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When pile foundations experience a severe earthquake, it is generally assumed that postpeak bending
behavior emerges locally in the pile at the top and near the boundaries between different soil layers in
the ultimate limit state. Experimental results for typical cast-in-place RC piles indicate that the postpeak
behavior is mainly caused by the collapse of covering concrete and the local swelling of reinforcing bars. In
this paper, we propose a simple constitutive model in which a plastic buckling model is used to describe the
swelling of reinforcing bars and which employs a fiber element for the piles. Also we use the plastic buckling
length of the reinforcement bar as the element length. Numerical verification using this proposed model
shows approximate agreement with experimental results for model piles under cyclic loading. Furthermore,
we carry out dynamic analysis using the proposed model of a bridge pile foundation, and propose a design
condition and criteria for pile foundations likely to suffer from seismic-induced ground vibration.
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1. INTRODUCTION

In designing infrastructure, accountability for performance during earthquakes is being increasingly re-
quired. The concept behind design codes for such structures is changing, with performance-based design
becoming more important. Design codes clarify only the performance requirements of structures. In the
present Japanese design code for highway bridge foundations, the response to very strong seismic motions
of low probability during the service lifetime should be such that no excessive repair work is necessary,
thus enabling a quick return to service, and that enough horizontal capacity and ductility are main-
tained to facilitate repair of damage to the foundations if needed [1], [2]. The Specifications for Highway
Bridges [1], [2] in Japan recommends a ductility design method to verify these requirement. This is a static
design method, but an inertial force corresponding to the first vibration mode of the seismic response is
applied to the superstructure, pier, and footing of the foundation.

In order to investigate quantitatively the stability of pile foundations subjected to such inertial forces
from the superstructure and the damage sustained, we have performed a series of large scale experi-
ments and proposed appropriate limiting requirements for the displacement ductility factor of group-pile
foundations [2], [3], [4]. This recommended critical ductility factor is considered to be independent of the
number of rows of piles and the type of piles as long as the piles satisfy the recommended structural details
in the specification, although in practice it is true that the limit ductility factor must depend on those
elements. The reason for the recommended limit ductility factor being made constant is that the pro-
posal is based only on a small number of experimental studies, and numerical models and techniques are
not sufficiently developed, especially in postpeak behaviors, to allow reliable estimates of the relationship
between pile foundation stability and the damage sustained by each pile.

Moreover, recent reports of damage such as that in the Hanshin-Awaji earthquake (Kobe Earthquake) of
1995 suggest that pile foundations are likely to sustain damage near boundaries between soft and hard
soil layers because of kinematic interactions between motions of the pile and soil during large earthquakes.
Many studies have been carried with the aim of developing prediction methods which are suitable for
practical design against such damage [5], [6], [7], [8], [9]. Though it is true that local pile damage and
capacity loss resulting from ground vibration during an earthquake are considered to have a minor direct
effect on the restoring force of the pile foundations as a system, since pile foundations consist of many
piles supported by the ground and are highly statically indeterminate, quantitative prediction methods for
the effects of local pile damage and capacity loss and corresponding design methods have not been fully
investigated.

In order to develop performance-based design codes/standards, it is necessary to understand the seismic
behavior of pile foundations and to clarify the relationship between possible damage state deep in the
ground and stability of foundation, just as inertial force has been verified. Unfortunately, experimental
investigations face difficulties in simulating dynamic soil-pile interactions under any conditions. On the
other hand, numerical approaches are helpful because they can be extended to pile foundations of any
design and also any ground conditions. However, we still have been unable to develop an appropriate
numerical model for piles that can handle the postpeak behavior of foundations. Cast-in-place RC pile
foundations are the most popular type in Japan. Hence it would be quite useful to develop a model which
can trace the postpeak behavior of cast-in-place RC piles in order to establish a seismic design concept for
such foundations.

Many numerical simulations have been reported to trace the postpeak behavior of RC members [10] and it
has been pointed out that the swelling of reinforcement must be properly modeled [11], [12], [13], [14], [15].
Further, some consideration is necessary to avoid mesh size dependency of the numerical results when a
softening-type constitutive model is used in finite element analysis [16], [17]. We have carried out exper-
iments on group pile foundations and single piles in air subject to cyclic loading and have reported the
progress of damage and postpeak behavior [3], [4]. We also have implemented finite element analysis using
a fiber element for the pile to simulate these experiments [18]. As a result, even though the nonlinear
characteristics of members are strongly affected by changes in the applied axial load due to the horizontal
displacement of the superstructure, we have shown that it is possible to trace the postpeak behavior of
foundations numerically as long as each fiber is modeled with the appropriate material nonlinearities and
swelling of the reinforcement. As for a general cast-in-place RC pile foundation, however, the problem
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Fig. 1 Menegotto-Pinto model

of how to model the swelling behavior of reinforcement and how to set the element length when using a
softening constitutive model in the presence of swelling has not been resolved yet.

In this paper, we first propose a uniaxial constitutive model for longitudinal reinforcement. This can be
used with the fiber element representing the pile and can trace the behavior of a cast-in-place RC pile
from the elastic region to the postpeak region. We also establish a method of determining the length of
elements to which the proposed constitutive model is applied. The proposed model treats the swelling of
reinforcement bars as a plastic buckling phenomenon that occurs after compressive collapse of the covering
concrete, and this is combined with ordinary constitutive models with no swelling effect. Furthermore, we
avoid the element mesh dependency of the results by introduction of the plastic buckling length to the
element length. The accuracy and characteristics of this constitutive model are examined through analysis
of cast-in-place RC piles subjected to cyclic loading.

Secondly, the seismic behavior of a foundation consisting of cast-in-place RC piles is simulated by dynamic
analysis in order to demonstrate the feasibility of the proposed model even in dynamic problems and to
clarify the causes of damage to piles deep underground: the relationship between the such pile damage and
the stability of pile foundations as a system is also clarified. Finally, we discuss a seismic design method for
pile foundations which can take the kinematic effect from seismic-induced ground vibrations into account.

It should be noted that the present analysis dose not take into account the pulling-out of longitudinal
reinforcement from the footings. This is because there is inadequate experimental data available to model
it, and because the contribution of reinforcement swelling is considered dominant in the post-peak behavior
of pile foundations. Only the effect of deterioration in the bending capacity of piles has been examined,
while the effect of shear collapse of the piles will be investigated in the future.

2. CONSTITUTIVE MODEL AND ELEMENT LENGTH FOR FIBER MODEL OF PILE

(1) Constitutive model without reinforcement swelling

We employ the Menegotto-Pinto model as a constitutive model for the longitudinal reinforcement, as
proposed for the reinforcing bars in RC members subject to cyclic loading.

The Menegotto-Pinto model is specified as a bi-linear behavior with initial rigidity E0 and hardening
rigidity E1, plus a series of asymptotic curves looking these bi-linear relations as shown in Fig. 1. These
are given by

σ∗ = bε∗ +
(1 − b)ε∗

(1 + ε∗R)1/R
(1)

with definitions

σ∗ ≡ σ − σr

σ0 − σr
, ε∗ ≡ ε − εr

ε0 − εr
, (2)



where σ is stress; ε is strain; (σr , εr) is the last strain reversal point, and (σ0, ε0) is the intersection of the
two envelopes when unloading and loading occurs from point (σr , εr) as illustrated in Fig. 1. Parameter
b is a hardening ratio defined by the initial rigidity E0 and the hardening rigidity E1 as follows.

b ≡ E1/E0. (3)

Parameter R represents the deviation of a stress-strain branch from the bi-linear curve and is defined by

R = R0 − a1ξ

a2 + ξ
(4)

where R0, a1, and a2 can be regarded as material constants, and R0 is the value of R at initial yield.
We here give the same values to R0, a1, and a2 as used in numerical analysis of cast-in-place RC piles
by Shirato et al. [18], because no experimental data is available to determine these material parameters.
Parameter ξ is defined by

ξ ≡ |ε0 − εr
′|/εy = |e0 − er

′|, (5)

where εr
′ represents the preceding maximum or minimum strain reversal point with respect to (σr , εr).

This parameter represents the absolute value of plastic strain developed from (σr , εr) to (σr
′, εr

′), and is
updated at every unloading and loading step, where σr

′ is the corresponding stress to εr
′. Here we use the

definition in Fig. 1 as
s ≡ σ/σy , e ≡ ε/εy, (6)

where σy and εy stand for the initial yield stress and strain respectively. In the application of Eqs. (4) and
(5), if partial unloading and reloading occurs, we calculate the value of ξ by using the strain reversal points
during the unloading and reloading branch. Note that ξ at first strain reversal is estimated as illustrated
in Fig. 1.

(2) Criteria for initial swelling

It is easy to understand that there exist some interactions between reinforcement swelling and collapse of
the covering concrete. For example, Suda et al. [11], [12] have generalized the mechanism of the initiation
of reinforcement swelling and proposed a criterion for the appearance of swelling with consideration of
such an interaction.

