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The objective of this study is to develop a mechanical design method for doweled joints. The 
mechanical behavior of dowel bars is investigated using a mechanical model (PAVE3D) 
developed for dowel bars in the transverse joints of concrete pavement based on the 
three-dimensional finite element method. In this model, a dowel bar is divided into two 
segments that are embedded in concrete connected by a third segment. These two types of 
segment are modeled by solving for a beam on an elastic foundation and for a 
three-dimensional beam element, respectively. The model is verified by comparing the 
predicted strains in the concrete slab and dowel bars with experimental data obtained from 
loading tests conducted on a model pavement and an actual pavement. The effects of transverse 
joint structure and subbase stiffness on the stresses in dowel bars and the concrete slab are 
investigated through numerical simulations with PAVE3D. 
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1.  INTRODUCTION 

Transverse joints are one of the weak points of concrete pavements because of the 
discontinuity they introduce, and as a result such joints are a critical issue in the structural 
design of concrete pavements. Transverse joints incorporate dowel bars to enhance load 
transfer across the joint. The geometry and spacing of the dowel bars are determined 
empirically in the Japanese design manual [1]. A survey in Japan has shown that the concrete 
pavement of many roads with heavy traffic suffers from longitudinal cracks that have initiation 
points at transverse joints under wheel paths [2]. Another study has shown that some dowel 
bars fail at opening of the transverse joints [3]. These findings suggest that the current design 
of dowel bars for transverse joints might be inappropriate. Therefore, there is a desire to 
establish a rational design method for doweled joints based on mechanical analysis. 
 
Finite element (FE) models based on the plate theory have been employed to analyze the 
mechanical behavior of concrete slabs at transverse joints, including dowel action [4,5,6,7,8]. 
In these models, the function of the dowel bar at the joint is represented by a shear spring 
and/or a beam element. The authors have previously proposed a refined model for dowel bar 
function, where a dowel bar is divided into a segment between the concrete slabs and two 
opposing segments embedded in the concrete [9,10]. These two types of segment are modeled 
with a beam element and local displacement elements, respectively. This model has been 
employed by other researchers using FE analysis and its validity was confirmed [11]. 
 
The three-dimensional finite element method (3DFEM) has been recognized as a powerful tool 
in the analysis and design of pavement structures. Recently, two symposiums relating to this 
subject were held in the USA [12, 13]. The use of 3DFEM allows pavement engineers to 
compute displacements and stresses not only in the concrete slabs themselves, but also in the 
subbase and subgrade that cannot be dealt with using a 2D slab model. In applying 3DFEM to 
concrete pavements, the model used for load transfer across the joint remains of great 
significance [14,15]. In this study, we develop a 3DFEM code for concrete pavements that 
includes dowel bar function at transverse joints as well as the opening-closure phenomenon at 
the interface between concrete slab and subbase. This 3DFEM code for pavement structures is 
named PAVE3D, and consists of an FEM solver and pre/post processors. We incorporate the 
refined dowel model into PAVE3D and investigate the effects of dowel bar geometry and 
spacing, as well as subbase stiffness, on stresses in the dowel bar and the concrete slab. 

2.  STRUCTURAL MODEL 

2.1 3D FE Model for Pavement 

Figure 1 shows the pavement structure considered in PAVE3D. This pavement consists of 
elastic layers that represent the concrete slab, the subbase, and the subgrade, all of which are 
divided into solid elements. The interface between the concrete slab and the subbase is 
modeled using a general interface element. The dowel bar element is included in the joint 



 

interface element. 
 
Each layer has a finite 
horizontal extent and 
displacement in the normal 
direction on each edge is 
fixed; other displacements 
are free. This boundary 
condition is not applied to 
the top layer. All 
displacements are fixed at 
nodes on the bottommost 
surface of the structure. 
Loads are applied on the 
surface both vertically and 
horizontally as uniformly 
distributed rectangular loads. 
The temperature 
distribution is specified as a linear function of z for each layer. 
 

