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EVALUATION BY LATTICE MODEL OF ULTIMATE DEFORMATION OF RC COLUMNS
SUBJECTED TO CYCLIC LOADING
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Atsushi ITOH Junichiro NIWA l Tada-aki TANABE

This study extendsthe lattice model, which offers accurate evaluations of the shear resisting
mechanism, into a cyclic model. The inelastic deformation ability of RC columns subjected to
reversed cyclic loading is evaluated using this cyclic lattice model. It is confirmed that the cyclic
lattice model is able to evaluate the inelastic deformability of six RC column specimens having
different amounts of transverse reinforcement to good accuracy as compared with experimental
results. Furthermore, the resisting mechanism of RC columns until the ultimate state is analytically
evaluated by observing stresses in the members of the lattice model.
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1. INTRODUCTION

When failure of flexural-reinforced concrete (RC) members in flexural mode accompanies yielding
of the longitudinal reinforcement in the tension zone, considerable inelastic deformation may occur
while sufficient flexural capacity is retained, and much energy may be absorbed up to failure. To
make the use of this excellent deformability and energy absorption, a ductility design method that
permits considerable inelastic deformation during earthquakes while limiting maximum deformation
has been developed. The JSCE specifications for seismic design of RC structures adopt a design
strategy that permits shear failure after flexural yielding and limits plastic deformation within
certain bounds. This type of design relies on calculation of the plastic deformability of RC
members subjected to reversed cyclic loading to good accuracy. This led to past attempts to
develop an experimental formulation of the plastic deformability of RC columns [1], [2]. In recent
years, however, RC structures have increased in size. And as RC structures exhibit a significant size
effect, some doubts have arisen with respect to applying these experimental formulas based on
limited-size specimens too much larger real structures. However, with the size of specimens that
can be tested limited by available experimental tools, consideration needs to be given to the
evaluation of plastic deformability by numerical methods.

In the past, numerical studies based on nonlinear FEM analysis, such as those by Okamura et al. [3]
and Nakamura et al. [4] have successfully evaluated the plastic deformability of RC members.
However, it is found to be very difficult to evaluate all aspects of the real behavior of RC members
up to their ultimate state, particularly when the failure mode is shear after yielding. This is
because shear failure involves material and structural failures, and all factors related to shear failure
are affected by each other. And as for RC structures subjected to cyclic loading, the influence of
cover spalling after cracking and other effects should be also taken into account.

The objective of this study is to predict the plastic deformability of RC columns subjected to
reversed cyclic loading using a simple numerical model. Since the ultimate failure mode is
expected to be shear, the lattice model [5] is used for analysis. The lattice model has proven to be
an effective method of handling shear failure problems in RC beams subjected to monotonic loading
[5]. In this study, cyclic analysis is carried out on six RC columns with different transverse
reinforcement ratios and the ability of the lattice model to effectively predict variations in inelastic
deformation of RC columns in terms of transverse reinforcement ratio is examined.

2. ANALYTICAL MODEL

The lattice model [5], as developed by Niwa et al., is extended to handle cyclic loading for use in
this study. The major characteristic of the lattice model is that the shear resisting mechanism is
clearly expressed, and the results of analysis are objective because RC members are modeled into
only one type. Since a RC member is considered as an assembly of truss members in the lattice
model, the total degrees of freedom and computational time are expected to be significantly less than
in finite element analysis.
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Figure 1. Stress State of Concrete Element
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Beamwidth b

Figure 3. Cross Section of Lattice Model

2.1 Lattice Model

Figure l(a) shows a reinforced concrete beam with diagonal cracks. It is assumed that a diagonal
crack propagates at an inclination of a degrees to the beam axis. The shear force, which acts
along the crack surface, is neglected in the lattice model. Based on these assumptions, in an
infinitesimal element parallel to the crack direction, as shown superimposed on Figure l(a), bi-axial
compressive and tensile stresses act as shown in Figure l(b). These stresses acting in an
infinitesimal element correspond to the principal compressive stress cr2 and the principal tensile
stress cTj, respectively, and the angle between the beam axis and the principal compressive stress
direction is a.

