1)  Modeling of skeleton curve 
 
Figure 10 shows a skeleton curve modeled on the basis of the load-displacement curves 
obtained from the reversed cyclic loading tests. In this modeled curve, C is the point 
where flexural cracking occurs; Y is the yield point (where the outermost axial 
reinforcement reaches the yield strain); A is the approximate point of displacement at 
which the maximum load is reached after the yield point; and M is the point of maximum 
displacement where the maximum load is maintained. The authors have confirmed in 
previous research [3] that cross-sectional damage at point M is limited and restricted to 
the concrete cover surface layer at the foot of the loading plane, allowing the column to 
continue in use after simple re-grouting of the cracks. If the damage exceeds this level, 
flaking of the concrete cover occurs and repair of the cross section is necessary. We 
define the ultimate point U on the load-displacement envelope as the point of the 
maximum displacement at which the load reaches the calculated yield load (Pycal). At 
point U, damage is concentrated at the foot of the member, where the core concrete is 
pulverized, but strength has not dropped so much that repairs cannot recover performance. 
 
In the same previous work, it was reported that the ratio of loading at point M to the 
maximum load is about 97%. In evaluating deformation capacity, therefore, we set the 
displacement at point M on the load-displacement envelope such that 97% of the 
maximum load is maintained.  We also set the displacement at point A such that 97% of 
the maximum load is reached. The displacement is then about twice the yield displacement 
in the case of most specimens, though there is a relatively wide variation with 
displacements ranging from one to four times the yield displacement. The method used to 
calculate displacement at points Y, M, and U in Fig. 10 is explained below. 
 
(2)  Yield displacement (point Y) 
 
The yield displacement of an RC column is the sum of two components, the rotational 
displacement arising from pull-out of the axial reinforcement from the footing and the 
displacement of the skeleton. In the following calculations of displacement, therefore, we 
discuss these two components separately. 
 
a)  Rotational displacement 
Expression (1) proposed by Shima et al. [11] is used to express the measured pull-out, S, 
of reinforcement from the footing at yield to quite high precision [4], and this value is 
substituted into Expression (2) [5] to calculate the equivalent rotational displacement at 
yield. 
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     S = 7.4αy·εy(2 + 3,500εy)/(f'ck)2/3·φ  ...  (1) 
 
Where, 
S: pull-out of reinforcement (cm) 
αy: effect of bar spacing [12] 
          αy = 1 + 0.9e0.45(1  -  Cs/φ )    
Where, 
εy: strain at reinforcement yield 
φ: diameter of reinforcing bars (cm) 
f'ck: strength of footing concrete (N/mm2) 
Cs: bar spacing (cm) 
 
     δ1 = a·S/(d - x)  ...  (2) 
                            
Where, 
δ1: rotational displacement due to pull-out of axial reinforcement 
a: shear span or length of member 
S: pull-out of reinforcement 
d: effective height (height of cross section minus distance from the compression (tension) 
edge to the compression (tensile) reinforcement at ultimate displacement [4]) 
x: distance from compression edge to neutral axis (at ultimate displacement ; distance 
from neutral axis to center of compressive reinforcement [4]) 
      
b)  Displacement of the skeleton 
Displacement of the skeleton at the yield displacement is obtained by dividing the member 
into 100 segments in the axial direction, and integrating the curvature of all segments. In 
calculating the curvature, the total cross section is regarded as effective if no cracking 
occurs in the calculation, while concrete on the tension side is neglected when cracking 
occurs. Cracking is found to occur when the tensile stress at the concrete edge reaches the 
flexural strength in consideration of member dimensions [5]. 
 
c)  Comparison of calculated and 
measured values of yield displacement 
Figure 11 shows the relationship between 
calculated yield displacement (δycal = 
δy1 + δy0, where δy1 is the rotational 
displacement due to the pull-out of axial 
reinforcement and δy0 is the displacement 
of the skeleton, both at the yield 
displacement) and the measured value 
(δy'test). The calculated values 
approximately correlate with the 
measured values. 
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(3)  Ultimate displacement (point U) 
 
The ultimate displacement (δu) is the sum of the rotational displacement and the 
displacement of the skeleton (δu1) at the ultimate state. 
 
a)  Rotational displacement arising from pull-out of axial reinforcement 
The amount of pull-out S from the footing after yielding of the axial reinforcement is 
obtained using expressions (3) to (5), and this value is substituted it into Expression (2) to 
calculate the rotational displacement (δu1) arising as a result of pull-out of the axial 
reinforcement at the yield displacement. 
 