However the results of existing loading tests on model cast-in-place RC piles [3], [4], [21] suggest that
the covering concrete is crushed or falls apart when the capacity of the piles begins to drop significantly
owing to bending. Therefore we consider it appropriate to employ a simple assumption that reinforcement
swelling does not occur until the covering concrete at the position of the reinforcement bar collapses. In
detail, swelling becomes possible if the following conditions are satisfied consecutively:

1. first the strain of the reinforcement bar exceeds the compressive failure strain of the covering concrete,
2. then the reinforcement bar undergoes unloading or tensile loading, and
3. finally the reinforcement bar undergoes compressive loading again.

That is, the swelling of reinforcements is never initiated under monotonic loading.

(3) Constitutive model and length of fiber elements for reinforcement bar with swelling

Fig. 2 illustrates the proposed constitutive model taking swelling into account. This model consists of
two parts, one of which is the Menegotto-Pinto model without swelling (curve ABC), and the other being
a load-displacement curve indicated by PQBR where a longitudinal reinforcement bar buckles plastically
at point ‘Q’. The abscissa of this figure is the averaged strain over the characteristic buckling length which
depends on the arrangement of reinforcement in each pile.

Curve PQBR is assumed to be derived by plastic buckling analysis in two dimensions of a longitudinal
reinforcing bar supported by hoop bars and core concrete, as is shown in Fig. 3. F and u in Fig. 3 denote
the vertical load and displacement at the loading point, respectively. The hoop resistance is modeled by a
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Fig. 3 Numerical analysis of plastic buckling of reinforcement bar (in case L = 4s)

series of discrete springs with a spacing equal to that of two adjacent hoop reinforcements, while the core
concrete is replaced by uniformly distributed elastic springs. Note that the resistance of the latter springs
is non-zero only when the displacement of the longitudinal reinforcement is toward the core concrete side.
Horizontal and vertical displacement and rotation at the bottom are fixed, and horizontal displacement
and rotation at the top are also fixed. Details of using this model will be given in Section 3. together with
the results of plastic buckling analysis.

It is easily imagined that plastic buckling behavior will depend on the model length of the reinforcement
analyzed. But, Suda et al. [11], [12], for example, have suggested a method of estimating the plastic
buckling length properly; here the elastic buckling of a bar on an elastic foundation is employed but the
corresponding flexural rigidity is modified step by step depending on the degree of development of the
plastic region under a certain loading.

However, we here propose a new method that is suitable for the practical implementation. First, we
numerically perform several cases of plastic buckling analysis on reinforcement of length L = ms, where
m is an integer to be controlled and s is the spacing between two adjacent hoops. Then we determine



the critical m0; that is, the characteristic plastic buckling length L0 = m0s at which the most drastic fall
in load is observed after initiation of plastic buckling among many trials with different m’s. It should be
noted that there exist (m − 1) sets of springs for a bar of length L = ms. Dividing the obtained load F
by the cross sectional area of the reinforcement and also dividing the displacement u by the characteristic
plastic buckling length L0 = m0s, we obtain the normalized and averaged stress-strain relation. Finally
this averaged stress-strain relationship is adopted to express the compressive branch of the stress-strain
relation curve PQBR in Fig. 2 by referring to the method employed by Gomes and Appleton [15]. Point ‘P’
is where the elastic unloading path of rigidity E0 from the maximum tensile strain point ‘A’ in the history
crosses the zero stress level. Note that, in the analysis of pile behavior later on, we assume a piecewise
linear load-displacement relationship for buckled longitudinal reinforcement and interpolate the discretized
load-displacement data obtained from numerical analysis of plastic buckling of the reinforcement.

Swelling is assumed to occur when compressive stress σm derived from the Menegotto-Pinto model and
σb obtained from the curve PQBR become coincident at a certain strain level. Thus, the stress-strain
response chooses curve B-R not along path B-C of the Menegotto-Pinto model.

When strain reverses after the post buckling branch and becomes an expansion, the stress and strain
response begins to tend toward the maximum tensile strain point of the history, as proposed by Shirato
et al. [18] This implies that the tensile resistance of longitudinal reinforcement bars that have experienced
swelling under compression becomes smaller than in the virgin state without any swelling. In the numerical
analysis of pile behavior below, we set the value of E0 to E′, which is the instantaneous modulus between
‘R’ and ‘A’ (i.e. between the strain reversal point in the compression branch and the maximum tensile
strain point in the history), and set the curvature parameter R = R0 in the Menegotto-Pinto model.

The length of the fiber elements into which the proposed constitutive model is installed must be made equal
to the characteristic plastic buckling length L0, as used in the setting of the curve PQBR. This is because
we want to reflect the physical phenomena onto the element length through averaging the deformation
within the element.

Judging from the results of past experimental research [3], [4], [21], we can expect the length of the swelling
portion of the reinforcement in the standard arrangement to be approximately a half of the diameter of the
pile. From this, it can be easily imagined that axial extension and compression will not occur simultaneously
in one particular fiber of the element as long as the element length is of the same order, so our proposed
method is considered applicable here. Since, in general, real piles are in practice around ten diameters
in length or more, sufficient accuracy is possible from the viewpoint of convergence in the FEM analysis.
Note that it is possible to apply the proposed model for handling the swelling effect to any constitutive
model as long as it is described within the framework of deformation theory.

(4) Constitutive model of concrete

Since the focus here is the postpeak behavior of pile foundations subjected to cyclic loading, we employ the
so-called modified Muguruma model proposed by Ristic et al. [20], which can handle softening behavior
due to cyclic motion.

However, we modify this model further as follows, and construct a skeleton curve as is illustrated in Fig.
4. The maximum compressive stress point (CC) is evaluated and then the degradation gradient (CC-
U) using the model by Hoshikuma et al. This takes the confining effect of the hoop reinforcement into
account for standard columns and piles, and is adopted in the Specifications for Highway Bridges [1]. This
modification alters the skeleton curve of the modified Muguruma model so that it no longer possesses a
sustaining branch of peak strength . Further, since the descending gradient introduced by Hoshikuma et
al. is evaluated through regression analysis of results obtained uniaxial compression tests with large-scale
specimens in the range from maximum compressive strength σcc to 0.5σcc, it cannot be applied directly
to this model. Accordingly we derive the first descending gradient which is valid in the range from σcc

to 0.5σcc (the branch CC-U) from Hoshikuma et al., and we further assume that the second descending
gradient in the range below 0.5σcc (the branch U-L) is half of the first one.

Since the constitutive laws of concrete also include softening, similar treatment to that used for the
constitutive relation of reinforcement needs to be applied to the constitutive relation of concrete in order
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Fig. 4 Schematic outline of constitutive model of concrete employed in this paper

to avoid mesh size dependency in the numerical results. Although many reports exist on this subject,
there is no well-established method of solving this problem. Therefore we here employ the model proposed
Hoshikuma et al. without any modification [16].

3. PLASTIC BUCKLING ANALYSIS OF REINFORCING BAR

(1) Numerical model for plastic buckling analysis

Now we carry out a series of plastic buckling analyses of reinforcing bars constrained by core concrete and
hoops, as is illustrated in Fig. 3. The 2D finite element method is employed within a framework of finite
displacements. A reinforcing bar is expressed by a group of fiber elements; that is, the cross section is
divided into a number of layer-like elements.

We adopt the Menegotto-Pinto model as the constitutive model for each fiber of a reinforcing bar. Although
it would be possible to use other models, rather than the Menegotto-Pinto model originally developed for
the analysis of RC members subject to cyclic load, for consistency of analysis we employ the same model as
used for the analysis of the behavior of cast-in-place RC piles, as mentioned later. The spring constant of
the spring representing the hoop resistance is obtained through a series of separate finite element analyses
of an arch model subjected to a normal force at the top, as shown in Fig. 3. In this model, the arch
consists of a hoop reinforcement with both ends fixed and an open angle of 90 degrees. The distributed
spring used to model the resistance of the core concrete does not resist tensile force, and the compressive
spring constant is set just large enough to prevent the longitudinal reinforcement from penetrating into
the core concrete.

The reinforcing bar is divided into ten elements in the longitudinal direction, and the cross section is
modeled by 50 fiber elements. A distributed concrete spring is located at each node. Finally a small initial
parabolic imperfection is introduced into the longitudinal reinforcing bar so that buckling can be triggered
easily.

(2) Determination of plastic buckling length of reinforcing bar

Two model cast-in-place RC piles are examined in this paper. These have been the subject of model tests in
experiments where the behavior of piles subject to horizontal cyclic loading was examined. The numerical
analysis is presented in Section 4. The dimensions of the model piles are summarized in Figs. 10 and 15.
We refer to the first as the type-1 pile specimen and to the latter pile as the type 2 pile specimen. Material
constants and parameters for the Menegotto-Pinto model are chosen to be identical with those employed
in the analysis of the experiments described in Section 4.