2.2 Solid Elements 

The eight-node solid element shown in Figure 2 is 
employed in this study. Displacements in the solid 
element are expressed with the following shape 
functions [16]: 
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where, 
wvu ,, = displacements in x, y, and z directions, 

respectively, within an element, 
iii wvu ,, = displacements in x, y, and z directions, respectively, at node i, and 
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2.3 Interface Elements 

In order to deal with bonding at the interface between the concrete slab and the subbase as well 
as aggregate interlocking at cracks or joints, we have developed the general interface element 
shown in Figure 3. This element consists of two planes: Plane 0 and Plane 1. It is assumed that 
stresses proportional to the differential displacement between the planes are transferred, as 
expressed by: 

u=v=w=Fix 

y (v) 

z (w) x (u)

u=Free, v=Fix, w=Free 

u=Fix, v=w=Free

Traffic Load

Layers

Joint

 
Figure 1 Structural Model of Pavement 
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Figure 2 Eight-Node Solid Element 
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where, 
''' ,, zyx fff = forces in x’, y’, and z’ 

directions, respectively, within a plane, 
',',' wvu = displacements in x’, y’, and z’ 

directions, respectively, within an 
element, and 

''' ,, zyx kkk = spring coefficients in x’, y’, 
and z’ directions, respectively. 
∆  indicates the differential 
displacement or force between Plane 0 
and Plane 1. Using Equation (2) and 
applying the principle of virtual work to 
the element, the stiffness matrix can be 
obtained [17]. 

2.4 Spring Coefficients 

In a concrete pavement, portions of the bottom surface of the concrete slab may separate from 
the top surface of the subbase if curling deformation occurs due to a temperature gradient in the 
concrete slab. In order to take into account this phenomenon, the spring coefficients of the 
interface element are assumed to be a function of differential displacement u∆  as follows: 
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If the spring coefficients change rapidly with displacement, there will be no reasonable 
converging solutions. Therefore, a transition range ( 00 ∆≤∆≤ u ) is introduced in Equation (3). 
In this study, the value of 0∆ is determined to be 0.0001 mm on the basis of some trial 
calculations. If an interface element is used to model a crack, 'xk and 'yk represent the shear 
and torsional transfer while 'zk represents moment and axial load transfer across the crack. 

2.5 Non Linear Analysis 

The global stiffness equation for the 3DFEM model with solid and interface elements can be 
written as follows: 
( ) tvpjs fffdKK ++=⋅+  (4)  
where, 

sK : stiffness matrix of 8-node solid element, 

jK : stiffness matrix of interface element, 
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Figure 3 General Interface Element 



 

d : displacement vector, 
pf : external load vector,  

vf : self-weight load vector, and  

tf : temperature load vector. 
 
If the stiffness matrix of the interface element is a function of displacement, Equation (4) 
becomes nonlinear. We solve the equation using the Newton-Raphson method. If the 
displacement vector at iteration (i-1), 1−id , is known, the residual forces of Equation (4) can be 
computed by: 

( ) 1−⋅+−++=∆ i
jstvp dKKfffr  (5) 

The correction vector for the displacement, 1−∆ id , is estimated by solving the following 
equation: 

( ) 1−∆⋅+=∆ i
js dKKr  (6) 

Then, the new displacement vector for the next iteration can be obtained by 11 −− ∆+= iii ddd . 
This process is repeated until a certain degree of convergence is reached. 

3.  DOWEL BAR MODEL 

3.1 Basic Concept 

As already mentioned, the dowel bar is divided into three segments: one segment between the 
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slabs and one segment embedded in the concrete of each slab. This is shown in Figure 4. The 
between-slab segment is represented by a beam element that is in turn connected to two solid 
elements (elements P and Q) at the two nodes. These nodes are located within the elements and 
are defined as inner nodes, p and q, as shown in Figure 5. Displacements at inner node p can be 
expressed in terms of the nodal displacements of Element P as: 

{ } [ ] { }P
i

p

P

i

i

i

p

i

i

i

i

i

ip

z

y

x

dNdor
w
v
u

z
N

z
N

N
N

N

w
v
u

⋅=















⋅





























∂
∂

∂
∂

−=































∑
= '

'
'

000

00
'

0
'

0

00
00
00

'
'
'

7

0

'

'

'

θ
θ
θ

 (7) 

where, 
''' ,, zyx θθθ = rotations for the x’, y’, and z’ axes, respectively. 