     S = s·φ/Kfc  ...  (3) 
 

 - 86 -



Where, 
S: pull-out of reinforcement (cm) 
s: non-dimensional measure of reinforcement pull-out 
φ: diameter of reinforcing bar (cm), Kfc = (fck/20)2/3 
fck: strength of footing concrete (N/mm2) 
 

  When the reinforcement strain takes the value of yield strain (εy). 
     s = εy(2 + 3,500εy)·αy 

  When the reinforcement strain is at the initiation point of the strain hardening area 
(εsh). 
     s = 0.5(εsh - εy) + s(εy) 

  When the reinforcement strain takes the value at the change in gradient of the 
non-dimensional slip in the reinforcement strain hardening area.(εa). 
     s = 0.08(fu - fy)(εa - εsh) + s (εsh) 

  When the reinforcement strain is greater than εa. 
     s = 0.027(fu - fy)(εs  - εa) + s (εa) 
                                                 ...  (4) 
 
Where, 
εy: strain at reinforcement yield 
εsh: strain at initiation of reinforcement strain hardening 
fu: tensile strength of reinforcement (N/mm2) 
fy: yield strength of reinforcement (N/mm2) 
εs: reinforcement strain 
αy: effect of bar spacing [12] (αy = 1 + 0.9e0.45(1  -  Cs /φ )) 
Cs: bar spacing (cm) 
φ: diameter of reinforcing bar (cm) 
εa: point of non-dimensional slip gradient change in the strain hardening area 
     εa = εsh + {(0.132 - s(εy)/2)/(0.13(fu - fy))} 
s(εy): non-dimensional amount of pull-out at reinforcement yield strain 
s(εsh): non-dimensional amount of pull-out when the reinforcement strain is at the strain 
hardening starting point 
s(εa): non-dimensional amount of pull-out when the reinforcement strain is εa. 
 
     ε = 0.0031·µ + 0.0099  ...  (5) 
 
However, 2≦µ＜14 
        3.55≦w/φ≦7.69 
Where, 
ε: reinforcement strain at the footing top 
µ: ductility factor of member 
w: Bar spacing (cm) 
φ: diameter of reinforcing bar (cm) 
 
b)  Deformation capacity of skeleton after 
member yield 
Past research [13] indicates that 
displacement due to rotation within a certain 
rage at the foot of the member predominates 
in the overall displacement of the skeleton 
after a RC column subjected to reversed 
cyclic loading reaches yield. In the tests 
carried out here, it was confirmed that 
damage was concentrated at the foot of the 
member and that this caused displacement 
due to rotation around the point at which 
diagonal cracks intersected. It is thought that 
displacement of the skeleton was mostly due 
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to yield displacement at this point. We define the mechanism by which hinge-like plastic 
deformation occurs at the end of the member under reversed cyclic loading as a plastic 
hinge. 

  

                            
We assume a curvature distribution of the RC column after member yield as shown 
schematically in Fig. 13. It is thought that the curvature distribution is locally dense in 
the section where the plastic hinge occurs. In order to treat the curvature in this section as 
constant, we need to define the section in which the plastic hinge occurs and the average 
curvature in that section in calculating the displacements. In the text that follows, the 
section in which the plastic hinge occurs is discussed in view of the damage that took 
place in the reversed cycling tests. 
 
It is reported in the literature [14] that the length-to-height ratio of the area of 
concentrated damage is less in large specimens than in small specimens, presumably due 
to the effects of column diameter and hoop dimensions.  In another report [15], test 
results demonstrate that the range of plastic curvature at the column foot is smaller with 
large specimens than with small specimens, and differences in the length over which the 
axial reinforcement buckles depending on reinforcement diameter and the span of 
intermediate hoops are given as the reason for this. However, no method of quantitatively 
determining the length of the section of concentrated damage is given. 
 