By assuming that the above compressive and tensile stresses act in web concrete and the crack
direction a is 45 degrees, a RC beam, which can be considered a continuum, may be modeled as
an assembly of truss members. The configuration of the lattice model is shown in Figure 2, and
the components of the model are treated as follows. The concrete portion is modeled into flexural
compressive and tensile members, diagonal compressive and tensile members, and an arch member.
The reinforcement is modeled into horizontal and vertical members. The lattice model differs from
the traditional truss model in that it includes the diagonal concrete tensile members and an arch
member. The diagonal concrete tensile members make it possible to express shear-resisting
behavior before and after diagonal cracking. Moreover, by incorporating an arch member, it is
possible to express the redistribution of stresses in each member after yielding of the shear
reinforcement while the angle of the diagonal members remains 45 degrees. The arch member, as
shown by the thick line in Figure 2, is arranged along the line of internal compressive force. In the
case shown in Figure 2, the arch member is a long member connecting the loading point with the
support point. This is based on the assumption that the plane stress condition may be violated, as
well as on consideration of the range affected by the stirrups in the web concrete. In fact, the
deformation of an arch member may not occur independently of truss members, but it can be
considered that the stress field will experience a far from plane stress condition that is normally
assumed to form in a beam. A further significance of the arch member is that lattice model
analysis implicitly becomes three dimensional although it is actually a two-dimensional model.

2.2 Cross Section of Lattice Model

Figure 3 shows a cross section through a RC beam in the lattice model. The web concrete of the
lattice model is divided into truss and arch parts, and the widths of each part are determined to be
&(l-f) and bt, respectively, when the ratio of the arch member's width to the beam width (&) is
t(o<t<i).

2.3 Determination of t

The only parameterto be determined in the lattice model is t. The value of t can be determined
by using the principle Of minimum potential energy. According to this theory, when a memberis in
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an elastic state, the real displacement among kinematically permissible displacements minimizes the
total potential energy. In order to obtain the maximum stiffness of the RC structure in the initial
state, the total potential energy 0i(t) is calculated by changing the value of t in small increments
from 0.01 to 0.99. The optimum / value can then be determined from Eq. (1) based on the
principle of minimum potential energy.

djr(Q

at
' 0 (1)

It is obvious that if the deformation of a structure progresses and non-linearity of the material
appears, the optimum value of t also varies as the potential energy changes. Therefore in this
study, the above-described method was used as a first approximation of t. Generally, the value of
t was found to be about 0.3~0.8 for shear members, while for flexural members t<0.3 was
obtained empirically.

2.4 Definition of Cross-Sectional Area for Lattice Model Members

The cross-sectional area of lattice members is determined as follows. Since the height of the
lattice model is taken to be equal to the effective depth (d) of the beam, the height of a set of
X-shaped truss members becomes d/2 and the height of the arch member is d. By this model,
the thickness of the diagonal members as seen from the beam side is equal to rf/2-sin45° and the
thickness of the arch member is d-siad, where 6 is the angle of the arch member (see Figure 2).
The cross-sectional area of the flexural compressive part is obtained by multiplying the depth of the
compressive concrete in the ultimate state, x, by thebeam width, b, where x= (AS à"f )/(o.68/c -b}-
And the cross-sectional area of the flexural tensile zone is assumed to be the value obtained by
multiplying twice the cover depth by b. Analytical results demonstrate that these assumptions of
the thickness of flexural compressive and tensile members do not affect the magnitude of shear
capacity obtained from the calculation [5]. The areas of longitudinal reinforcement and transverse
reinforcement are determined so that the longitudinal and transverse reinforcement ratios of the
lattice model and the test specimens are identical.

2.5 Extension of Lattice Model for Cyclic Loading Analysis

Twomodifications were made to extend the lattice model to the analysis of RC columns subjected to
reversed cyclic loading, while retaining the concept of the original lattice model for monotonic
loading.

1) Considering the symmetry of the structure, the cross-sectional areas of flexural compressive and
flexural tensile members, which are vertical concrete members, were made equal to the
cross-sectional area of the flexural compressive concrete members.
2) On the understanding that the flow of compressive force in a structure is reversed when the
structure is subjected to reversed cyclic loading, arch members were crossed and arranged
symmetrically (see Figure 9).

