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In this study, the effects of prestress level and the distribution of prestress over the section on shear capacity 
are evaluated using the test results of prestressed concrete beams without shear reinforcement and prestressed 
reinforced concrete beams. The shear force carried by the concrete is calculated according to the JSCE code, 
the ACI code, and modified compression field theory, and so on. Calculated values are compared with the 
experimental results. Based on this, a simple method of taking into account the effect of prestress, including 
the stress distribution over the section as well as the inclination of the diagonal crack on shear capacity, is 
proposed. 
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1. INTRODUCTION 
 
The current Japanese design codes for concrete structures in the civil engineering field take account of the 
effects of axial compressive force, including prestress, on shear capacity in a general sense by considering 
decompression moment. This, however, results in the effect of prestress being evaluated only in terms of the 
compressive stress introduced at the extreme tension fiber of the section. As a result, the effect of stress 
distribution over the section is not considered. This method is based on the description in CEB-FIP MC 
1978[1]. However, it is not adopted in the present CEB-FIP MC 1990[2]. It has been indicated that evaluations 
based on decompression moment have some limitations in applicability [3].  Therefore, a rational design 
method able to evaluate the effect of compressive stress as well as stress distribution across the section on 
shear capacity needs to be established. 
 
In this situation, various researches have been done on the shear capacity of concrete members. For example, 
the Strut and Tie model is recommended in CEB-FIP MC 1990 for the analysis of the shear resistance 
mechanism. Collins et al. proposed a modified compression field theory [4], in which the equilibrium and 
compatibility conditions related to average stress and average strain are used to calculate the shear capacity 
and shear stress of members. Priestly proposed that effect of compressive force on shear capacity should be 
evaluated by the inclination of the diagonal compression strut formed by axial force instead of including its 
effects in the shear force carried by the concrete [5]. 

 
In this study, the results of tests on prestressed concrete beams without shear reinforcement and with various 
levels of prestress and stress distribution across the section [6,7], as well as prestressed reinforced concrete 
beams with a T-section [8], are reviewed in order to evaluate the effect of prestress on shear capacity. The 
shear force carried by the concrete is also calculated according to modified compression field theory and the 
calculated values are compared with the experimental results. From these findings, a simple method of taking 
into account the effect of prestress, including stress distribution over the section and the inclination of the 
diagonal strut, on shear capacity is proposed. Finally, the applicability of the method is discussed. 

 
 

2. OUTLINE OF LOADING TESTS 
 
2.1 Test variables 

 
The test specimens consist of prestressed concrete (PC) beams and prestressed reinforced concrete (PRC) 
beams, as shown in Fig.1. The A-series specimens are PC beams without shear reinforment, in which 
prestressing bars (φ=19mm, fpu=1277N/mm2) are used.  

 
The test variables for the A series are as follows: 
① Stress at the extreme tension fiber of the section:σct = 0N/mm2, 2.0N/mm2, 3.0N/mm2 and 4.0 N/mm2. 
② Stress distribution across the section; While maintaining the stress in the extreme tension fiber at 
4.0N/mm2, the stress at the extreme compression fiber of the section is changed as 0N/mm2 (triangular 
distribution), 2.0N/mm2 (trapezoidal distribution) and 4.0N/mm2 (rectangular distribution). 
③ Compressive strength of concrete: f’c=40N/mm2 , 80N/mm2.  
The PC beams have no shear reinforcement or longitudinal reinforcement. The quantity of prestressing bars 
is determined so that shear failure is likely to occur in all specimens based on the JSCE Standard 
Specification for Design and Construction of Concrete Structures. 

 
The B- series specimens are PRC beams with a T-section with deformed mild steel D16 bars (fsy=320N/mm2) 
for the longitudinal non-tensioned reinforcement and D6 (fsy=410N/mm2) for the shear reinforcement. As for 
prestressing steel, prestressing bars of φ=13mm (fpy=1390N/mm2) were used. 
 