Here, we discuss such a method on the basis of our data as well as the data presented in 
the literature [14], [15], and [16].  In Fig. 14, the X-axis represents shear span, and the 
Y-axis is the ratio of the length of the section with concentrated damage after yielding of 
the member to the section height (D). The figure shows that damage is typically 
concentrated into a length of about 1.0D for the range of shear spans tested in this study. 
Also plotted in Fig. 14 are the test results obtained by Kosa et al. [14] and given in a 
Technical Memorandum of the Public Works Research Institute [16]; these covered larger 
shear spans. (The data from the latter includes that obtained by Hoshikuma et al. [15].) 
The concentrated damage length divided by D tends to decreases as the shear span 
increases. If this portion in which damage is concentrated is taken to be the length of the 
equivalent plastic hinge Lp, we obtain Expression (6). 
 
     Lp = 52·a-0.6·D  ...  (6) 
 
However, Lp≦D 
Where, 
Lp: length of equivalent plastic hinge (mm) 
a: shear span (mm) 
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D: height of section (mm) 
 
We can then use Expression (7) to calculate the displacement due to rotation of the plastic 
hinge section by setting the center of rotation at the center of the plastic hinge and using 
the average curvature in the section, the length of the equivalent plastic hinge, and the 
shear span. 
 
     δp = φp·Lp·(a - Lp/2)  ...   (7) 
 
Where, 
δp: displacement due to rotation of the plastic hinge (mm) 
φp: average curvature of the plastic hinge section (1/mm) 
Lp: length of the equivalent plastic hinge (mm) 
a: shear span (mm) 
                            
We can obtain the displacement (δ0) of the skeleton after yielding of the member as the 
sum of the displacement resulting from rotation of the plastic hinge section (δp) and the 
displacement (δb) of the skeleton in the non-plastic-hinge section. 
 
c)  Displacement of skeleton away from plastic hinge 
We calculate the displacement of the skeleton at locations other than the plastic hinge at 
the ultimate displacement by dividing the member into 100 cross sections in the axial 
direction and integrating the curvature of each cross section. In calculating these 
curvature values, we regard the total cross section as effective when cracking does not 
occur in the calculation, but neglect the concrete on the tensile side when cracking occurs, 
just as in the calculation of yield displacement. It is determined that cracking occurs when 
the tensile stress at the tensile end reaches the flexural strength considering the size of 
members [5]. 
 
d)  Displacement due to rotation of plastic hinge 
We calculate the displacement (δup) of the plastic hinge section at the ultimate 
displacement by subtracting the displacement (δub) of the skeleton away from the plastic 
hinge and the rotational displacement (δu1) arising from pull-out of the axial 
reinforcement (both at the ultimate displacement) from the measured ultimate 
displacement (δutest). We then calculate back the average curvature of the plastic hinge at 
the ultimate displacement using the Expression (7) and the value of δup obtained above; 
this is taken to be the measured average curvature (φputest) of the plastic hinge at the 
ultimate displacement. 
 
In discussing a method for calculating the average curvature of the plastic hinge section, 
we first consider the effect of the number of cycles of repeated loading. Table 4 gives the 
values of φputest for specimens subjected to one cycle of reversed cyclic loading under 
loading pattern B and those subjected to three cycles of loading under loading pattern A at 
different displacements but with the same 
values of web reinforcement ratio and 
other parameters. Also given is the ratio 
of one-cycle to three-cycle values of 
φputest. The table illustrates that the 
average curvature of specimens that 
underwent three-cycle loading tends to be 
smaller than that of those that underwent 
one-cycle loading, with the average ratio 
of the two being 0.87. In calculating 
average curvature, we followed past 
research [10] and basically adopted 
three-cycle loading with different 
displacements, correcting the value of 
φputest for specimens subjected to 
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Ratio

Three-cycle/one-cycle

Ｒ３ 0.000159 Ａ１ 0.000196 0.81

Ａ７ 0.000187 Ｋ１ 0.000202 0.93

Ｒ４ 0.000174 Ｒ１ 0.000201 0.87

Average ratio 0.87

φputest  (1/mm)

Three-cycle loading One-cycle loading
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one-cycle loading by the factor 0.87 obtained above. This correction factor of 0.87 is 
approximately in agreement with test results obtained by Machida et al. [17] who studied 
the effect of the cyclic loading on the plastic deformation of RC columns. 
 