Assumption 1) is applicable to the analysis of RC columns subjected to cyclic loading. Incidentally,
it is considered that even with this assumption in place, the shear and flexural capacities obtained
from calculation are little affected; in fact, flexural capacity is almost completely determined by the
yield strength and amount of longitudinal reinforcement arranged in the concrete. Regarding the
second assumption, a compressive and tensile arch resisting mechanism operates in the analysis.
Although it is not clear that such a tensile arch resisting mechanism exists in real structures, it is
considered that its presence has little influence on the analytical results because it is a long, flat
concrete member.

2.6 Material Models

The material models for concrete and reinforcement used in this study are described below.
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Figure 4. Stress-Strain Relationship of Concrete for Compression

a) Concrete Model for Compression
When concrete is reinforced with transverse reinforcement for shear, a confining effect may be
expected in the core concrete. In this study, in order to take into account this confinement effect,
the stress-strain relationship proposed by Mander et al. [6] is adopted. Figure 4 shows the
conceptual view of the stress-strain relationship proposed by Mander and the relevant equations.
The nomenclature in Eqs. (2) through (8) is as explained in Figure 4. The value of Ke, which is a
confinement effectiveness coefficient, is equal to 0.75 for a rectangular cross section. The values
pw and f^ are the transverse reinforcement ratio and the yield strength of the transverse

reinforcement, respectively. One of the advantages of this model is that it can be applied to any
cross-sectional shape as well as to any amount of transverse reinforcement. The value ecu, shown
in Figure 4, was determined from the ultimate strain in the transverse reinforcement. However,
since experimental observations did not show any failure of the transverse reinforcement, the value
of ecu was actually not used in this analysis. The model proposed by Manderet al. was originally
used for stresses in the axial direction, but in this study we have applied it to diagonal concrete
members, at 45 degrees to the axial direction.

According to experimental results obtained by Vecchio and Collins, when concrete is subjected to
bi-axial stresses in compression and tension, it exhibits a stress-strain relationship differing from
that in uniaxial compression. They took account of the reduction in compressive strength due to
cracking by using a softening coefficient r\, determined as Eq. (9) [7].

" -%S-0.34(£/aS l'° (9)

where, £0 : Yield strain under uniaxial compression
£ : Tensile strain in tensile member perpendicular to each compressive member

In this study, when a diagonal concrete member is under compressive stress, a stress-strain
relationship that combines these two models is assumed. The value of the softening coefficient is
assumed to vary from a maximumof 1.0 to a minimum of 0.1. Actually, it is unrealistic to assume
that the concrete strength might decrease by up to 10%. But in this study, when the amount of
transverse reinforcement is not very great, the degree of deterioration in concrete strength due to
cyclic loading can be easily evaluated using these values.

A flexural concrete member under compressive stress is assumed to be the following stress-strain
relationship:

/'C {*c/£o)-(*C/So)2}
(10)

where, £c : Compressive strain in each compressive member
/'c ; Compressive strength of concrete
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Along the unloading path, the stress is assumed to decrease with an initial gradient. On the other
hand, along the reloading path, the stress is assumed to increase to the maximum stress-strain state
in the previous strain history. It is also assumed that concrete has no tensile stress in the
compressive strain region.

b) Tension Stiffening Model
When flexural concrete members are subjected to tensile force, a tension stiffening effect can be
expected because of the bond effect between concrete and reinforcement. In this study, a
tension-stiffening model (Figure 5) proposed by Okamura et al. [3] is adopted. This model
represents the average stress-strain relationship, and as a result of the bond effect, the tensile stress
in concrete does not suddenly drop to zero after cracking. It is assumed that the stress changes
linearly upon cracking, while after cracking the tensile stress follows a descending branch, which
can be determined by Eq. (ll).