The test variables for the B series are as follows: 
① Spacing of shear reinforcement: s= ∞mm, s=120mm (shear reinforcement rationρw=0.59%) 
② Compressive strength of concrete: f’c =40N/mm2, 80N/mm2. 
③ Stress at the extreme tension fiber of the section:σct =0N/mm2, 2.0N/mm2 and 4.0 N/mm2. 
Details of these test variables are shown in Table 1. 

 
 



 

Fig.1 Dimensions of specimens and loading conditions (unit: mm) 
 

2.2 Loading test 
 
All specimens are tested under symmetrical two-point loading. The A-series specimens have a total length of 
1750mm, a flexural span of 400mm, and a shear span of 450mm. The shear span-effective depth ratio of these 
beams is a/d=3.21. The B-series specimens have a total length of 2000mm, a flexural span of 300mm, and a 
shear span of 400mm. The value of a/d is 2.35 in these beams. During the loading tests, the applied load, 
shear reinforcement strain and deflection at the center of the span are measured.  

 
 

3. ANALYTICAL METHOD 
 

Modified compression field theory [4] is used to analyze shear behavior. This theory takes into account the 
tensile stress between diagonal cracks and the reduction in compressive strength due to the existence of 
diagonal cracks. Concrete with diagonal cracks is regarded as a continuous element with uniform 
characteristics, and the shear capacity of a member is calculated from the equilibrium and compatibility 
conditions within the element. 

 
Modified compression field theory gives the shear capacity as the sum of shear forces carried by the concrete 
and by shear the reinforcement, as indicated in Eq.(1), which is a function of the inclination of the diagonal 
strut θand the average principal tensile stress in the concrete f1 . As a stress-strain model for concrete in 
diagonal compression, Eq.(2) and (3) proposed by Vecchio et al. are used; this relates the average diagonal 
compressive stress in the concrete f2  to the principal tensile strain ε1. As a stress-strain model in diagonal 
tension, on the other hand, Eq.(4) and (5) recommended by Vecchio et al. are used, in which tension softening 
is taken into account. (In specimens without shear reinforcement, the shear cracking load is equal to the 
maximum load in calculation. Therefore Eq. (5) is not used.) 
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Where, f1: principal tensile stress, bw: web width, jd: flexural lever arm, θ: inclination of diagonal strut (the 
inclination of diagonal cracks), Aw: area of shear reinforcement, fw: stress in shear reinforcement, s: spacing 
of shear reinforcement, εcr: principal tensile strain at diagonal cracking, ε1: principal tensile strain, α1: 
coefficient for the bond characteristics of reinforcement (α1=1.0 for deformed bars), α2: coefficient for 
loading type (α2=1.0 for monotonous loading), fcr: tensile stress of concrete at diagonal cracking (calculated 
by Eq.(12)), f2: principal compressive stress, f2max: the maximum principal compressive strength after 
diagonal cracking, and ε2: principal compressive strain 

 
Although this theory was originally proposed for members subjected to pure shear, it can be used analyze the 
shear behavior of a member subjected to combined shear, axial force, and flexural force in combination with 
an ordinary flexural analysis method such as the fiber model. The applicability of this theory to reinforced 
concrete and prestressed concrete beam members has been proved by Nakamura et al.[9]and Gregor et al.[10]. 

 
 

4. SIMPLE METHOD OF CONSIDERING THE EFFECT OF PRESTRESS 
 

In modified compression field theory, the effect of prestress is considered in the calculation process of cotθ, 
in which the inclination of the diagonal strut θis assumed and cotθis derived using an iteration procedure 
for axial force equilibrium. That is to say, the effect of prestress on shear capacity is evaluated from the 
inclination of the diagonal strut θ. However, this calculation requires iteration to achieve convergence. In 
practical design, on the other hand, simplicity is also needed as well as reliability. Therefore, a simple method 
for calculating the inclination of the diagonal strut without iteration is proposed, in which the effect of 
prestress on shear capacity is evaluated by cotθ. 
From Mohr’s stress circle(Fig.2)，Eq.(6) is obtained.  