First, assuming that the hoops never yield, we obtain spring constants kr which represent the hoop
resistance by finite element analysis of the arch model shown in Fig. 3. The value of kr for the type-1



L/s = 1 L/s = 2 L/s = 3 L/s = 4 L/s = 5 L/s = 6

Fig. 5 Deformed shape after plastic buckling of longitudinal bar in type-1 pile specimen

pile specimen is 1.7 MN/m, and it is 19.0 MN/m for the type-2 specimen. The spring constant of the
distributed spring representing the core concrete must be sufficiently rigid; it is set at 9.8 GN/m2. As
explained in Section 2.(3), plastic buckling analysis of reinforcing bars of length L = ms with various
values of m is executed in order to determine the critical value m = m0 which leads to the most unstable
load-displacement history.

As for the type-1 pile, six cases denoted m = 1, 2, · · · 6 are analyzed. Fig. 5 illustrates the initial states by
dashed lines and the corresponding deformed configurations at an average strain of 5% by solid lines. The
average strain is defined by the longitudinal displacement at the loading point per length L. The scale of
each figure is also normalized by the length L. The springs are shown schematically in there figures, with
both the initial and deformed states shown. The springs do not resist displacement of reinforcing bars in
the longitudinal direction. The deformed configurations suggest that the buckling mode when L = 5s and
6s is the same as when L = 3s.

Fig. 6 shows the relationship between vertical load and displacement normalized by buckling mode in
order to estimate the load-displacement relationship for each buckling mode. In all cases, buckling occurs
immediately after initial yielding of the material.

Then, as can be expected from the buckled shape, the results for cases L = 3s, 5s, and 6s are similar to each
other, and they show a most significant drop in load-carrying capacity. The length of the swelled portion
of the longitudinal reinforcement bars observed in the experiments shown in Photo 1 is approximately
3s, and this agrees well with the most unstable response obtained in this series of buckling analyses.

As for the type-2 pile, similar results are obtained as summarized in Fig. 7. The deformation configuration
when L = 3s is also drawn in this figure.

In comparison with the experimental results in Photo 2, the shape of the swelling when L = 3s coincides
with the experimental observations well. In this type-2 pile, the buckling mode at L = 5s is also the same
as that at L = 3s. Although there are differences in reinforcement arrangement between the type-1 and
type-2 pile specimens, the buckled shape corresponding to the most drastic drop in the load-displacement
curve is more or less the same as that observed experimentally.

These results indicate that plastic buckling is initiated by loss of bending stiffness due to plasticization
of the cross section, and that the buckling load is independent of length L. On the other hand, buckling
mode and post-buckling behavior depend on length L. However a comparison with experimental results
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for real piles suggests that the actual swelling phenomena are strongly governed by the buckling mode
where the most drastic drop in the load-displacement curve occurs.

(3) Differences in reinforcing bar behavior due to variations in hoop resistance spring rigidity

Although it is assumed in the plastic buckling analysis above that the hoop reinforcement remains elastic,
it can also be imagined that it may yield if the horizontal swelling deformation of the reinforcement bars
becomes excessive. In order to examine such a possibility and its sensitivity to the plastic buckling behavior
of the longitudinal reinforcements, we here try to analyze the response for three different definitions of the
springs representing the hoop resistance, with the length to be analyzed fixed at L = 3s:

• it is an elastic spring (as in Section (2)),
• it is an elastic and perfectly-rigid plastic (e-p) spring whose yield point is defined by the state when

the outermost fiber of the arch model of the hoop yields first, and
• it is an equivalent linear spring with spring constant kfe, which is the secant elastoplastic modulus of a

spring at the point where the longitudinal reinforcement undergoes vertical compressive deformation
at 0.1L in the plastic buckling analysis with the elastic-perfect plastic springs. In this case, eventually,
kfe = kf/3 in the case of the type-1 pile specimen, while kfe = kf/1.4 in the type-2 pile,

where it is supposed that the spring constants of the equivalent linear spring become so small that the
results of the assessment of the performance of piles can lay on safety side. In this analysis for length
L = 3s, only two springs for the hoops are included and arranged symmetrically with respect to the
central node in the longitudinal direction of the reinforcing bar. Therefore both the springs deform quite
similarly throughout the numerical analysis of plastic buckling.

Fig. 8 shows the results for the reinforcement in the type-1 pile specimen. In this case, the three models
of the hoops yield completely different post-buckling behavior. The influence of the load-displacement
curve model of the buckled longitudinal reinforcement on the behavior of the pile will be examined in the
next section. On the other hand, the type-2 case shown in Fig. 9 exhibits no apparent difference due to
choice of hoop model. Note that we have also elucidated other characteristics of post-buckling behavior
that depend on the hardening ratio, etc. A corresponding detailed discussion of such examinations can be
found in a separate reference by Shirato et al. [23]
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4. NUMERICAL ANALYSIS OF CAST-IN-PLACE RC PILE SPECIMENS SUBJECTED
TO REVERSED CYCLIC LOADING

In order to verify the validity of the proposed model, experimental results obtained for cast-in-place RC
piles subjected to cyclic loading will be numerically simulated using the model. Experiments in which
swelling of the reinforcing bars occurred due to bending are examined here. The scale of the model
specimens tested is large enough for them to be actual piles, and the specimens contain almost the same
ratio of longitudinal reinforcement as actual piles.

We use a two-dimensional finite element method within the framework of infinitesimal displacement theory.
Each longitudinal reinforcing bar in the pile is modeled by a single fiber element. Aside from the reinforce-
ment, the cross section of the pile itself is first divided into 50 layers and then each layer is subdivided
again into fibers of core concrete and covering concrete.

(1) Experiment on type-1 pile specimen subject to horizontal reversed cyclic loading with a constant
axial load

a) Summary of experiment

We here refer to the experiment on type-1 pile specimens performed by Kimura et al. [3], [4]. The specimens
are summarized in Fig. 10. The corresponding material properties obtained from standard element tests
are listed in Table 1. The axial load was first applied to the top of the specimen up to 147 kN and
maintained there throughout the experiments. The horizontal reversed cyclic load was then applied.
This cyclic loading was controlled by displacement at the horizontal loading point of the specimen. The
amplitude of the specified displacement was gradually increased from δy to n×δy (n = 2, 3, 4, · · · 16), where
the yield displacement δy is defined as the displacement at which an extreme longitudinal reinforcement
bar first yields. It was eventually determined to be 3.57 mm in this specimen of their experiments. At
each displacement, three cycles were repeated.

Fig. 11 shows one horizontal load-displacement history measured at the loading point in the experiment.
Noteworthy characteristics of this history are summarized as follows. Horizontal cracks appeared when
the horizontal load reached 24.5 kN, and the maximum horizontal load, 55 kN, was attained when the
horizontal displacement became 4δy (14.3 mm). During the 5δy cycle, the surface concrete of the pile
collapsed near the joint between the pile and the footing. Although the horizontal load fell temporarily
during the 7δy cycle (25.0 mm), it was maintained afterwards in cycles 7δy through 10δy. However loss
of horizontal load started again at cycle 10δy (35.7 mm), and damage to the pile became noticeable.
Eventually, at cycle 13δy, several large pieces of the covering concrete suddenly dropped away. Thereafter,
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Table 1 Results of material element tests for type-1 pile specimen
reinforcement

reinforcement
yield stress tensile strength Young’s modulus
(N/mm2) (N/mm2) (kN/mm2)

longitudinal 348 478 175
hoop 389 554 213

concrete
age compressive strength Young’s modulus splitting strength

(days) (N/mm2) (kN/mm2) (N/mm2)
40 27.1 26.5 2.72
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the reinforcement began to fracture at 14δy, and the experiment was terminated after the 16δy cycle
(57.1 mm). Observed damage near the bottom of the specimen is shown in Photo 1. The longitudinal
reinforcement bars swelled in the shape of a sinusoidal wave with a wavelength approximately three times
as long as the distance between two adjacent hoops (120 mm).



Photo 1 Damage at bottom of type-1 pile specimen after the experiment

b) Numerical analysis model

We model the specimen as a cantilever beam whose fixed end represents the footing. An element length
of 3s (120 mm) is chosen because this is the smallest size which results in an unstable load-displacement
relation among those tested in the plastic buckling analysis in Section 3.(2).

In order to check the effects of various types of post-buckling behavior of the reinforcement arising from
differences in the spring representing the hoop resistance on predicted pile behavior, two kinds of averaged
stress-strain relation of the plastic buckled reinforcement in Fig. 8 are tested; one is obtained by using
the equivalent linear spring, and the other using the elastic and perfectly-rigid-plastic spring. The cross-
sectional area of the longitudinal reinforcement bars is as given in the JIS code, while the necessary material
parameters are determined by element tests. However, since the hardening ratio b of the Menegotto-Pinto
model is not available, it is assumed to be one hundredth of the initial (elastic) rigidity, which is obtained
from a standard tensile test of the longitudinal reinforcement in a type-2 pile specimen (SD345).