Superscripts p and P indicate components relating to inner node p and Element P, respectively. 
 
Inner node p moves as the concrete slab deforms. The position of node p after deformation is 
not identical with its original position in Element P, because of local deformation of the 
surrounding concrete. This situation is illustrated in Figure 5(b). The local deformation is 
represented by a local element inserted between nodes p and p’. The stiffness of the local 
element is expressed as the solution of the beam on an elastic foundation, as follows: 
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in plane y’-z’, where, 
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cK = interaction spring coefficient of surrounding concrete, 
φ = diameter of dowel bar, 

dd IE = bending rigidity of dowel bar, 
),cosh(),sinh(),cos(),sin( LCLSLcLs ββββ ====  

L = embedded length of dowel bar, 
'yf = shear force in y’ direction, and 

'xm = moment for x’ axis. 
In plane z’-x’, it becomes: 
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where 
'xf = shear force in x’ direction, and 

'ym = moment for y’ axis. 
Combining Equations (8) and (9), one can obtain: 
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Applying the theory of virtual work to the local element between nodes p and p’, one obtains 
the following relationship: 
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For the local element between nodes q and q’, it becomes: 
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The stiffness equation for the three dimensional beam element between nodes p’ and q’ is [18]: 
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Superimposing all the equations mentioned above, the stiffness equation for the dowel bar as a 
whole becomes: 
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Considering 
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one obtains the stiffness matrix of the dowel bar element as follows: 
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where, 





























+
+

−















=








−

Q

P

Q

P

Q

P

dd

dd

A
A

SAS
SSA

I
I

A
A

KK
KK

0
0

0
0

0
0

1

1110

0100

1110

0100  (17) 

and [ ]I is a unit matrix of size 6 by 6. On the other hand, if the width of the joint is very small, 
the beam element between nodes p’ and q’ is removed and the two local elements are directly 
connected at a node. In this case, the stiffness matrix of the dowel bar element becomes: 
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where, 
[ ] [ ] 1−

+= QP AAB  
Using Equation (7), Equations (17) and (18) can be converted into a stiffness equation 
expressed in terms of the displacement vectors of the solid elements, P and Q: 
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Since Equation (19) is formulated in the local coordinates of the interface element, it should be 
moved into global coordinates using the coordinate transfer matrix. 

4.  VERIFICATION OF DOWEL BAR MODEL 

4.1 Model Pavement 

In order to experimentally 
investigate the mechanical 
behavior of a dowel bar, a model 
pavement consisting of a 100 
mm-thick concrete slab on a 
granular base was constructed in 
a laboratory, as shown in Figure 6. 
Two types of transverse joint, 
consisting of dowel bars 23 mm 
and 11 mm in diameter, were 
incorporated. Strains in the dowel 
bars produced by a vertical load 
applied at the transverse joint 
edge were measured with gauges attached to the surface of the dowel bars. The experiment was 
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Figure 6 Overview of Model Pavement 

   
Figure 7 Mesh and Dowel Bar Arrangement for Analysis of Model Pavement 



 

also simulated using PAVE3D. The mesh used in the analysis is shown in Figure 7, and input 
data used in the analysis is presented in Table 1. The interaction spring coefficient, cK , varied 
from 100 GN/m3 to 400 GN/m3 according to Yoder et al. [19] 
 
Table 1 Input Data for Analysis of Loading Tests on Model Pavement 
Item [Symbol] Value Item [Symbol] Value 
Elastic Modulus of Concrete 
[ cE ] 

24,000 
MPa 

Diameter of Dowel Bar [φ ] 11 and 23 mm 

Poisson’s Ratio of Concrete [ cµ ] 0.2 Length of Dowel Bar [ dL ] 500 mm 

Thickness of Concrete Slab [ ch ] 100 mm Elastic Modulus of Dowel Bar [ dE ] 210,000 MPa 