 
(6) 

 
Shear stress v  at the centroid of the section is given by Eq.(7) 

 (7) 
(7) 

 
In modified compression field theory, the shear force carried 
by concrete is given by Eq.(8). 
                                                                      (8) 

 
By substituting Eq.(6) and Eq.(8) into Eq.(7), Eq.(9) is 
obtained. 
 
                                                                                  (9) 
 (9) 
In Eq.(9), fcx represents the average longitudinal stress at the centroid of the cross section, and for simplicity 
here, it is replaced by the average stressσcg of the cross section due to prestress. At diagonal cracking, the 
value of Eq.(8) becomes a maximum and the principal tensile stress f1 reaches the tensile strength ft .  
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Therefore, the principal tensile stress f1 is replaced by tensile strength ft and Eq. (9) is rewritten as Eq.(10). In 
the following discussion, cotθ1 means the value calculated using ft from the JSCE code (Eq.(11)) and cotθ
2 means the value calculated using ft from Eq.(12) proposed by Collins et al.  
 
i) JSCE code 
ft＝ft1=0.23f ’ck

2/3 (11) 
 
ii)  Collins et al 
f t =f t2 =                  （λ =1.00：N/mm2） (12) 
 
where, f’c : compressive strength of concrete  
 
 
5. TEST RESULTS AND DISCUSSION 
 
5.1 Shear capacity in design codes 

 
In the current JSCE code[11] and the Design Specifications of Highway Bridges[12] (Japan Road Association 
code), the coefficient (βn,ｋ), representing the effect of prestress on shear force carried by concrete is given 
as Eq.(13). 

 
≒                    （N’d≧0） (13) 

 
if βn＞2, then βn=2 
Where, M0 : decompression moment, Mu :flexural capacity, Md :design flexural moment, and N’d :design 
axial force. 
 
Here, coefficient βn is replaced by cotθ(Eq.(10)), and the JSCE code(Eq.(14)) is modified  to Eq.(15) by cot
θ, in which Vc1 corresponds to cotθ1 and Vc2 corresponds to cotθ2. Vc1, Vc2 (Eq.(15)) is added to the shear 
force carried by the shear reinforcement described in the JSCE code in order to calculate the ultimate shear 
capacity Pus2, Pus3 of PC beams.  
 
The shear force carried by the concrete is also calculated according to the JSCE code, Japan Road 
Association code, ACI code[13], AIJ code[14] , and Eq.(19) proposed by Ito et al[15]. All values are compared 
with the experimental results. In the calculations, values of an safety factors, such as the material factor, and 
member factor, are set to 1.0. The ACI code and Eq.(19) consider the effect of prestress separately in terms of 
flexural cracking moment Mcr. On the other hand, Eq.(10) evaluates the effect of prestress as a ratio to the 
situation without prestress. 
 
i) JSCE Code 
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dβ : coefficient to account for the influence of effective depth on shear capacity, and pβ : coefficient to 

account for the influence of longitudinal reinforcement on shear capacity 
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ii) Japan Road Association code 

 
dbkS wac τ=  (tf) (16) 

 
where, aτ : design resistance shear stress 
 

iii) ACI Code  
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iv) AIJ code 
 

(tf)  (18) 
 
where,       ,   
 
 
 

b: web width, csf : design shear stress of concrete, gσ : average prestress, tw f : design yield strength of shear 
reinforcement, wp : shear reinforcement ratio, M: design flexural moment, and Q: design shear capacity 

 
v) Ito’s equation 
 

 (tf) (19) 
 
 

5.2 Failure mode 
 
a) Specimens with shear reinforcement 
 
Experimental results are listed in Table 1. The failure mode of tested beams with shear reinforcement 
changed from shear tension failure to shear compression failure as the amount of introduced prestress 
increased. In particulars HT-12-40(σct=4.0N/mm2, f’ck=80N/mm2) failed in flexure. 
 