Also, since it is difficult to choose appropriate material parameters for the covering concrete, we carry out
a parametric study for the type-1 pile without consideration of the swelling effect [18]. The parameters
which yield relatively good accordance with the experimental results are used; i.e. the envelope of load-
displacement hysteresis up to the 10δy cyclic loading. In this parametric study, the confinement of covering
concrete by the hoops is not taken into account, and the first descending gradient from σcc to 0.5σcc is
1.5 times as steep as that of the core concrete. Note that we may have some problems due to the
chosen constitutive concrete relation, as discussed in Section 2.(4), because the difference between element
lengths used in the numerical simulation here and in the numerical examination in the reference [18] is
approximately 20 %.

Loading in the numerical simulation also begins with application of a vertical load of 147 kN at the top of
the pile. Then the horizontal cyclic displacement history is applied.

c) Numerical results and discussion

In order to examine the accuracy of our numerical analysis in predicting softening behavior, we first discuss
the results of a case employing the stress-strain relation of a buckled longitudinal reinforcing bar, obtained
by using equivalent linear springs for the hoops. This case sustained a sudden drop in resistance of the
longitudinal reinforcement after yield, as shown in Fig. 8. This case is selected to check the feasibility of
our numerical model, because the strength of the reinforcing bar falls immediately after buckling begins
and the estimated strength is lower than that obtained under the assumption of elastic perfectly-plastic
springs. The calculated horizontal load-horizontal displacement history at the loading point is shown in
Fig. 11 together with the experimental results.
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The numerical analysis overestimates the loads up to the 4δy cycle as compared with the experimental
data. After that, swelling of the outer reinforcement begins in the 6δy cycle, resulting in rapid reduction
in the load. In the experimental results, this was observed during the 10 to 13δy cycles. However the
outlines of the inner loops of the load-displacement relationships closely fit the experimental ones at each
cycle nδy.

Fig. 12 shows the hysteresis loops of the longitudinal stress-strain relation at the center of a typical
outmost reinforcement bar in the element at the bottom. Swelling begins at the 6δy cycle. The peak
tensile stress at each step decreases as the pile deformation becomes greater. This indicates a progressive
accumulation of residual swelling deformation, and it is in good agreement with experimental observations,
as seen in Photo 1.

For the sake of comparison, another numerical result of the Menegotto-Pinto model reinforcement without
swelling is illustrated in Fig. 13. This model is referred to as the conventional model. Note that the
element length employed in this reference calculation by Shirato et al. [18] is different from the present
one, and is one half of the diameter of the pile specimen (150 mm). Since, except for this difference in
element length, both analyses handle the same pile systems, the envelope curves obtained in Figs. 11 and
13 are very similar. Further both calculated envelopes are larger than the experimental data from cycle
1 through to 4δy. After the 4δy cycle, as far as the shape of the envelopes is concerned, the simulations
agree relatively well with the experiments up to the 10δy cycle. This is of course because the material
parameters of the covering concrete are determined by trial and error [18] so that the numerically obtained
envelope curves offer a good coincidence with those in the experiments, at least below the 10δy cyclic level.

However, the conventional model is unable to predict phenomena such as the excessive decrease in load
observed in cycles over 10δy in the experiments, and ultimately it overestimates the ultimate strength.
Moreover, the conventional model does not reflect the pinching phenomenon often observed in the experi-
ments, while our proposed model can. Judging from these comparisons, we must conclude that reinforce-
ment swelling plays a very important role in the deformation history of piles at large displacements, and
particularly the transition to rapid loss of load-carrying capacity and the shape of the inner loops of the
hysteresis response.

Even the proposed model, however, has several problems. For example, the load is overestimated up to the
4δy cycle, and the capacity of the pile rapidly decreases at a much earlier loading stage (at the 6δy cycle)
than indicated in the experimental results. These numerical characteristics result from the constitutive
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Fig. 14 Damage state immediately after the final 13δy cycle

law used for the covering concrete, especially its skeleton curve. Of course, Young’s modulus and the
maximum compression strength of the constitutive model strongly influence the predicted load at early
stages of the loading history and the maximum strength of the pile. Moreover, the descending gradients of
the resistance curves also have an extraordinary effect on the loss of load-carrying capacity, since collapse
of the covering concrete is one necessary condition for the development of reinforcement swelling.

In the numerical analysis, while the covering concrete fractures at a typical outermost longitudinal rein-
forcing bar at the 5δy cycle near the base of the pile, the core concrete experiences compressive failure
during the 10δy cycle. On the contrary, in the experiments, only slight damage is observed on the surface
at the 5δy cycle, and excessive damage to the covering concrete starts after approximately the 12δy cycle.
Namely, in the numerical analysis, the initiation of swelling of the outmost reinforcement occurs at the
6δy cycle as shown in Fig. 12, at which point the covering concrete provides adequate confinement in the
experiments.

Fig. 14 is a side view of the specimen in a schematic form, showing damage to the fibers obtained
numerically after the final 13δy cycle. In the two left-hand diagrams, the areas with hatching indicate
portions that experience tension cracks, while black areas represent concrete where compressive collapse
occurs. In the diagram on the right, the dotted lines represent the positions of longitudinal reinforcement,
the areas filled with dashed lines are the yielded zones, and those filled with solid lines are the swelled
sections. Compressive failure of the concrete and reinforcing bar swelling occurs only in the bottom
elements; the element length is set at three times the spacing between two adjacent hoops (120 mm).
These characteristics in the longitudinal direction coincide well with those observed in the experiment, as
seen in Photo 1. On the other hand, in the cross-sectional direction, concrete damage progress is quite
different in the numerical simulation and the experiment. Photo 1 of the experiment shows that the
damage does not penetrate across the position of the outmost reinforcement bars into the core section,
while the damage numerically obtained and shown in Fig. 14 expands into the inner region of the core
concrete, and accordingly all the reinforcing bars except the central ones buckle. The conclusion must be
that numerical analysis predicts excessive extension of the damage.

At the end of the numerical analysis of the type-1 pile specimen, we carry out the numerical simulations
using the elastic and perfectly-plastic springs for the hoop resistance in order to evaluate the different
stress-strain curve of the buckled longitudinal reinforcement. However, there is no noticeable difference
with the results in Fig. 11, and the size of the discrepancy is no more than a few percent. This suggests that
differences in the nonlinear properties of hoop resistance do not cause serious variations, probably because
the influence of the covering concrete model chosen on the overall properties of the piles is significantly
larger than that of other factors.
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Table 2 Results of material element tests of type-2 pile specimen
reinforcement

reinforcement
yield stress tensile strength Young’s modulus extension
(N/mm2) (N/mm2) (kN/mm2) (%)

longitudinal 397 589 195 23.2
hoop 397 569 189 22.8

concrete
age compressive strength Young’s modulus splitting strength

(days) (N/mm2) (kN/mm2) (N/mm2)
10 23.7 21.9 2.4

(2) Experiment on type-2 pile specimen subject to horizontal reversed cyclic loading and varying axial
load

a) Summary of experiment

The type-2 pile specimen chosen for our examinations is the cyclic loading test of a model cast-in-place RC
pile performed by Tanamura et al. [24] A summary of this experiment and the results of standard element
tests are shown in Fig. 15 and Table 2, respectively. A specimen of this size can be considered a very
large model, since more than 80% of cast-in-place RC piles used for highway bridges in Japan are either
φ1000 or φ1200 in diameter [25]. Horizontal loading was controlled by displacement, with the drift angle
defined by the ratio of horizontal displacement applied at the loading point to the shear span specified as
follows: after consecutive cycles at an angle of 1/1000 and 1/400, once at each magnitude, the amplitude
was gradually increased ten times from 1/200 to 10/200 in steps of 1/200 and three cycles were applied at
each magnitude.

One of the most noteworthy features of this experiment is that the pile was also subjected to an axial
force which varied accordingly to the horizontal reaction force, as depicted by the dashed lines in Fig. 16.
This loading condition was employed in order to simulate the actual loading states observed in group-pile
foundations subjected to horizontal displacement during earthquakes.