Figure 15 shows the relationship between average curvature of the plastic hinge and the 
web reinforcement ratio (pw). Here, the average curvature tends to increase as the web 
reinforcement ratio increases in the plastic hinge region. The test results for specimens 
with a shear span ratio of 3.19 yield Expression (8). 
 
     φpu = 0.00005Ln(pw) + 0.00018  ...  (8) 
 
Where, 
φpu: average curvature of plastic hinge at ultimate displacement (1/mm) 
pw: web reinforcement ratio (%) 
Ln: loge 
 
In Fig. 16, the X-axis represents the shear span ratio and the Y-axis the ratio of measured 
value ofaverage curvature of the plastic hinge at the ultimate displacement (φputest) to 
the value calculated using Expression (8) (φpucal). Also shown in this figure are data 
reported by Hoshikuma et al. [18], which cover values of shear span ratio that are higher 
than those used in this study. The average curvature of the plastic hinge at the ultimate 
displacement as calculated by Expression (8) approximates to the measured value when 
the shear span ratio is greater than 3.19, which is the value used in our study. On the other 
hand, specimens A11 (shear span ratio: 2.50) and A10 (1.52) indicate that the ratio of 
average measured to calculated curvature tends to fall as the shear span ratio decreases. 
                            
When the shear span ratio is less than about 3, the stress distribution approaches that of a 
deep beam, and the concrete under compressive stress may suffer damage earlier as a 
result of the changed stress distribution. As the shear span ratio decreases, therefore, it is 
thought that the ultimate displacement and the maximum displacement required to 
maintain the maximum load (the maximum load/displacement) become smaller, according 
to the corrected expression of 0.33a/d as obtained from the test data. Since the amount of 
data is small, however, we show corrected values for the specimens with shear span ratios 
of 2.50 and 1.52 for reference in the figures referred to in the following discussion. 
 
Figure 17 shows the relation between the measured average curvature (φputest) of the 
plastic hinge at the ultimate displacement divided by the calculated value (φpucal) and the 
tensile reinforcement ratio (pt).  This figure shows that there is no particular correlation 
when the tensile reinforcement ratio is from 0.440 to 0.995%. 
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To discuss the effect of axial compressive stress, we show the relationship between 
φputest divided by φpucal and the balanced axial force (N/Nb) in Fig. 18, where N is the 
working axial force and Nb is the balanced axial force, meaning the acting axial force 
calculated when the concrete strain at the compression edge reaches 0.0035 simultaneous 
with yielding of the outermost axial reinforcement due to tension. Figure 18 indicates that 
there is no particular correlation in the range (0.041 ≦  N/Nb ≦  0.448) as tested in this 
study. 

 

 
Based on the discussion above, we obtain Expression (8) for calculating the average 
curvature (φpu) of the plastic hinge when the RC column is at the ultimate displacement. 
Figure 19 compares the measured values (φputest) and calculated values (φpucal). The 
average of the ratio φputest/φpucal is 0.962 and the coefficient of variation is 5.4%. This 
means that Expression (8) reflects the test results to comparatively high precision. 
 
We can calculate the displacement (δup) due to rotation of the plastic hinge at the 
ultimate displacement using Expression (7) and the average curvature (φpu) of the plastic 
hinge at the ultimate displacement as given by Expression (8). 
 
e)  Comparison of calculated and measured values of ultimate displacement 
Figure 20 compares the measured value (δutest) of ultimate displacement and the value 
(δucal) calculated as the sum of rotational displacement arising from pull-out of the axial 
reinforcement, rotational displacement due to rotation of the plastic hinge, and 
displacement of the skeleton away from the plastic hinge (all at the ultimate 
displacement) by the methods explained in Sections 4.(3) a), 4.(3) c), and 4.(3) d). The 
evaluation method adopted in this study was verified for data at a strength ratio of about 
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2.0 taken from references [18], [19], [20], [21] and [22] and appropriate results were 
obtained, as shown in Fig. 20.  Other parameters used in the discussion were: 
reinforcement ratio 0.10 to 1.66%; shear span ratio 1.52 to 5.56; tensile reinforcement 
ratio 0.29 to 1.07%; and balanced axial force ratio 0 to 0.448. 
                            