Elastic Modulus of Foundation 
[ bE ] 

50 MPa Poisson’s Ratio of Dowel Bar [ dµ ] 0.3 

Poisson’s Ratio of Foundation 
[ bµ ] 

0.35 Interaction Spring Constant between 
Dowel Bar andConcrete [ cK ] 

100, 200, and 
400 GN/m3 

Thickness of Foundation [ bh ] 1200 mm   

 

Figure 8 compares the predicted bending strains in a dowel bar immediately below the load 
with the measured values. In the case of the 11 mm-diameter dowel bar, the measured strain 
distribution is nearly symmetrical with respect to the center of the dowel bar, because shear 
load transfer was predominant. On the other hand, in the case of the 23 mm-diameter dowel bar, 
strains in the loaded side were much larger than those in the unloaded side, because the 
contribution of dowel bending action to load transfer was significant. Strains computed by 
PAVE3D indicate a similar tendency to the measured ones. The computed strains increased by 
25% to 30% as cK increased from 100GN/m3 to 400GN/m3.  
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Figure 8 Strain Distributions in Dowel Bars; (a) φ=11 mm; (b) φ =23 mm 

(a) (b)



 

4.2 Actual Pavement 

A loading test was conducted on a 
concrete pavement of an 
expressway to investigate the 
mechanical behavior of transverse 
joints in actual use. Figure 9 shows 
a section of the pavement , which 
consists of 280 mm-thick concrete 
slabs on a 150 mm-thick 
cement-stabilized subbase. Four 
types of transverse joint were 
constructed so as to study the 
effects of dowel bar diameter and 
spacing, as shown in Figure 10. 
Strain gauges were attached to the 
top and bottom surfaces of the third 
and fourth dowel bars from the 
longitudinal edge with an interval 
of 30 mm. And another strain 
gauges were attached to the top 
surface of the slab along the 
transverse joint edge at intervals of 
200 mm. A large truck with tandem 
rear axle (98 kN per axle) was used 
to apply a load at the transverse 
joint edge. The strains in the dowel 
bars and slabs were measured as the 
axle approached the joint edge. The 
loading test was simulated by 
PAVE3D using the mesh shown in 
Figure 11 and with the input data 
presented in Table 2. In this 
analysis, cK of 400 GN/m3 was 
used. 
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Figure 11 Mesh for Analysis of Actual Pavement; 

(a) Mesh; (b) Type 1 & 2; (c) Type 3 & 4  

(a) 

(b) 

(c) 



 

 
Table 2 Input Data for Analysis of Loading Tests on Actual Pavement 
Item [Symbol] Value Item [Symbol] Value 
Elastic Modulus of Concrete [ cE ] 30,000 

MPa 
Poisson’s Ratio of Subbase [ gµ ] 0.35 

Poisson’s Ratio of Concrete [ cµ ] 0.15 Thickness of Subbase [ gh ] 2,600 mm 

Thickness of Concrete Slab [ ch ] 280 mm Diameter of Dowel Bar [φ ] 28 and 32 mm

Elastic Modulus of Subbase [ bE ] 1,000 MPa Length of Dowel Bar [ dL ] 700 mm 

Poisson’s Ratio of Subbase [ bµ ] 0.35 Elastic Modulus of Dowel Bar [ dE ] 210,000 MPa 

Thickness of Subbase [ bh ] 150 mm Poisson’s Ratio of Dowel Bar [ dµ ] 0.3 

Elastic Modulus of Subbase[ gE ] 30 Mpa Interaction Spring Constant between 
Dowel Bar andConcrete [ cK ] 

400 GN/m3 

Figure 12 shows the strain distributions in the dowel bars with strain gauges. Some of the strain 
gauges on the dowel bars failed, and only reliable data are plotted in the figure. Although the 
predicted strains overestimate the measured values, the agreement between predicted and 
measured results is fairly good from a practical point of view. 
 