Photo 2 shows the damage states visible after the test. The longitudinal reinforcement bars swelled greatly
between two adjacent hoops, and so did the hoops to some extent. Fig. 17 illustrates the horizontal load-
horizontal displacement hysteresis at the loading point. The experimental results can be summarized
as follows. The covering concrete collapsed on the compressive side of the pile at the bottom when the
axial force increased in the compressive direction during the cycle with a drift angle of 2/200. When the
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Photo 2 Damage at bottom of type-2 pile specimen after the experiment (compressive side when the pile
was subject to compressive axial force)

displacement was reversed in the same cycle, the longitudinal reinforcing bars yielded as they moved from
compression to tension, and the covering concrete on the opposite side, where the fiber stress changed
from tension to compression, also collapsed simultaneously. Then, during the phase of increasing axial
compression, the longitudinal reinforcing bars on the tensile side of the pile yielded for the first time at
the cycle with a drift angle of 4/200. At the cycle with a drift angle of 6/200, the hoops started to yield.
At the last cycle with a drift angle of 10/200, the longitudinal reinforcing bars in tension failed when the
axial force changed from compression to tension.

b) Numerical analysis model

We model the specimen using a cantilever beam as in the analysis of the type-1 pile specimen. The element
length is three times larger than the spacing between two adjacent hoops on the basis of the results of a
series of the numerical examinations for plastic buckling of the reinforcement as shown in Fig. 7. The
average stress-strain relation for the swelled reinforcing bars was based on the post-buckling behavior
obtained using equivalent linear springs for the hoop resistance in Fig. 9. As can been seen in Fig. 9, the
post-buckling behavior of longitudinal reinforcement in the arrangement in the type-2 pile specimen does
not depend on the mechanical properties of the springs representing the hoop resistance.

We set the necessary sectional parameters and material parameters for the constitutive model of longitu-
dinal reinforcement just as in the simulation used for the type-1 pile specimen. The hardening rigidity E1

is set at one hundredth of the initial rigidity (Young’s modulus) E0 which is compatible with the order
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of the gradient between the yield point and the failure point measured in the material element test. The
parameter values for the constitutive model of the covering concrete are the same as those in the numerical
simulation for the type-1 specimen.

c) Numerical results and discussion

In the numerical analysis, the horizontal displacement and axial load are input simultaneously. Of course,
it is recommended to input the axial load corresponding to the horizontal reaction force just as it was in
the experiment explained in Fig. 16, but the software used does not provide a subroutine that allows such
a scheme. Therefore, we determine the axial load history by trial and error through parametric numerical
analysis with respect to several cases of axial load history in order to minimize the discrepancy in hystereses
of the horizontal reaction force and axial load at each loading point between the numerical results and the
experimental ones. The calculated axial load-horizontal load hysteresis is shown by the solid line in Fig.
16 together with the original setting in the experiment.

The calculated horizontal load-horizontal displacement hysteresis is shown in Fig. 17. Both the envelope
and the loop curves fit well with the experimental data. The non-symmetric shapes of the envelope and
loops, as caused by the varying axial force, are also well simulated, demonstrating the success of this
scheme to take such experimental variations into account in the numerical analysis. However, the load
at the final cycle of drift angle is overestimated on the negative side. In the loading state with negative
horizontal displacements and axial tension force at this cycle, the longitudinal reinforcement fractured in
the experiments. However, since the constitutive model of the reinforcement in the numerical analysis does
not include any failure criteria, such a fracture could never be predicted—so the load may be overestimated
at that time.

Fig. 18 shows the simulated damage results for the specimen at the cycle with a drift angle of 10/200.
This figure is drawn such that the compressive axial force increases as horizontal displacement is applied in
the right-hand direction. The predicted pattern of damage distribution is quite similar to the experimental
results and is non-symmetric. Although the area of damage in the experiment is slightly broader in the
longitudinal direction compared with the numerical results, the patterns of collapse of the covering concrete
are identical in the simulation and experiment, with the concrete crushing and falling away. Judging from
these results, we can conclude that this numerical model can simulate well the development of progressive
damage observed typically in experiments, and that the method of taking into account the effects of
variations in axial load is appropriate.

As for damage progress within the cross-section at the bottom of the pile, in the numerical simulation, the
covering concrete collapses at the position of an outermost reinforcing bar during the cycle with a drift
angle of 6/200, and swelling of an extreme longitudinal reinforcement bar begins in the 8/200 cycle of the
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drift angle. On the other hand, in the experiment, the yielding of a hoop was detected in the cycle with
a drift angle of 6/200, and we can assume the occurrence of great damage to the covering concrete at
this time. This comparison allows us to conclude that the evolution of damage within the section is also
predicted well by the numerical analysis. Namely, accurate simulation of the behavior of this pile from the
elastic region to postpeak conditions is possible in our particular analysis, mainly because damage progress
in the covering concrete in the longitudinal direction as well as within the section is quite well predicted in
accordance with the experimental observations. This indicates again that improvements in the modeling
of the covering concrete are one of the most important problems to be solved, as already mentioned in the
discussion of numerical analysis results for the type-1 pile specimen in Section (1)c).

Based on the numerical results obtained in these two verification experiments, we can declare that the
proposed model is able to estimate the mechanical properties of cast-in-place RC piles to high accuracy
no matter what the details of the piles. This makes the proposed method a powerful tool for tracing
the behavior of such piles from the elastic to the postpeak states consistently. Of course further studies
are necessary to improve the accuracy of the numerical simulations; e.g. it is true and very important
that we need to elaborate certain points related to the proper criteria for reinforcing bar swelling. In
particular, a more suitable stress-strain relation for the covering concrete must be modeled so that the
sustaining branch path of maximum compressive stress and the falling gradients can be appropriately and
quantitatively represented.

5. SEISMIC RESPONSE ANALYSIS OF A PILE FOUNDATION

In order to investigate the feasibility of using the proposed model in dynamic analysis, several analyses of
a system consisting of a pier, pile foundation, and ground are carried out. In these simulations, several
effects are examined including the so-called kinematic interaction between piles and the ground during
severe earthquakes. Moreover, special emphasis is placed on the effect that bending damage caused deep
in the pile by seismic-motion induced ground displacement has on the response of the superstructure.
In carrying out the simulations, the finite element is formulated within the framework of infinitesimal
displacement theory.

The object of the examination is a highway bridge pier with a group-pile foundation. Fig. 19 shows
the geometry of the pier and the foundation. This particular foundation was originally introduced in the
literature [26] as an example for the ductility design of bridge foundations based on the Specifications for
Highway Bridges in Japan [1], [2]. The foundation comprises 4 × 3 cast-in-place RC piles, the dimension
of each of which is 1000 mm in diameter (D) and 23 meters long. The minimum distance between the
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Table 3 Ground profiles
layer depth soil SPT-N Vs0 density ρ

(m) (m/s) (t/m3)
1 4∼7 silt 2 130 1.6
2 7∼14 clay 4 160 1.6
3 14∼16 sand 18 210 1.7
4 16∼26 clay 13 240 1.7
5 26∼34 gravel 36 260 2.0

center of neighboring piles is 2.5D. They are embedded in soft ground classified as Class III as defined
in the Specifications. The assumed ground level for seismic design is GL −4 m in compliance with the
Specification, this corresponds to the bottom of the footing.

The finite element mesh to be analyzed is also shown in Fig. 19. The mesh is actually symmetrical about
the center line. The ground conditions used here are simplified for ease of setting the numerical parameters
of the ground, as listed in Table 3, in comparison with the original settings in the literature [26]. The
characteristic period of this simplified ground is evaluated as 0.6 s by the Specifications. Namely, this
ground is considered to be relatively hard for Class III ground, because this period classifies it near the
boundary between Class II and III. Class II ground has a shorter characteristic period than Class III
ground.

The seismic analysis is performed to determine response in the direction perpendicular to the bridge axis.
We execute the three types of simulations summarized in Table 4. Case 1 models the details of the
referenced pier-foundation system as strictly as possible. Case 2 is a modification of Case 1 as follows: the
pier material is made elastic; the amount of reinforcement in the piles is much reduced, so the foundation
is placed under greater stress than that in Case 1; and the acceleration of the input earthquake wave at the
base is 2.2 times larger than that used in Case 1, with this value set by trial and error such that postpeak
behavior of bending capacity would be observed deep in the piles. Case 3 is another modification of Case
1, in which further modifications are added to those in Case 2. The differences from Case 2 are as follows:



Table 4 Summary of computational cases
Case 1 Case 2 Case 3

pier nonlinear linear linear
bearing capacity at tip of
pile

nonlinear linear linear

arrangement of piles − reduced reduced
amplitude of base input
acceleration

×1.0 ×2.2 ×2.0

the upper limit of bearing capacity at the top of the pile is released to make the compressive axial force
on the piles large; and the acceleration of the input earthquake is made twice that used in Case 1 for the
same reason as in Case 2. The arrangement of the reinforcement in the piles in the three cases is listed in
Table 5.

A plane strain element is employed to model the ground for simplicity. This simplification does not
result in any problems, because the main purpose of this dynamic analysis is to grasp the characteristics
of the relationships between pile damage caused by seismic ground vibration and the behavior of the
superstructure-pier-foundation system as a whole. The depth of the element in the out-of-plane direction is
twice the depth of the footing in that direction, which is identical to the arrangement employed by Tateishi
et al. [9] who reported a seismic dynamic simulation for the same pier. As for the boundary conditions,
both edges of the modeled ground are free to move in the horizontal direction but are restrained in the
vertical direction, while the motion at the bottom is fixed in both the horizontal and vertical directions.