(4)  Maximum load/displacement (point M) 
 
In the same way as for ultimate displacement, we obtain the maximum load/displacement 
(δm) as the sum of the rotational displacement (δm1) arising from pull-out of the axial 
reinforcement and the displacement (δm0) of the skeleton, both at the ultimate 
displacement, where δm0 is the sum of the displacement (δmp) due to the rotation of the 
plastic hinge and the displacement of the skeleton away from the plastic hinge, both at the 
maximum load/displacement. 
 
a)  Rotational displacement arising from pull-out of axial reinforcement 
In the same way as in Section 4.(3) a), we calculate the pull-out of reinforcement from the 
footing at the maximum load/displacement using expressions (3) to (5). By substituting 
this value into Expression (2), we can calculate the rotational displacement (δm1) arising 
from pull-out of the axial reinforcement of the RC column at the maximum 
load/displacement. 
 
b)  Displacement of skeleton away from the plastic hinge 
In the same way as for ultimate displacement, we calculate the displacement (δub) of the 
skeleton away from the plastic hinge at maximum load/displacement by dividing the 
member into 100 cross sections in the axial direction and integrating the curvature of 
each. 
 
c)  Displacement due to rotation of 
plastic hinge 
Table 5 shows the measured average 
curvature (φpmtest) of the plastic 
hinge at the maximum 
load/displacement for specimens 
subjected to one cycle of reversed 
cyclic loading (loading pattern B) and 
for specimens subjected to three cycles 
of reversed cyclic loading (loading 
pattern A) at different displacements 
but with the same values of web 
reinforcement ratio and all other 
parameters. The ratio of the one-cycle 
to three-cycle values is used to 
investigate the effect of number of 
loading cycles in discussing a method of calculating the displacement (δmp) due to 
rotation of the plastic hinge at the maximum load/displacement. By applying the same 
method as used for the ultimate displacement, we calculate the value of φpmtest using 
Expression (7) by subtracting the displacement (δmb) of the skeleton in the 
non-plastic-hinge section and the rotational displacement (δm1) due to the pull-out of 
axial reinforcement, both at the maximum load/displacement, from the measured 
maximum load/displacement (δmtest).  Table 5 shows that the average curvature tends to 
decrease as the number of loading cycles increases at different displacements. The ratio of 
the average curvature of specimens subjected to one cycle of loading to that of specimens 
subjected to three cycles of loading is 0.87, which is the same as that at the ultimate 
displacement. We use this value to correct the value of φpmtest for the specimens 
subjected to one cycle of loading. 
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Figure 21 shows the relationship between web reinforcement ratio (pw) and average 
curvature of the plastic hinge at maximum load/displacement. From the test results for 
specimens with a shear span ratio of 3.19 in Fig. 21, we obtain Expression (9). 
 
     φpm = 0.00007Ln(pw) + 0.00014  ...  (9) 
                          
Where, 
φpm: average curvature of plastic hinge at maximum load/displacement (1/mm) 
pw: web reinforcement ratio 
      
Since the average curvature of specimens with shear span ratios of 2.50 and 1.52 is 
similar to that at the ultimate displacement, we correct the calculated average curvature of 
the plastic hinge at the maximum load/displacement by multiplying by 0.33a/d. This 
corrected value is shown in the figures referred to in the discussion that follows. 
 
Figure 22 shows the relationship between the average plastic hinge curvature value 
(φpmcal) calculated using Expression (9) and the measured value (φpmtest) at maximum 
load/displacement. The average and the coefficient of variation of φpmtest/φpmcal are 
0.994 and 8.9%, respectively. This demonstrates that the proposed expression 
appropriately reflects the measured values. 
 
The displacement (δmp) due to rotation of the plastic hinge at maximum 
load/displacement is calculated by substituting the average curvature (φpm) of the plastic 
hinge at the ultimate load/displacement (as obtained using expression (9)) into Expression 
(7). 
 
d)  Comparison of calculated and measured 
values of maximum load/displacement 
Figure 23 compares the measured value 
(δmtest) of maximum load/displacement and 
the value (δmcal) calculated as the sum of 
the rotational displacement arising from 
pull-out of the axial reinforcement, the 
rotational displacement due to rotation of the 
plastic hinge, and the displacement of the 
skeleton away from the plastic hinge. All 
values are at the maximum 
load/displacement, and the methods given in 
Sections 4.(4) a), 4.(4) b), and 4.(4) c) are 
used. Also plotted are data from past 
research [19]. These results prove that this 
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method of evaluating the deformation capacity of RC columns is appropriate. 
 