0, =/rO,/£)
0.4

(ll)

where, ft is the tensile strength of the concrete. The strain (£cr) at which a crack starts to develop
is assumed to be 0.0001. Unloading loops are assumed as the stress and strain return to the origin
(Figure 5). Reloading loops are assumed in the same manner as the concrete model for
compression.

c) Introduction of Fracture Energy
The diagonal tensile members of the concrete sustain the tensile stress arising from the applied shear
force. Concrete is assumed to be an elastic material before cracking, and the strain (ecr) at which
cracking starts is assumed to be 0.0001. After cracking, the 1/4 tension-softening model [8], which
is widely used in the field of fracture mechanics, is adopted as the tension-softening curve for
concrete. In this study, in order to apply the model to numerical analysis, the crack width (w) is
divided by the length of the concrete diagonal member (L) for conversion into tensile strain.
Consequently, the tensile stress-strain relationship can be obtained and E1, E2 as shown in Figure
6 can be described as follows.

El =ecr +Q.75Gf /Lft

e2 =scr +5.QGF /Lft

(12)

(13)

GF ' fracture energy (N/m)
In this study, the fracture energy is assumed to be lOON/m, which is a commonly used value in this
type of analysis. The parameters 0.75 and 5.0 in Eqs. (12) and (13) are determined using the 1/4
model proposed by Rokugo et al. Unloading loops are assumed as the stress and strain return to the
origin. Reloading loops are assumed in the same manner as in the concrete model for compression.
It is also possible to express the size effect by introducing the concept of fracture energy into the
concrete model.

°lft °lft

0 £<
cr

Figure 5. Tension Stiffening Model Figure 6. Tension Softening Model
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d) Reinforcement Model
The stress-strain relationship of reinforcement is
expressed using a bilinear model in which the tangential
stiffness of the longitudinal reinforcement is 1/1000*E
after yielding and that of transverse reinforcement is
1/100*E (Figure 7). E is Young's modulus. In the
unloading and reloading phases, the stress changes
according to the initial stiffness. The value of 1/100*E
used for transverse reinforcement means that the stress
increases gradually because the yield strength of the
transverse reinforcement is comparatively low and the
behavior after yielding may not be perfectly
elasto-plastic.

Figure 7. Stress- Strain Relationship
of Reinforcement

3. OUTLINE OF EXPERIMENTS AND NUMERICAL ANALYSIS

3.1 Characteristics of Specimens

The experiments were carried out by Puri et al. [9]. The characteristics of the RC column
specimens subjected to analysis are shown in Table 1 and Figure 8. The column is a type of
cantilever beam and has a relatively small section, 140mmx140mm. The compressive strength of
the concrete is approximately f'
c=25MPa. Deformed bars (diameter: 10mm; nominalcross-sectional area: 78.5mm2; yield strength: 400MPa) act as longitudinal reinforcement in the four
corners of the cross section. For transverse reinforcement, round bars (diameter: 4mm; nominal
cross-sectional area: 12.5mm2; yield strength: 280MPa) are used. Effective depth is 115mm. The
ratio of shear span to effective depth is 4.35 and in the experiments these columns were subjected to
cyclic loading in the absence of axial force. Three cycles of loading were applied at each
displacement level (*6y,±26y,±36y---, 5y; yield displacement). The influence of pull-out of the
longitudinal reinforcement is difficult to take into account. However, it is considered negligible,
since significant reinforcement is present in the footing.  The six specimens have different
arrangements of transverse reinforcement to vary the transverse reinforcement ratio from 0.06% to
0.51%. All specimens were designed to fail in shear mode after yielding.

3.2 Lattice Modeling of Specimens

The lattice model used to analyze the specimens, which are illustrated in Figure 8, is shown in
Figure 9. The role of each truss member is given for the case of a horizontal force applied from
the upper left of the model. The arch members cross each other to model cyclic loading. The

Table 1. Outline of Column Soecimens

1 4

15

p

1 5

p

 S e ctio n

5 0

2 .5

5 2 .52 .5 14D 1 4

A A

�"I�"�"I�"I�"I�"I
25�"I�"�"I�"I�"I�"

Hifc.__ _ _ 9 0 4 0
i (cm )