We employ Hooke’s law as the constitutive relation for the soil, and take the nonlinear characteristics of soil
into account by changing the instantaneous shear modulus according to the stress history step by step. This
instantaneous shear modulus is here given by the Ramberg-Osgood model in terms of the stress history of
σ12, where the Cartesian coordinate system x1-x2 is set as indicated in Fig. 19. However, since this kind
of model cannot include strength parameters of soils, the stress level continues increasing in the elements
which undergo large strains. Hence the resistance of the ground to the foundation is overestimated when
the foundation response becomes relatively large. This situation is one of the problems in our simulation
to be solved in the future. Discussions will be necessary as to how the parameters for nonlinear properties
in the Ramberg-Osgood model are chosen, and on how to choose a nonlinear constitutive model of the soil.

The initial shear modulus G0 of the soil in each layer is determined by the phase velocity of shear waves
in the corresponding layer, as listed in Table 3. Poisson ratios are set at 0.49 independently of the soil
properties. Parameters for the nonlinear properties in the Ramberg-Osgood model are estimated by the
usual procedure based on the maximum damping constant and the reference strain [27]. We assume that
the maximum damping constants of sand and clay are 0.3 and 0.2, respectively. The reference strain εr

is set to strain ε12 when G/G0 reaches 0.5, where G is the secant shear modulus. The reference strain in
each layer is estimated on the basis of existing experimental studies by Iwasaki et al. [28], [29], where the
reference strain is determined from the soil profile and the confining pressure. We evaluate the confining
pressure at the depth of the gravity center in each element, with the static earth pressure coefficient fixed
at 0.5.

The heads of the piles are rigidly connected to the footing. Since plane strain analysis is to be carried out,
the three piles in one row are gathered together into one beam.

The same plastic buckling analysis is carried out for the longitudinal reinforcement as in Section 3., for
each sectioned reinforcement arrangements, and the hoops are modeled by elastic and perfectly-plastic
springs. A series of numerical tests determined that the length of the reinforcing bar which shows the
most drastic reduction in load after buckling is three times the spacing between two adjacent hoops for
all reinforcement arrangements. However, because of the requirement for connecting the fiber elements of
piles to the plane strain elements of soils, as will be described later, it becomes much easier to do implement
the mesh if the length of a fiber element is equated to the thickness of a plane strain element for the soil.

We therefore carry out the same series of numerical plastic buckling analyses again under the condition



Table 5 Arrangement of reinforcement in pile
GL (m) Case 1 Case 2, 3

−4.0 ∼ −6.0 Arrangement ‘a’ Arrangement ‘c’
−6.0 ∼ −12.0 Arrangement ‘b’ Arrangement ‘d’

−12.0 ∼ −18.5 Arrangement ‘c’ Arrangement ‘d’
−18.5 ∼ −27.0 Arrangement ‘d’ Arrangement ‘d’

Arrangement longitudinal hoop
a SD295 22-D32 SD295 D19 ctc 150
b SD295 22-D32 SD295 D16 ctc 150
c SD295 11-D32 SD295 D16 ctc 150
d SD295 11-D22 SD295 D16 ctc 150
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Fig. 20 Numerical analysis of plastic buckling of longitudinal reinforcement bar (arrangements ‘c’ and
‘d’)

that the length of the longitudinal reinforcing bars is equal to the depth of the plane strain elements for
the ground; i.e. 500 mm. As a typical numerical result, a comparison of the load-displacement relations
at the loading point is shown in Fig. 20 for arrangements ‘c’ and ‘d’ in Table 5 with analyzed lengths
L = 3s = 450 mm and 500 mm. Discrepancies due to differences in analyzed length are barely discernible in
the results for both arrangements. This same tendency is also seen in the numerical results for arrangements
‘a’ and ‘b’. In the case of arrangement ‘d’, the two curves in Fig. 20 are too close to be distinguished.
We therefore determine that the length of the fiber elements will be 500 mm and that the corresponding
post-buckling behavior will be treated as swelling behavior.

Other parameters necessary for the piles are given in the same manner as for the simulations of experiments
described in Section 4., where the design compressive strength of the concrete is 24 N/mm2.

We introduced joint spring elements between piles and ground at nodes having identical coordinates. These
joint spring elements resist forces in the horizontal and vertical directions. The horizontal joint elements
are linear springs with large rigidity so that the relative horizontal displacements and velocities between
the piles and the ground are small enough to be ignored.

The vertical joint springs are classified into two types; one type is arranged around the circumference of
the pile, while the other is fitted to the pile tip. The former joint springs represent vertical skin friction
between pile and soil are a series of discrete elastic-perfect plastic springs. Each is an integrated component
of a distributed spring with a constitutive law of elastic and perfectly-rigid-plastic type with strength equal
to the maximum skin friction. The subgrade reaction coefficients of the distributed springs are evaluated
using an empirical equation from the design code for caisson foundations, while the maximum skin friction
is calculated from another empirical equation for cast-in-place RC piles given in the design code. These
empirical equations involve SPT-N values.



On the other hand, the vertical joint springs located at the tips of the piles are assumed to be non-
linear elastic. They have a bi-linear response to compression with a maximum strength equivalent to the
bearing capacity at the pile tip, but they have no resistance to tension. The compressive spring constant
is estimated from the vertical subgrade reaction coefficient, which is considered in the design of caisson
foundations, while the maximum strength is derived from an empirical equation for the design of cast-in-
place RC piles. Note that, in Case 3, the maximum value of bearing capacity at the tip of pile is ignored.
Further, we also combine the three joint elements of three piles in the same row into a single joint element
at each depth.

The upper structure system is modeled as a single lumped-mass. The pier is modeled as a single lumped-
mass at its middle point and an elastic beam element. The entire section is considered effective, and
Young’s modulus of concrete is used in calculating the bending rigidities of the beam elements. However
a plastic-hinge region based on the Specifications [1] is specified at the bottom of the pier only in Case
1. This plastic-hinge is modeled as a nonlinear rotational spring, the resistance of which is given by a
somewhat modified nonlinear relation of the Takeda model [30]. In this modification, the crack point
is neglected; the yield bending capacity of the pier is given according to the Specifications [1]; and the
tangent bending rigidity after initial yielding is set to 1/10,000 of the initial bending rigidity. The footing
is modeled as an elastic beam element with excessive rigidity, and its mass is located as a lumped mass at
its gravity center.

As global damping, Rayleigh damping is assumed, and the coefficients corresponding to the 1st and 2nd
modes are both set to 3%. An eigenvalue analysis of the whole system gives the first and second eigen
periods, where we use the initial rigidity of all the structural members and soils in the calculation. The
resulting characteristic periods are 0.52 s for the first mode and 0.38 s for the second. In the first mode,
the shear deformation of the ground is greater, and the displacements of ground and structure are in
phase. But the second mode is mainly governed by rocking motion of the structure, and the corresponding
phases are opposed to each other. We can conclude that the characteristic period of the structure Ts is
shorter than that of the ground TG. This is also supported by the fact that the period of the ground
derived according to the design Specifications is 0.6 s. Note that the initial damping matrix at t = 0 s is
always used in seismic response analyses, because we can expect that most of the damping effect in seismic
response analysis arises from hysteresis damping of the foundation materials because of putting the large
earthquake motion.

(1) Results of dynamic analyses

The basic input earthquake motion is the NS component of one of the most commonly used earthquakes
records, that taken at the Japan Meteorology Agency in Kobe during the Hanshin-Awaji earthquake (the
Kobe earthquake) in 1995. In the dynamic analysis, the magnitude of this basic input wave is multiplied
by a specific value, and then the adjusted motion is input directly into the nodes of elements at the base.
Since the numerical results obtained in Cases 2 and 3 are quite similar to each other, only the results for
Cases 1 and 2 are explained in detail below.

a) Dynamic behavior of ground

Fig. 21 shows the distributions of peak displacement of the ground at different positions, where the
symbols A through D indicate the observation lines labeled A through D in Fig. 19. The same symbols
will be used throughout. The peak values in Fig. 21 are the maximum absolute values. The seismic design
code for railway structures [7] introduces empirical equations to estimate distributions of horizontal ground
displacement in the depth direction under design seismic motions for bedrock as specified in the code. The
corresponding commentary explains that the equations are derived through a statistical compilation of
many dynamic analysis results for many ground conditions. Examination of this railway code suggests
that the characteristics of L2 motion and Spectral II design seismic motion are very close to our inputs
into the numerical simulations. Therefore, in order to evaluate the effect of earthquake motion on the
foundation as obtained in our seismic simulations from a practical design point of view, it is very helpful to
compare the horizontal displacement of the ground numerically obtained here to that calculated using the
empirical equation given in the railway code. This calculation from the code turns out to be approximately
0.2 m, so the ground displacement obtained in Case 1 is of the same order as this value obtained by usual
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design practice for severe earthquakes in Japan. However the displacement obtained in Case 2 is much
more severe than that generally assumed in the seismic design of foundations.