The measured maximum load of specimens made with high-strength concrete (f’ck=80N/mm2) was 
approximately 15~40% higher than that of specimens made with ordinary concrete (f’ck=40N/mm2). 
 
In the case of non-prestressed specimens, the ratio of measured maximum load (Pu) to calculated maximum 
load (Pus1，Pus2，Pus3) was 1.24 for T-12-0 and 1.58 for HT-12-0. In the case of prestressed specimens, on the 
other hand, ratio (Pu / Pus1) was 1.27 and (Pu / Pus3) was for T-12-40. Values for HT-12-40 were 1.53 (Pu / 
Pus1) and 1.46 (Pu / Pus3). These results indicate that Pus3 using cotθ2 gives a closer value to the measured 
one than Pus1, which usesβn. 
 
b) Specimens without shear reinforcement 
 
Almost all the specimens without shear reinforcement except for beam HP-0-20 showed shear compression 
failure or shear tension failure. In these cases, the beams did not fail immediately after shear cracking and was 
able to carry further load due to the formation of an arch mechanism. This led to the fact that the beam 
HP-0-20 failed finally in flexure. Consequently, the measured ultimate load (Pu) became considerably larger 
than the calculated values (Pus1，Pus2，Pus3). These findings suggest that the proposed evaluation method can be 
applied to members with shear reinforcement, in which the truss mechanism is dominant. For the members 
without shear reinforcement, in which the arch mechanism is dominant, further investigation is necessary as 
regards the applicability of the proposed method. 
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*1 σct=0 andσ’ct=0 means that prestressing bars are not tensioned 
*2 Pus1=2(Vcd+Vsd), (Vcd, Vsd are calculated by JSCE code using safety factor of 1.0) 
*3 Pus2=2(Vc1+Vsd), (Vc1 is calculated by Eq.(15) and cotθ1, Vsd is calculated by JSCE code) 
*4 Pus3=2(Vc2+Vsd), (Vc2 is calculated by Eq.(15) and cotθ2, Vsd is calculated by JSCE code) 
*5 Pus4=2(Vc+Vs), (Vc , Vs is calculated by modified compression field theory (Eq.(1) and Eq.(12)) 
*6 Values calculated by the fiber model. 
*7 SC: shear compression failure, ST: shear (diagonal) tension failure, F: flexural compression failure 

(prestressing bars do not yield) 
 

Due to the above mentioned reason, the measured shear cracking load is compared here with the ultimate 
shear capacity carried by the concrete (Pcs=2Vc) calculated by several methods. 
 
The measured shear cracking load, and the ultimate concrete shear capacity as calculated by the JSCE code, 
Vc1 and Vc2 (Eq.(15)), are listed in Table 2. The ratio of measured shear cracking load for prestressed 
specimens to that for non-prestressed specimens, the value of βn in the JSCE code, and the values of cotθ1, 
cotθ2 are also listed the table. From these values, the effects of prestress on the shear capacity of prestressed 
concrete members were evaluated. 
 
5.3 The Effect of prestress on shear cracking load 
 
a) Effect of prestress at the tension fiber of the section 
 
Figure.3 shows the relationship between measured shear cracking load and introduced prestress at the tension 
fiber of section for the A-series specimens. The shear cracking loads calculated by several methods are also 
indicated in Fig.3. Here, the stress at the extreme compression fiber of the section is kept as 0.0N/mm2 and 
the stress at the extreme tension fiber of the section is gradually changed from 0.0N/mm2 to 2.0N/mm2, 
3.0N/mm2, and 4.0N/mm2. The measured shear cracking load of P-0-40 was approximately 23% higher than 
that of P-0-0. That of HP-0-40 was approximately 35% higher than that of HP-0-0. As these results 
demonstrate, the measured shear cracking load increased with increasing introduced prestress. The same 
tendency was observed for B-series specimens, as shown in Table 2, irrespective of concrete strength and 
shear reinforcement ratio. 
 