S p e c im e n r s J w y
4 , / ｫ ' / , 4

N o . % c m M P a  2
c m M P a M P a  2

c m

p m l 0 .0 6 2 8 .5 0 2 8 0 0 .2 5 2 3 .9 4 0 0 1 .5 7

p m 2 0 . 1 3 1 4 .0 0 2 8 0 0 .2 5 2 6 .0 4 0 0 1 .5 7

p m 3 0 . 1 9 9 .5 0 2 8 0 0 .2 5 2 5 .0 4 0 0 1 .5 7

p m 4 0 .2 6 7 .0 0 2 8 0 0 .2 5 2 5 .0 4 0 0 1 .5 7

p m 5 0 .3 2 5 .5 0 2 8 0 0 .2 5 2 5 .5 4 0 0 1 .5 7

p m 6 0 .5 1 3 .5 0 2 8 0 0 .2 5 2 5 .6 4 0 0 1 .5 7

y w: stirrup ratio fc ': concrete compressive strength
s : spacing of stirrup fy : yield strength of longitudinal bar

A»: area of one stirrup A, 'à"area of longitudinal bar
f^ : yield strength of stirrup

Figure 8. Specimen Dimensions
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Figure 9. Lattice Model
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Figure 10. Variation of ft' value

arch members bridge the loading point and the support point in this loading state. In a different
loading state, an arch member would need to be provided parallel to the line of internal compressive
force.

In the lattice model, since the horizontal spacing of longitudinal flexural members is designed to
accord with the effective depth d and the crack direction is assumed to be 45 degrees, the vertical
interval of X-shaped diagonal truss members corresponds to 0.5d , as shown in Figure 9.
Therefore, the shear span of the lattice model is not necessarily equal to that of the specimens.
That is the analysis was conducted using a lattice model with a shear span a/d equal to 4.5 to
reflect the test specimens (a/d=0.35). In addition, there is a difference in the spacing of
transverse reinforcement between the actual structure and the lattice model. In the analysis,
however, the cross-sectional areas of transverse reinforcement were adjusted such that the transverse
reinforcement ratios matched. The effect of longitudinal reinforcement pull-out was not considered
in this analysis, as already noted.

3.3 t Value forAnalysis

A preliminary analysis was carried out to determine the optimum t value, the ratio of arch member
width to cross section, by elastic analysis. The potential energy of the lattice model was calculated
under infinitesimal loading for t values from 0.01 to 0.99 and the optimum t value determined
according to the principle of minimum potential energy. The resulting t values are shown in
Figure 10. As can be seen, the t value tends to decrease as the transverse reinforcement ratio
increases due to the fact that flexural deformation of the columns increases as more transverse
reinforcement is added.

3.4 Numerical Calculation Program

The lattice model, as extended for use in cyclic stress situations, was used for incremental
calculation using the obtained t values by implementing the displacement control method. The
modified Newton-Raphson method was used for the iteration procedure until the ratio of unbalanced
force to the equivalent nodal force stood at 0.1% or less.

4. RESULTS OF ANALYSIS
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4.1 Comparison between Experimental and Analytical Results

The load-displacement relationships for each specimen are shown in Figure ll. The test results are
plotted as enveloping the load-displacement relationship, while the lines show the analytical results
obtained with the cyclic lattice model. The maximum displacement in the test results corresponds
to the displacement where the loading capacity decreases suddenly during cyclic loading. Before
this displacement was reached after yielding, test specimens suffered spalling of the cover concrete,
large diagonal cracks, and crushing of concrete in the column base region. The maximum
displacement in the analytical results corresponds to the displacement where the loading capacity
could not be maintained due to crushing of diagonal concrete members in the column base region
after yielding.

Analytical results are all in good agreement with test results except for the case of specimen pml
and the lattice model is able to model the tendency of plastic deformation to increase with transverse
reinforcement ratio. The reason for failure to evaluate the actual behavior ofpml may be the
following. In the analysis, only the effect of transverse reinforcement ratio on the plastic
deformation of the member was taken into account, while the effects of actual spacing of the
transverse reinforcement arrangement were not considered. In the lattice model, the transverse
reinforcement was arranged uniformly at a spacing of d/2 so that the transverse reinforcement
ratio of lattice model was equal to that of test specimens. Thus, in specimen pml with a low
transverse reinforcement ratio, the cross-sectional area of the transverse reinforcement members in
the lattice model was very small, at 0.05cm2. This assumption of the lattice model may be
inappropriate for analysis of thepml case. In the analysis, diagonal cracking occurred before and
after yielding of the longitudinal reinforcement in the column base region just as in the experiments.
In the experiment, the transverse reinforcement (cross-sectional area: 0.25cm2) arranged in the
column base region was expected to be able to prevent the progress of this diagonal cracking. On
the other hand, in the analysis, the transverse reinforcing members were unable to prevent the
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progress of this diagonal cracking, diagonal cracking progressed rapidly, and loading capacity
decreased very quickly.