Although there is a sudden increase in ground displacement across the boundary from the fourth clay layer
to the third sand layer, the increment in displacement is small at the transition from the third sandy layer
to the second clay layer. We can also see the same tendency in the distribution of the maximum shear
strain, as is shown in Fig. 22.

Many attempts have been made to predict the distribution of seismically induced horizontal displacement
of the ground, as well as to evaluate the relations between ground profiles and damage locations in piles
deep underground. Most treat the ratio of phase velocity Vs0 in neighboring soil layers as a parameter,
because transmission of shear wave causes vibration of the ground. We here follow the same procedure
using phase velocities. Ratios of initial shear wave velocities in our settings are calculated to be 0.88
between the fourth and third layers and 0.76 between the third and second ones, where the ratios are
obtained by dividing the velocity of the upper layer by that of the lower layer. It is usually considered that
the smaller this ratio then the larger the increment in shear strain becomes, because small value indicates
low shear rigidity at the upper layer. However, the results for the increment in shear strain obtained by
our finite element analyses show the opposite characteristics. We infer that this disagreement with the
usual result is caused by differences in the nonlinear characteristics of clay and sand. Consequently, we
need to take into account not only the ratio of phase velocities in two adjacent soil strata but also the soil
properties when we investigate the distribution of seismic ground displacement under level 2 earthquakes
or the relation between soil strata and the distribution of damage to piles deep underground.

We can compare distributions of horizontal displacement and shear strain of the ground at different hor-
izontal positions in the region between the lines A and D in Figs. 21 and 22. This shows that the
differences in response are big near the ground surface but very small deep underground below GL −15
m. This indicates that the response of the piles near the ground surface is influenced by the inertia of the
superstructure as well as the free ground vibration, and this affects the ground motions. Deeper below the
surface, on the other hand, the displacement of the piles is mainly caused by seismically induced ground
displacement, and does not reflect on the vibration of the ground.

b) Response and damage to foundation in Case 1

Fig. 23 compares a number of time histories: horizontal displacement at the ground surface on line D
indicated in Fig. 19; horizontal displacement and acceleration of the superstructure at the position where
the inertial force acts; the horizontal acceleration of the footing gravity center; the bending moment at
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the bottom of the pier; and the reaction force at the tip of pile No. 4. Here the lateral force coefficient
is defined by the horizontal acceleration divided by −9.8 m/s2, and the reaction force at the tip of pile
No. 4 is reckoned as positive when it is in compression. Note that the reaction force at the tip of pile
No. 4 is chosen as a parameter because it changes accordingly to the tilting moment at the top of the
foundation and thus has a strong relationship with the inertial force of the superstructure. From this
figure, clearly, the motions of superstructure, ground surface, and footing are in the same phase. The
timing of the maximum of each parameter is 4.50 s for ground surface displacement, 5.04 s for lateral
force coefficient of the superstructure, 5.04 s for bending moment of the pier at the bottom, and 4.90 s
for reaction force acting on the pile tip, respectively. Namely the maxima of superstructure inertial force
and displacement of the ground surface are not achieved simultaneously at all, but, when the lateral force
coefficient of the superstructure reaches its maximum, the magnitude of ground surface displacement is
almost equal to its own maximum value. Consequently, we can in fact regard the maximum inertial force
from the superstructure and the maximum ground displacement to occur at the same time and to be in
phase.

Next, we discuss the distribution of damage to the pier and foundation during the earthquake in order to
understand the general characteristics of damage distribution in the foundation and factors affecting such
damage. The bottom of the pier behaves elastically except for short periods when it becomes plastic at
maximum bending moment. The response ductility factor of the pier is 1.34, where this is estimated from
the horizontal displacement of the center of mass of the superstructure where the inertial force is acting.
This indicates that we can assume elastic behavior of the pier on evaluation of the performance of the
foundation.

In all piles, tension cracks are observed in the covering concrete over the whole surface. On the other hand,
compressive failure never occurs, and hence no swelling of the reinforcements appears.
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As for the longitudinal reinforcement of the piles, Fig. 24 depicts the distribution of tensile yielding. The
gray lines indicate the reinforcement positions, and the black lines represent yielded portions. This tensile
yielding occurs not only at the pile tops but also near the boundary of the third sand layer and the fourth
clay layer at GL −16 m. The longitudinal range of this yield region is approximately one pile diameter
above and below the boundary. Moreover, yielding is observed in a narrow band at a position right above
the ground base layer. Namely, deep underground, the reinforcement yields near the boundary between
different layers, where the vertical distribution of horizontal displacement and shear strain of the ground
abruptly changes.

It can be seen that similar yielding develops near the boundary between the second and third layers of soil
strata at GL −14 m. But the distribution of horizontal displacement and shear strain of the ground does
not exhibit a sudden change there, as is clear in Figs. 21 and 22. We can then conclude that the primary
reason of yielding is not only the effect of ground excitation but also abrupt changes in the rigidity and
capacity of the piles, since there is a reduction in reinforcement at GL −12 m.

The yield zone at the top of the piles differs depending on the position of the pile. Further, even at the
top of the piles, we notice a non-symmetrical distribution of yield zone about the longitudinal centerline
of the pile. On the contrary, around GL −16 m, there is almost no difference in yield zone among piles,
whether near the center or at the extremity. These results indicate that the dominant factors governing
yield are different dependent on depth; yielding at the top of piles is triggered by the inertial force of the
superstructure, while that near GL −16 m is affected by the seismic ground displacement.

Furthermore, compressive yielding occurs in Nos. 1 and 4 piles around their circumference at GL −16 m as
well as in the central parts at the top. Remember that the bending moment in piles is dependent not only
on the bending deformation but also on the axial force, as the experimental results in Section 4.(2) made
clear. Thus, the reason for compressive yielding becoming possible only in the reinforcement of Nos. 1 and
4 piles is thought to be that the axial forces on surrounding piles become larger, and that the bending
moment in these piles then exceeds that in the central piles.
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Fig. 25 compares the distributions of absolute values of maximum bending moment achieved at each
position during the earthquake (solid curves) and of absolute bending moment (dashed curves) when the
compressive reaction force at the tip of pile No. 4 reaches a maximum; i.e. at t = 4.9 s. The former indicate
that all piles experience large bending moments at the top as well as near the boundary between the third
sand layer and the fourth clay layer.

The large bending moments deep below the surface are observed at the location where sudden changes in
horizontal displacement and ground shear strain appear, as shown in Figs. 21 and 22, and these locations
are identical to where the pile reinforcement yields. These results imply the possibility of establishing a
simple prediction method for pile damage locations without carrying out a sophisticated seismic response
analysis of the system consisting of pile foundation and foundation ground as carried out here. That is, by
simply referring to a database of dynamic analysis of foundations under several ground conditions when
subject to level 2 earthquakes, we may be able to determine the positions of possible damage from the
phase velocity profile of the soil strata and the properties of the soil layers; e.g. sandy or clay.

On the other hand, the dashed curves in Fig. 25, representing the distribution of pile bending moment
when pile No. 4 reacts to the maximum compressive reaction force, clearly indicate that there arises almost
no matching bending moment in Nos. 1 and 2 piles. Incidentally, Fig. 26 shows the distributions of axial
force in the piles at that same instant, revealing that almost no axial force appears in these piles, either.
The time histories of horizontal ground displacement at GL −16 m on the line D, which corresponds to the
solid circle in Fig. 19, and the sectional forces and curvature of pile No. 4 at GL −16.25 m are shown in
Fig. 27. In these time histories, the bending moment has clearly different amplitudes in the positive and
negative directions depending on the axial force, while the curvature of the same pile and the horizontal
ground displacement oscillate with almost the same magnitude in both directions. This results from the
fact that the bending moment of the piles is greatly affected by the axial force. As a result, we can put
great emphasis on the advantage of employing a fiber element; i.e. the element can automatically take into
account the influence of varying axial force on the mobilized sectional forces of piles.

c) Response and damage to foundation in Cases 2 and 3

Fig. 28 shows the state of damage in the Case 2 simulation. Gray lines indicate the reinforcement again.
Here, more reinforcement than in Case 1 yields over the whole pile body, because in Case 2 the amount
of reinforcement is reduced. Furthermore, the damage is much more serious lower down than at the top
especially near the boundary between the third and fourth soil layers where some damage is also observed
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in Case 1. Near this boundary, it is also apparent that swelling of the reinforcing bars accompanies
compressive collapse of the covering concrete. These kinds of damage can also be observed in Case 3.