 

*1  Pcs0.m : measured shear cracking load for non-prestressed specimens 
*2  cotθ1 is calculated by Eq.(10) and concrete tensile strength ft is calculated by JSCE code (Eq.(11)). 
*3  cotθ2 is calculated by Eq.(10) and concrete tensile strength ft is calculated by Eq.(12). 
 
Each value of calculated ultimate shear capacity also increases with increasing the prestress. However, the 
ratio of the increase as calculated by the JSCE code, AIJ code, and Japan Road Association code is smaller 
than that measured. Consequently, the discrepancy between the calculated shear cracking load and the 
measured value tended to increase with increasing introduced prestress. Further, the evaluation methods 
currently adopted in each design code tend to underestimate the shear force carried by the concrete, including 
the effect of prestress, in the case of monotonous loading. Among the equations investigated in this study, 
modified compression field theory and Ito’s equation gave values that were closer to the measured shear 
cracking load. The coefficients cotθ1 and cotθ2  proposed in this study provides a more accurate evaluate in 
of the effect of prestress on shear capacity than coefficient βn,  and correctly the increase in shear cracking 
load with increasing prestress, although the calculated values of Vc1 and Vc2 somewhat underestimate the 
measured ones. 
 
b) Effect of stress distribution over the section 
 
Figure.4 shows the effect of the distribution of stress over the section on the shear cracking load. In this case, 
the stress at the extreme tension fiber of the section is kept at 4.0N/mm2 and the sectional stress distribution is 
changed from a triangular distribution to a rectangular distribution. 
 
The measured shear cracking load of P-20-40 (trapezoidal distribution) and P-40-40 (rectangular 
distribution) was approximately 15% and 27% higher. Respectively, compared with that of P-0-40 (triangular 
distribution). The measured shear cracking load of HP-20-40 (trapezoidal distribution) and HP-40-40 
(rectangular distribution) was approximately 4% and 24% higher respectively, than that of HP-0-40 
(triangular distribution). On the other hand, all equations except for the AIJ code yield the same value  



 

 

(b)high strength

0

20

40

60

80

100

120

0 1 2 3 4

HP-0-0

HP-0-20

HP-0-30

HP-0-40

MCFT

Eq.(19)

JSCE code

Eq.(14)

Eq.(15)

ACI code

Eq.(16)

σct Ｎ/mm　２）（

1.0 2.0 3.0 4.00

σct Ｎ/mm　２）（

1.0 2.0 3.0 4.00

0

20

40

60

80

100

120

0 1 2 3 4

P-0-0

P-0-20

P-0-30

P-0-40

MCFT

Eq.(19)

JSCE code

Eq.(14)

Eq.(15)

ACI code

AIJ code

Eq.(16)

2(a)normal strength  (f'c=41.9, 43.0N/mm  )

Fig.3 Effect of prestress on shear cracking load

 (f'c=82.8, 79.6N/mm  )2

 (      =0.0N/mm  )2ctσ’

0

20

40

60

80

100

120

0 1 2 3 4

P-0-40

P-20-40

P-40-40

MCFT

Eq.(19)

JSCE code

Eq.(14)

Eq.(15)

ACI code

AIJ code

Eq.(16)

0

20

40

60

80

100

120

0 1 2 3 4

HP-0-40

HP-20-40

HP-40-40

MCFT

Eq.(19)

JSCE code

Eq.(14)

Eq.(15)

ACI code

Eq.(16)

ct Ｎ/mm　２）（σ’ ct Ｎ/mm　２）（σ’
1.0 2.0 3.0 4.00 1.0 2.0 3.0 4.00

(a)normal strength (b)high strength (f'c=43.0N/mm  )2  (f'c=79.6N/mm  )2

Fig.4 Effect of stress distribution on shear cracking load σct (      =4.0N/mm  )2