As a result of this, another monotonic analysis was conducted for specimenpml only. Rather than
arranging the transverse reinforcing members uniformly, they were arranged at their actual spacing.
The load-displacement relationship obtained from this monotonic analysis is shown in Figure 12.
This figure shows that the energy absorption in the member increases depending on the arrangement
of transverse reinforcement, even for an identical transverse reinforcement ratio. Further, it is
conjectured that plastic deformation of the member improves when it is subjected to monotonic
loading.

4.2 Internal Resisting Mechanism of Specimens

The internal resisting mechanism of RC columns subjected to cyclic loading was evaluated by
checking the variation in average stress at a specific member section. In order to calculate the
average stress, stresses in the diagonal tensile and compressive members, transverse reinforcement,
and arch member (as shown by the thick solid line in Figure 13), were used. Figure 14 shows the
relationships between average stress in the lattice model members and displacement at the loading
point. The line in Figure 14 envelops the variation in average stress under cyclic loading. Since
specimenspml~pm3 andpm4~pm6 tended to exhibit similar resisting mechanisms, the results for
pm3 andpm5 are shown as representatives of the respective groups. The commonfeatures of the
internal resisting behavior in all specimens are discussed as follows. As Figure 14 shows, the
average stress in diagonal tensile members suddenly decreases after diagonal cracking. On the
other hand, the average stress in the transverse reinforcement and diagonal compressive member
increases as the external force is resisted once diagonal cracking takes place. The average stress in
transverse reinforcement members takes the form of compression before the occurrence of the
diagonal cracking, a feature also observed in the experiments. It may be considered that the reason
for this compressive stress before cracking is the stress intensity around the loading point and
supporting point. The horizontal force becomes almost constant due to yielding of longitudinal
reinforcement and the average stresses in the transverse reinforcement and the diagonal compressive
member also become constant.

In specimens pml~pm3, the stress in the arch member increased even after yielding of the
longitudinal reinforcement, ultimately exhibiting strain softening behavior. However, the
increase in stress in the arch member was canceled out by the decrease in average stress in the
diagonal tensile members. The ratio of arch width to cross-sectional width is less than 20%, so the
contribution of the arch member to the shear resisting mechanism can be neglected in this case. In
specimens pm4^pm6, the increase in stress in the arch member is small because the shear strength
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of the cross section increases, and it was observed that the influence of the arch member on the load
resisting mechanism tends to decrease gradually.

It is also found in Figure 14 that differences in the amount of transverse reinforcement greatly affect
the internal behavior. In the case of specimen pm3, the average stress in the diagonal tensile
members suddenly decreases at one point due to the occurrence of diagonal cracking. Thereafter,
as deformation progresses, the average stress in the diagonal tensile members recovers. On the
other hand, in specimen pm5, the average stress in the diagonal tensile members also decreases
suddenly due to the occurrence of diagonal cracking, but it never recovers. The meaning of this
stress behavior in diagonal tensile members can be explained as follows. In specimenpm3, initial
diagonal cracking did not occur throughout the section where the average stress was calculated, but
took place just like localization in the column base region. In addition, along with diagonal
cracking in the column base region, stress unloading can be observed in the diagonal tensile
members surrounding the crack region. Consequently, the average stress decreases suddenly at one
point. Thereafter, as deformation progresses, cracks become more and more localized while the
stresses in the diagonal members around the localized crack recover to resist the horizontal load.
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On the other hand, in specimenpm5, the transverse
reinforcement is sufficient to disperse diagonal
cracking widely over the section where the average
stress was calculated. Thus, the average stress in
the diagonal members decreases and never recovers.
This leads to the conclusion that in the case ofpml
~~pm3,where the transverse reinforcement was
insufficient, diagonal cracking tended to be
localized, while in the case of pm4~pm6 with
sufficient transverse reinforcement, it tended to be
dispersed. These results are in good agreement
with the experiments, so it is considered that the
newcyclic lattice model is able to properly evaluate
the internal behavior of RC columns. In addition,
it is inferred that the transverse reinforcement
members and diagonal compressive members in
specimen pm3 did not operate effectively due to the
localization of diagonal cracking.