Figure 13 shows the strain distribution on the slab surface along the transverse joint. Although 
the predicted strains are larger than the measured values, the overall tendency is quite similar in 
both cases. From these results, it can be said that PVAE3D is a good tool for predicting the 
behavior of dowel bars as well as concrete slabs. 
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Figure 12 Strain Distributions in Dowel Bars in Actual Pavement 
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Figure 13 Strain Distributions in Concrete Slabs in Actual Pavement 



 

5.  MECHANICAL BEHAVIOR OF TRANSVERSE JOINT 

In this section, the effects of the geometry and spacing of dowel bars and of subbase rigidity on 
the mechanical behavior of concrete slabs and dowel bars are investigated with PAVE3D 
simulations. The simulations were performed on a concrete pavement with the transverse joint 
of Type 3 as a reference structure. The dowel bar length, value of cK , joint opening width, bL , 
and subbase stiffness, bE , varied as presented in Table3. The joint opening width mentioned 
here is the length of the beam element and does not necessarily reflect the actual opening of the 
joint. If it is greater than the actual opening, the inner nodes are located not on the surface of 
the solid elements but within them, which means that the concrete support around the center of 
the dowel bar is lost. 
 
Table 3 Parameter Values for Simulation 
Item [Symbol] Values 
Elastic Modulus of Subbase [ bE ] 500, 1,000, 10,000 MPa 

Diameter of Dowel Bar [φ ] 28, and 32 mm 

Length of Unsupported Dowel Bar [ bL ] 20, 40, and 60 mm 

Length of Dowel Bar [ dL ] 500, and 700 mm 

Interaction Spring Constant between Dowel Bar and 
Concrete [ cK ] 

100, 200, and 400 GN/m3 

5.1 Dowel Bar Stress 

Figure 14 shows the distributions of maximum bending stress in dowel bars along the joint 
edge. As the diameter of the dowel bar increases from 28 mm to 32 mm, the maximum stress 
decreases by about 25%. On the other hand, a 20% stress reduction is obtained by narrowing 
the dowel spacing from 400 mm to 300 mm. 
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Figure 14 Maximum Bending Stresses of Dowel Bars along Joint Edge 



 

Figure 15 shows the effect of cK on the bending stress in the dowel bars. As cK  increases, 
the range within which bending stress occurs is reduced and the magnitude of the maximum 
stress increases. Changing the dowel bar length from 700 mm (solid line in Figure 15(a)) to 
500 mm (circle marks) has no effect on bending stress. From Figure 15(b), it is found that, if 

cK  = 400 GN/m3, the bending stress of the dowel bar just under the tire is greater than when 

cK  = 100 GN/m3 and the bending stresses in other dowel bars between the tires are smaller. 
So, if the concrete strongly restrains the dowel bars, the stresses in the dowel bars under the 
tires are large but those between the tires are relatively small. 
 

 
Figure 16 shows the effect of bL  on the bending stress in the dowel bars. Increasing bL  from 
20 mm to 60 mm causes a rise in the bending stresses of all dowel bars by about 40%. 
Therefore, if the concrete around the dowel bar in the joint opening region were to weaken and 
ultimately fail to support the dowel there, the dowel bar stress would significantly increase. 
 
Figure 17 shows the effect of bE  on the stress of the dowel bar. The magnitude of bE  varied 
from 500 MPa for a granular subbase to 10,000 MPa for a lean concrete subbase. Increasing 

bE  decreases the bending stresses in all dowel bars by about 20%. 
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Figure 15 Effect of Kc on Bending Stress of Dowel Bar; (a) Stress 
Distribution in a Dowel Bar; (b) Stresses along Joint Edge 
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Figure 16 Effect of Lb on Bending Stress of Dowel Bar; (a) Stress 
Distribution in a Dowel Bar; (b) Stresses along Joint Edge 

Lb Lb



 

5.2 Concrete Slab Stresses 

In this section, the bending stresses at the bottom of the concrete slab and the transfer 
efficiency across the transverse joint are discussed. 