 

irrespective of stress distribution and the difference in stress distribution is not reflected in the estimation. 
This is because these design codes consider the effect of prestress on shear capacity only in terms of 
decompression moment or flexural cracking moment. The effect of prestress is evaluated only by the 
compressive stress at the extreme tension fiber of the section. The AIJ code does indirectly take into account 
the effect of prestress on shear capacity by using the average prestressσg across the section. In this case, 
however, the coefficient of 0.1 is multiplied and the ratio of the increase in shear cracking load is smaller than 
the measured value, although it does increase when the stress distribution across the section is changed from 
triangular to rectangular. As a result, in the case of a rectangular distribution, the difference between the 
measured and calculated shear cracking loads increased and shear capacity tended to be underestimated. On 
the other hand, the ratio of ultimate shear capacity increase calculated by Vc1 and Vc2 as well as the modified 
compression field theory coincides relatively well with the measured value, although the ultimate shear 
capacity itself tended to be somewhat underestimated. 

 
5.4 Shear force carried by concrete 
 
Figure.5 shows the relationships between shear force carried by concrete (Vc), shear reinforcement (Vs), and 
applied shear force for B-series specimens with shear reinforcements. The shear force carried by the concrete 
as determined using the JSCE code, and Vc1 and Vc2 (Eq.(15)) is also indicated in Fig.5. 
 
In Fig.5, the experimented shear force carried by the concrete was calculated by subtracting the measured 
shear force carried by the shear reinforcement from the total applied shear force. The shear force carried by 
the shear reinforcement was estimated based on the truss analogy using the measured strain of the shear 
reinforcement and the measured average inclination of the critical diagonal cracks. (More than two or three 
critical diagonal cracks occurred in the shear span, as indicated in Fig.6. Therefore, the measured average 
strains of all shear reinforcement in the shear span, and the measured average inclination of diagonal cracks 
were adopted here.) The measured crack inclinations are listed in Table 3. Figure.6 shows the final crack 
distribution after the loading test. 
 
On the other hand, the analytical values of Vs and Vc in Fig.5 are calculated using modified compression field 
theory. In this case, the modified compression field theory was applied to the web area (bwjd, bw: web width; 
jd: flexural lever arm). Other areas were analyzed by the fiber model; that is, shear capacity was calculated in 
consideration of the applied flexural moment. The analyzed section was chosen as 220mm from the support 
because the shear reinforcement strain was measured at this point. 
 
As seen in Fig.5, the deterioration of Vc due to diagonal cracking, as well as the increase in Vs after diagonal 
cracking, is well estimated by modified compression field theory irrespective of concrete strength. The 
reduction in Vc immediately after shear cracking was more significant as the amount of introduced prestress 
in the specimen was increased with normal concrete, while it was approximately 20% irrespective of 
prestressing level in specimens with high-strength concrete. The measured Vc of T-12-0 (σct=0) was 19.5kN. 
That of T-12-40 (σct=4.0N/mm2) was 28.9kN, about 38% higher than for T-12-0 due to the increase in 
prestress. 

 
Values of Vc calculated using Eq.(14) coincide relatively well with measured values for T-12-0 and HT-12-0 
(σct=0). On the other hand, the measured Vc for T-12-40 (σct=4.0N/mm2) is 28.9kN, while the calculated 
value given by Eq.(14) is 25.4kN and the ratio to the T-12-40 value is approximately 17%. The difference 
between calculated Vc by Eq.(14) and measured Vc increases with increasing prestress, and consequently 
Eq.(14) underestimates the effect of prestress. On the other hand, the calculated shear force carried by 
concrete Vc1 and Vc2 (Eq.(15)) for T-12-40 was 27.8kN and 29.4kN, respectively, and these values coincided 
relatively well with the measured values (28.9kN). The calculated concrete shear resistance Vc1 and Vc2 for 
T-12-40 was approximately 28% and 35% higher respectively, than the value for T-12-0. Thus, the effect of 
prestress can be evaluated using Vc1 and Vc2 irrespective of prestressing level, although the results using Vc1 
and Vc2 are approximately 10% smaller than the measured values for the specimens with normal strength 
concrete. In the case of specimens made with high-strength concrete, Vc1 tended to somewhat underestimate 
the effect of prestress, while Vc2 was able to predict the increase in shear force carried by the concrete with 
increasing prestress. 
 