 
5.  Summary 
 
To establish a method of quantitatively evaluating the deformation capacity of RC 
columns in the region of large deformation and at a member ductility factor of about 10, 
reversed cyclic loading tests were carried out on RC specimens in the parameter ranges 
given below. Previously reported data and the results of these tests were collated and used 
as the basis for discussion. 
Shear span, a: 1,000 to 9,600 mm 
Height of cross section, D: 320 to 2,400 mm 
Web reinforcement ratio, pw: 0.10 to 1.66% 
Shear span ratio, a/d: 1.52 to 5.56 
Ratio of balanced axial force, N/Nb: 0 to 0.448 
Tensile reinforcement ratio, pt: 0.29 to 1.07% 
Strength ratio, Vyd/Vmu: 1.55 to 3.94 
Ratio of reinforcement diameter to cross section, φ/B: 0.011 to 0.048 
Shear span ratios lower than 3.19 are outside the applicability of the expressions used to 
calculate φpu and φpm. 
The results of the investigation can be summarized as follows. 
 
(1)  The envelope of the load-displacement curve tends to show that the load remains 
approximately equal to the maximum load after the maximum is reached and until about 
80% of the ultimate displacement. 
 
(2)  The region where damage is concentrated at the foot of the member after yielding is 
regarded as a plastic hinge of equivalent length, Lp, and a method of calculating this 
length is proposed: 
     Lp = 52·a-0.6·D 
However, Lp≦D  
where, 
Lp: length of equivalent plastic hinge (mm) 
a: shear span ratio (mm) 
D: height of cross section (mm) 
 
(3)  A method is proposed for calculating the ultimate displacement δu. 
     δu = δu0 + δu1 = δup + δub + δu1 
Where, 
δu0: displacement of skeleton at ultimate displacement (mm) 
δup: displacement arising from rotation of the plastic hinge at the ultimate displacement 
(mm) 
δub: displacement of the skeleton away from the plastic hinge at the ultimate 
displacement (mm) 
δu1: rotational displacement arising from pull-out of axial reinforcement at the ultimate 
displacement (mm) 
The displacement δup of the plastic hinge at the ultimate displacement can be calculated 
using the following expression by treating the center of the plastic hinge as the center of 
rotation: 
     δup = φpu·Lp·(a - Lp/2) 
Where, 
δup: displacement arising from rotation of the plastic hinge at the ultimate displacement 
(mm) 
φpu: average curvature of the plastic hinge at the ultimate displacement (1/mm) 
Lp: length of the equivalent plastic hinge (mm) 
a: shear span (mm) 
The average curvature φpu of the equivalent plastic hinge at the ultimate displacement can 
be calculated using the following expression: 
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  φpu = (0.00005Ln(pw) + 0.00018) 
However, 0.10≦pw≦1.66 and a/d≧3.19  
where, 
pw: web reinforcement ratio (%) 
a/d: shear span ratio 
 
(4)  A method is proposed for calculating the maximum load/displacement δm. 
     δm = δm0 + δm1 = δmp + δmb + δm1 
Where, 
δm0: displacement of the skeleton at the maximum load/displacement (mm) 
δmp: displacement arising from rotation of the plastic hinge at the ultimate displacement 
(mm) 
δmb: displacement of the skeleton away from the plastic hinge at the ultimate 
displacement (mm) 
δm1: rotational displacement arising from pull-out of axial reinforcement at the ultimate 
displacement (mm) 
The displacement arising from rotation of the plastic hinge at the maximum 
load/displacement is calculated using the following expression: 
     δmp = φpm·Lp·(a - Lp/2) 
Where, 
δmp: displacement arising from rotation of the plastic hinge at the ultimate displacement 
(mm) 
φpm: average curvature of the plastic hinge at the maximum load/displacement (1/mm) 
Lp: length of equivalent plastic hinge (mm) 
a: shear span (mm) 
The average curvature φpm of the equivalent plastic hinge at the ultimate displacement 
can be obtained with the following expression: 
     φpm = (0.00007Ln(pw) + 0.00014) 
However, 0.10≦pw≦1.66 and a/d≧3.19  
where, 
pw: web reinforcement ratio (%) 
a/d: shear span ratio 
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