4.3 Failure Component of Specimens
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The failure mode of all specimens, as predicted by
the cyclic lattice model analysis, was an increase in
plastic deformation after yielding of the
longitudinal reinforcement. Ultimately, the
specimens failed when the diagonal concrete
member provided in the column base region to
sustain compression fails to work effectively due to crack propagation. In other words, since the
compressive strength of the diagonal concrete members decreases due to crack extension (so-called
compression-softening behavior), plastic deformation increased in the column base region and this
led to specimen failure. As observed in the analysis, this phenomenon means that the diagonal
cracks go through the specimens. This failure mode is correctly by the analysis and matches the
experimental observations.

Figure 15 shows which members were the main factors leading to ultimate failure. In this analysis,
the model proposed by Vecchio et al. [7] was introduced and used to describe the
compression-softening behavior of concrete. This gives the degradation in compressive strength of
concrete in the diagonal compressive member due to increasing tensile strain in the diagonal tensile
member (which is perpendicular to the diagonal compressive member). The first diagonal crack, as
predicted by the lattice model, occurred to the left of the column base region (Figure 15). In
specimens pml~pm3, the propagation of this crack was not prevented by the transverse
reinforcement. Consequently, compression-softening behavior progressed rapidly in the diagonal
compressive member provided at the left column base region, and once the compressive strain
reached the strain-softening range, the stress dropped significantly. This caused total failure of the
members. But for specimens pm4~~pm6, the propagation of the initially formed crack was
prevented by sufficient transverse reinforcement. Thus, it was confirmed that higher stress and
more effective resistance to horizontal force was brought to diagonal compressive members as the
amount of transverse reinforcement increased from pm4 to pm6, even after the compressive strain
reached the strain-softening range. Finally, the progress of strain-softening behavior in the
diagonal compressive member provided to the left of the column base region (Figure 15) led to total
failure of the members.

4.4 Relationship between Amount of Transverse Reinforcement and Plastic Deformation

Figure 16 shows the relationship between transverse reinforcement ratio and ultimate displacement
(<5U) obtained through experiment and the lattice model analysis. As this figure shows, the cyclic
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lattice model analysis correctly evaluates the changes in plastic deformation with respect to
transverse reinforcement ratio. Further, as mentioned in 4-(2) and 4-(3), it is confirmed that lattice
model analysis can also evaluate the effect of variations in transverse reinforcement ratio on crack
pattern and internal behavior at the failure point. Thus, in spite of the cyclic lattice model being a
simplified method, it can correctly evaluate the influence of transverse reinforcement ratio on the
plastic deformability of RC columns under cyclic loading.

5. CONCLUSIONS

In this study, the effects of transverse reinforcement ratio on the plastic deformability of RC
columns subjected to cyclic loading were evaluated. The following four major conclusions were
reached:

(1) It was found that the behavior of RC columns under cyclic loading could be modeled to good
accuracy by extending the monotonic lattice model to a cyclic stress field and using non-linear
stress-strain relationships taking into account the cracking and confining effect of concrete.

(2) By observing the average stress variations in the structural members of the lattice model, it was
confirmed that the lattice model analysis was able to evaluate the effect of differences in transverse
reinforcement ratio on the cracking pattern and internal behavior.

(3) It is possible to predict the failure mode of RC members by checking the stress-strain
relationships of members in the lattice model.

(4) Cyclic lattice model analysis can evaluate effectively the influence of transverse reinforcement
ratio on the plastic deformability of RC columns subjected to cyclic loading.
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