 
 



 

 
5.5 Inclination of diagonal cracks 
 
The measured values of diagonal crack inclination, as well as those calculated by cotθ1 and cotθ2 (Eq.(10)), 
are listed in Table 3. Figure.6 shows the final crack patterns. The measured value of inclination of diagonal 
cracks is the angle between the critical diagonal crack and the member axis. 
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Fig.5  Relationships between Vc,Vs and applied shear force



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a) Effect of introduced prestress  
 
With specimens in both series without shear reinforcement, the 
measured inclination of diagonal cracks decreased with 
increasing prestress. This tendency is also seen with cotθ1 and 
cotθ2 (Eq.(10)). 
 
In B-series specimens with shear reinforcement (ρw=0.59), at 
least three diagonal cracks occurred and their inclination 
decreased with distance from the loading point to the cracking 
point. Although these was same scatter, the measured inclination 
generally decreased with increasing prestress. The discrepancy 
between measured inclination and the value calculated using cot
θ 1 and cotθ 2 is approximately ±4° , meaning that they 
coincided well with each other.  
 
b) Effect of stress distribution over the section 

 
The measured inclination of the diagonal cracks decreased when 
the stress distribution over the section was changed from a 
triangular distribution to a rectangular distribution. Values 
calculated using cotθ 1 and cotθ 2 coincided well with the 
measured ones. 
 
cotθ1 and cotθ2 are evaluated only by the stress equilibrium in 
the web concrete. In this case, the  
effect of shear reinforcement ratio on the inclination of diagonal 
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cracks is not considered. Consequently, this method is unable to evaluate the precise effect of shear 
reinforcement ratio on the inclination of diagonal cracks. However, cotθ1 and cotθ2 do reflect the tendency 
for diagonal crack inclination to fall with increasing prestress. 

 
 

6. CONCLUSIONS 
 
The main conclusions obtained from this study are as follows: 
(1) The measured shear cracking load increases as the amount of introduced prestress increase and when the 

stress distribution over the section changes from triangular to rectangular. 
(2) The shear capacity of PC members tends to be underestimated by the current Japanese design codes, 

although they do offer adequate safety. Further, most of the design codes ignore the effect of the stress 
distribution over section. For this reason, a rational design method able to evaluate the effect of 
compressive stress as well as stress distribution on shear capacity should be established. 

(3) Using cotθ1 and cotθ2 (Eq.(10)), effect of prestress and stress distribution over the section on shear 
capacity can be evaluated for prestressed concrete members. Calculations using cotθ1 somewhat 
underestimate the measured values. However, Vc1 and Vc2 (Eq.(15)), which are derived from a 
modification of Eq.(14)(JSCE code) by cotθ1 and cotθ2 , predict the increase in shear cracking load 
with increasing prestress. 

(4) In the case of specimens with shear reinforcement, Vc1 and Vc2 (Eq.(15)) predict the effect of prestress on 
shear force carried by concrete and give results close to the measurements. By adding the value of Vs in 
the JSCE code to the value of Vc1 or Vc2, the ultimate shear capacity of prestressed concrete members can 
be safety and appropriately estimated.  

(5) The measured inclination of diagonal cracks decreases with increasing the introduced prestress and also 
decreases when the stress distribution over the section is changed from triangular distribution to 
rectangular distribution. The inclination of diagonal crack calculated by Eq.(10) coincides well with the 
measurements. 
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