The stress-strain hysteresis curves in Fig. 29 are for fibers in the outmost reinforcement bar, which
undergoes swelling, as well as for the covering concrete and core concrete surrounding this particular
reinforcement bar. The moment-curvature hysteresis of the same element is illustrated in Fig. 30. This pile
experiences instantaneous swelling of reinforcement several times during the earthquake at this location.
Judging from discussion of the results for Case 1, we can conclude that the dominant factor causing this
damage is seismic ground displacement. However, it is not very clear from Fig. 30 that swelling causes
tremendous loss of capacity in the pile itself. Fig. 29 also shows the existence of something like a snap-
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through jump due to swelling along a compressive path in the stress-strain hysteresis of the longitudinal
reinforcement. In order to find the cause of this behavior, we examine the time history of strain at that
reinforcement. Fig. 31 shows such a time history from three seconds after the initial state for a period
of five seconds. As was assumed in Section 2.(2), swelling becomes possible only after a reinforcing bar
that has already experienced large strain accompanied with failure of the covering concrete is subjected
to compressive re-loading following unloading. In this case, the strain of the longitudinal reinforcement
exceeds the compressive collapse strain of the covering concrete εL = 0.01044 when the strain suddenly
increases at around five seconds. Thereafter tiny oscillations of strain are perceived. We can conclude that
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the cause of the jump mentioned above is a short period of consecutive unloading and reloading once the
strain of the reinforcement exceeds the failure strain of the covering concrete. Thus the proposed model
does not predict a smooth transfer of stress when a pile undergoes such a loading history.

Unfortunately, since experimental data for deformation histories of RC members under the loading paths
described above are not available at present, it is not known at all whether such a jump can actually
occur in the actual stress-strain hysteresis of reinforcement along such loading paths in RC members or
not. Looking at a study by Sakai and Kawashima [31], we may consider that the appearance of minute
unloading-loading oscillations in the fibers is one of the general numerical characteristics of dynamic
analysis of RC members using fiber elements. However, as will be explained later on, there is no denying
the possibility that such a jump in the behavior of reinforcement may lead to difficulty or instability in
dynamic analysis. Thus we may still need to improve the hysteresis rule for swelled reinforcement bars
further. Moreover, a substantial discussion of the feasibility of fiber elements themselves in the dynamic
analysis of RC members may be necessary in the future.

In order to estimate the effect of serious pile damage deep under the surface on the dynamic behavior of
the structural system as a whole, we begin by comparing the dynamic response of the superstructure in
all numerical cases in Fig. 32. In addition, for Case 2, the horizontal response of the superstructure, the
ground surface on line D, and the footing are compared in Fig. 33.

As Fig. 32 makes clear, the periods of the Case 2 and 3 responses are longer than that of Case 1 after the
maximum response, which occurs at around five seconds. Fig. 33 shows that the phase difference between
superstructure and ground surface in Case 2 is large, especially after t = 8 s. These results arise because of
plasticization of the piles near the top connection, which is the most critical location as regards supporting
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the horizontal forces imposed by the superstructure, as this makes the global period of the entire structure
Ts long.

Fig. 34 compares loops of lateral force coefficient versus horizontal displacement of the superstructure
between Cases 1 and 2. Regardless of the development of local capacity loss deep under the surface in Case
2, the foundation system retains enough strength for stability. As a result, no phenomenon like progressive
tilting in a particular direction is observed. These are thought to be two reasons for this behavior. One is
that the surrounding ground can support the horizontal inertial force of the superstructure even after the
piles lose capacity. The second is that, since after swelling the damaged portion is forced in the opposite
direction by the seismic ground motion, it dose not have a chance to accumulate in only one direction, so
the pile maintains an apparent restoring force. Therefore, displacement does not progress in a particular
direction.

In Fig. 32, the time histories are broken off at 14 s in Case 2 and at 8 s in Case 3, respectively, because
the numerical calculations do not converge at these time steps. The magnitudes of both acceleration
and displacement are so small here that the numerical problem of convergence error arises as a result
of the snap-through jump in the stress-strain hysteresis curve immediately after initiation of swelling, as



explained in Fig. 29. We also suspect that lack of consideration of the damping effect in the spring at the
tip of the pile may be another reason for termination of these calculations, judging from the fact that the
response in Case 3 with a linear spring cuts off much earlier than in the Case 2.

(2) Discussion of seismic design of pile foundations including the effect of ground motion

Now, on the basis of the numerical results in Section (1), we discuss a method of seismic design that
will prevent damage to piles which may otherwise be induced deep underground by the ground excitation
under level 2 earthquake motions.

Our numerical simulations suggest that pile foundations designed according to the current code have
adequate resistance to the effect of ground displacement, and that bending damage to piles deep below the
surface does not lead to horizontal displacement excessive enough for the girders to fall. Moreover, as far
as the authors’ knowledge is concerned, past reports of earthquake damage show that, even if liquefaction
happens, the collapse or serious displacement of a pile foundation that is property designed to withstand
inertial forces is not possible unless the ground experiences a large horizontal residual displacement in one
particular direction.

Therefore, we can conclude that the seismic design of foundations of highway bridges requires piles to
be primarily designed to resist inertial forces imposed by the superstructures. After that, if we cannot
ignore the effect of seismic ground displacement resulting in damage to piles, it is better to carry out the
numerical estimate of deformation of the piles subjected to seismic ground vibration, and to give necessary
ductility to the piles which may yield. If, in practice, design is to be carried out without any sophisticated
numerical analysis which is able to take the effects of seismic excitation of the ground into account, we
should specify certain structural details that will improve the toughness of the piles beyond that given by
the primary design results.

For example, we recommend that reduction of the section or amount of reinforcement should be avoided
for a length equal to twice the pile diameter centering on soil strata boundaries, and that some addi-
tional lateral reinforcing must be specified in these regions. These kinds of design modifications can be
recommended for the following reason: judging from the seismic response analysis in Section (1), we can
predict to some extent the region of damage in advance by standard investigations of the ground; even
when reinforcement swelling occurs deep below the surface, the displacement of the pile itself and the pile
foundation will not increase abruptly in one particular direction as long as the damaged areas remain able
to transfer axial and shear resultant forces. However, further investigation is of course needed in order to
specify the possible damage positions and the amount of lateral reinforcement required. We therefore hope
that designers and researchers in this field will accumulate such results and combine them with existing
knowledge to make an appropriate database available for use when carrying out dynamic finite element
analysis.

Since this formulation is within the framework of the infinitesimal displacement theory and material non-
linearity of soil is taken into account only by the Ramberg-Osgood model, the effects of large displacements
are not included. As a result, the predicted horizontal bearing capacity of the ground may be overestimated.
In addition, analysis of plane strain may cause the loss of some three-dimensional effects. Furthermore,
we have not discussed what effect the input seismic motion characteristics might have on the numerical
results. Hence, further studies of these problems and effects are required in future. In particular, a study
of how to set the ultimate state of pile foundations that undergo deep damage as a result of seismic ground
excitation needs to be carried out by numerical dynamic examinations of foundation responses when the
damage is much greater than obtained in this paper.

6. CONCLUDING REMARKS

With the aim of obtaining consistent simulations of the mechanical behavior of cast-in-place RC piles from
the elastic to postpeak states, we have proposed a numerical model based on a fiber elements which takes
the effect of reinforcing bar swelling into account. Then we carried out numerical calculations to verify



the accuracy of the proposed model, and compared the results with experiments on specimens subjected
to cyclic horizontal loading. Next, we conducted a seismic response analysis of a bridge pier with a cast-
in-place RC group-pile foundation in order to confirm the feasibility of the proposed model of dynamic
analysis. Based on the results of these dynamic numerical simulations, we discussed a seismic design
method for pile foundations that can take into account the effects of ground vibration during earthquakes.

The proposed model gives good predictions of the evolution of damage to piles, including the swelling and
initiation of rapid bending capacity loss. And the corresponding dynamic analysis also reveals that the
proposed method is quite useful for estimating the seismic performance of pile foundations. However, in
the present model, there still remain several problems to be solved and improved, especially related to the
conditions under which swelling is initiated . For example, we must develop a more suitable stress-strain
relation for the covering concrete along the sustaining branch path of the maximum compressive stress,
and must establish a modeling method for the degrading gradients of such a constitutive law. In addition,
the hysteresis rule for the stress-strain relation of reinforcing bars in the state immediately after swelling
may need to be improved further.

The results of dynamic analysis of pile foundations indicate that the effect of bending damage to piles deep
below the surface due to seismic ground motion on the restoring force of the whole group-pile foundation
is quite small, even when swelling occurs. Therefore, after the usual design procedure for pile foundations
to ensure resistance to inertial forces developed by the superstructure, when necessary, the effect of seismic
ground displacement should be taken into account by securing enough ductility at predicted yield positions
due to ground excitation. Alternatively, a simple design method may in practice be suitable after design
for inertial force. For example, this might specify particular structural details that will improve the
ductility of piles near the boundaries between soil layers, such as an additional arrangement of lateral
confining reinforcement. However, it is still open to further discussions how to set the ultimate limit state
accompanying excessive tilting and/or horizontal displacement of foundations.

Eventually, we expect to demonstrate the possibility of establishing a performance-based design method
based on ultimate states in which the unstable behavior of pile foundations during earthquakes is examined.
As mentioned above, however, we still need to improve the model by resolving the problems revealed
above, and to carry out many more numerical analyses to finally clarify the ultimate limit state of bridge
foundations.
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