 
Figure 18 shows stress distributions along the transverse joint edge in loaded and unloaded 
slabs to allow comparison of the stresses for different joint types. Naturally, stresses in the 
loaded slab are greater immediately under the tires than in other parts of the slab. In the 
unloaded slab, relatively large stresses are observed in the position corresponding to the 
position between the tires in the loaded slab. This is because the load is carried by a number of 
dowel bars over quite a wide range of transverse distance. Further, from Figures 18(a) and (b), 
it can be said that increasing the dowel diameter from 28 mm to 32 mm has very little effect on 
concrete stresses. Figure 18(c) shows that there is no difference in stress for the two dowel 
spacings of 400 mm and 300 mm. Therefore, the joint types considered in this experiment have 
no significant effect on concrete stresses. 
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Figure 17 Effect of Eb on Bending Stress of Dowel Bar; (a) Stress 
Distribution in a Dowel Bar; (b) Stresses along Joint Edge 
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Figure 18 Bending Stress Distributions in Concrete Slab along Transverse Joint Edge 



 

In this study, the load transfer efficiency expressed in deflection or stress is defined as follows: 

1002

21

2 ×
+

=
ss

seff  (20) 

where, 
ffe  = load transfer efficiency(%) and 

21, ss  = stresses or deflections of the loaded and unloaded slabs, respectively. 
 

Figure 19 shows the effect of cK on ffe . An increase in cK decreases the stress in the loaded 
slab and increases the stress in the unloaded slab, leading to higher ffe  in stress, while the 
effect of cK on deflection is very little. 
 
Figure 20 shows the effect of bL  on ffe . For values of bL  less than 40 mm, the effect seems 
to be slight. When bL  rises above 60 mm, the stress and deflection increase in the loaded slab 
and decrease in the unloaded slab, leading to lower ffe . In general practice, the joint opening 
width is 10 mm to 20 mm. In this range, there is likely to be no impact on concrete stresses, 
which means no reduction in the effectiveness of the dowel bar. However, if the concrete 
around the dowel bar becomes weak after repeated loading, the support provided to the dowel 
bar by the concrete will be lost and the unsupported length of the dowel bar may increase to 40 
mm or more. This will lead to higher bending stresses in the concrete slabs. 
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Figure 19 Effects of Kc on (a) Stress and Deflection and (b) Load Transfer Efficiencies
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Figure 20 Effects of Lb on (a) Stress and Deflection and (b) Load Transfer Efficiencies



 

 
Figure 21 shows the effect of bE  on concrete stress. An increase in bE  reduces both the 
deflections and stresses of the loaded and unloaded slabs, though it has little effect on ffe .This 
means that increasing the strength of the subbase might be a good means of improving the 
structural capacity of the overall pavement system under traffic loading. 

6.  CONCLUSION 

In this study, a mechanical model for dowel bars in the transverse joints between concrete 
pavement slabs was developed based on the three-dimensional finite element method. In the 
model, a dowel bar is divided into three segments: two embedded in the concrete and a third 
linking them together. The embedded segments are modeled by solving for a beam on an 
elastic foundation while the joint segment is treated as a three-dimensional beam element. The 
resulting dowel bar element was formulated for a 3DFEM code, PAVE3D, which allows one to 
compute displacements and stresses of the dowel bar as well as those of the concrete slabs, 
subbase, and subgrade, taking into account the geometry and spacing of the dowel bar. 
 
The model was verified by comparing predicted strains in the concrete slabs and dowel bars 
with experimental data obtained in loading tests conducted on a model pavement and also on 
an actual pavement. The comparison resulted in fairly good agreement, thus confirming the 
validity of PAVE3D. 
 
The effects of transverse joint structure on stresses in dowel bars and concrete slabs were 
investigated by carrying out numerical simulations with PAVE3D. The results of these 
simulations showed that the geometry and spacing of dowel bars have great effect on stresses 
in the dowel bars, but the effect on concrete slab stresses is relatively small. It was also found 
that increasing the subbase rigidity decreases the stresses in both dowel bars and concrete slabs. 
Therefore, strengthening the subbase might be considered a good measure for enhancing the 
structural capacity of concrete pavement systems. 
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Figure 21 Effects of Eb on (a) Stress and Deflection and (b) Load Transfer Efficiencies
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