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This paper presents a three-dimensional (3D) constitutive model for non-linear finite
element (FE) analysis of reinforced concrete with special attention to cracked concrete.
Post-cracking formulations derived from uni-axial tension are generalized into spatially
arbitrarily inclined cracks in multiple directions. Anisotropic concrete tension fracturing and
reinforcement mean yield levels of the spatially averaged RC model in association with a 3D
RC-zoning concept are discussed. The proposed model is verified by numerically simulating
inherently 3D shear failure ofRC members subjected to torsion and RC short columns loaded
in multi-directional shear.
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1. INTRODUCTION
With continuing computer hardware development and with new findings in materials research,
the finite element method is finding application in the simulation of experiments and the
prediction of structural safety and serviceability of reinforced concrete in general. Almost
three decades of worldwide research effort have led to the development of elaborate
constitutive models of reinforced concrete for in-plane structures. At the same time, only a
few applications involving full 3D modeling of structural geometry, stress states, and
loading patterns have emerged in the literature.

In this paper, 3D constitutive models of reinforced concrete with special attention to post
cracking formulations are introduced. In 20-reduced analysis, element-wise quasi-isotropic
cracked reinforced concrete formulations may be reasonable to some extent since crack
orientation can only be directed in the plane. In the more generic approach of full 3D,
however, stress and strain fields are modeled as is, and anisotropy of the spatially averaged
RC-model is encountered. This is because cracks with any discretionary inclination are
allowed in the 3D space whilst the full bonding effect can be assumed only in the
direction(s) of reinforcing bar(s). Consequently, the post-cracking response based on the
smeared modeling concept, derived from uni-axial tension, must be extended to the more
generic situation of spatially arbitrary crack inclinations with respect to the reinforcement,
as may be encountered in reinforced concrete subjected to non-trivial loading.

For verification of the proposed 3D constitutive relations, plain and reinforced concrete
members in torsion and short RC columns under multi-lateral loading in shear were selected
for experiments. The load-bearing mechanism becomes inherently three-dimensional in these
cases, and the problem cannot be solved by 2D analysis. In fact, most reinforced concrete
structures are subjected to complex loading patterns over their lifetimes. Short columns
serving highway bridges, for example, are exposed to axial loading and combined uni-axial
shear and flexure under service conditions, and this is a standard 2D problem. However, in
the case of earthquake or accidental impact, such columns have to sustain multi-directional
shear and/or torsion. As a result, it is necessary not only to understand but also to
numerically simulate the complex behavior
of RC structures under non-proportional
multi-lateral loading patterns (see Fig.l). In
part, this is to meet the needs of the
performance-based design philosophy of
next-generation structural codes, which
require engineers to check specified limit
states and guarantee quality to the public.
Here, especially, structures have to be
checked for seismic or accidental loading in
reasonable consistency with material and
structural mechanics, and a versatile
computational tool that can examine Fig.l ShortRC-columnsubjectedto
structural performance is required. non-proportional multi-directional

2. RC-BRICK ELEMENTS

2.1 General concept

Reinforced concrete is idealized as a composite material consisting of concrete with
reinforcement superimposed on it. By combining the constitutive laws of average stress and
average strain for concrete and reinforcement^, respectively, an RC brick element has been
constructed. In the FE computations, isoparametric brick elements with 20 nodes are used for
reinforced concrete. Concrete is, according to its state, Computed by routines for un-cracked
or cracked concrete in the structural analysis frame (see Fig.2). The generation of cracks is
the branch point into strong anisotropic nonlinearity and, at the same time, it marks the
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switch in concrete models according the proposed analysis concept. Crack initiation is
determined by a simple Rankine criterion. Realizing that damage accumulation in concrete
subjected to compression and tension prior to cracking is basically of a blunt non-local
continuum nature, while post-cracking behavior can be thought of as a highly localized
process, the separate treatment of un-cracked and cracked concrete seems to be reasonable.
The phenomenon of post-peak compression softening remains un-addressed and external to
the present framework; it forms a challenging topic of further research.

2.2 Extended elasto-plastic and continuum fracture model for un-cracked concrete

In the pre-cracking range, the triaxial elasto-plastic and continuum damage/fracturing (EPF)
model for concrete25 is employed. The mechanical behavior of the concrete is idealized as
combined plasticity and continuum fracturing, which identify induced permanent
deformations and the loss of elastic energy absorption capacity, respectively. The model,
which was originally developed for full triaxial compression, has recently been extended to
the whole of 3D-space, covering the tension domain of pre-cracked concrete35 as shown in
Fig.2.

2.3 3D multi-directional smeared crack model

The introduction of cracks in concrete marks the transition from an idealised 3D continuum,
as treated by the EPF-model, into a highly anisotropic medium. Owing to crack stress release,
the SD-confinement effect may be assumed to be much reduced for cracked concrete. Noting
this inherent breakdown of 3D continuity, the smeared crack model in of three dimensions
based on a cracked concrete in-plane constitutive law under cyclic forces was been proposed
by Maekawa et al.4). After closure of pre-cracking under load reversals, the constitutive
model is switched back to the elasto-plastic and continuum fracture model of un-cracked
concrete, and the tri-axial confinement effect on concrete in compression is considered
again.

An orthogonal Cartesian co-ordinate
system is assumed, whose principal axis
(1) is normal to the initially introduced
crack plane and the remaining axes (2 and
3) are placed within the first crack
reference plane. Here, we can define
two-dimensional sub-spaces designated by
axes (1, 2), (2, 3), and (1, 3) as shownin
Fig.3. The initial crack would be
contained in the (1, 2) and (1, 3) planes,
while plane (2, 3) coincides with the plane
of the initial crack. Any further crack
would then be completely within the fixed
two-dimensional sub-spaces determined by
the initial crack.
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Fig.2 Generic concrete models for complete

Now, the partial stresses rooted in the crack projection on (i, j) can be computed by using
the in-plane RC constitutive law accompanying multi-directional cracking. Let 0^k'l) denote
the reduced component stress computed from mean strain on the (k, 1) sub-space. When we
simply assume the total load carrying mechanism as being composed of partial stresses in the
three sub-spaces, we have,

ffa=^E
0

^°"?'*) fer Ut-ivt) (la)
^k*i

I = (U) f , ^ (lb)ij l'"7 '7 V£rf \s,t-ivk )
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Fig.3 Re-composition of load carrying mechanism of 3D cracked concrete solids with multi-directional
cracking

where the in-plane membrane constitutive equation is used to compute component stress
aij(k>l) from sub-space strains as est(s>e v k,n-

For computation of 2D sub-space component stresses, the newly proposed four-way fixed
crack model of Fukuura and Maekawa5) is utilised. The model considers up to nine fictitious
cracks at each integration point in the scheme of 3D smeared crack idealisation. The in-plane
smeared crack model is composed of a tension stiffening model across cracks, a compression
stiffening/softening model parallel to cracks, and shear transfer model along cracks, as
described in Okamura and Maekawa15. The scheme of the four-way fixed crack model, as
well as the management of active and dormant cracks and their verifications, are given in the
literature by Fukuura and Maekawa5\

2.4 Distributed reinforcement

In the three-dimensional modeling of RC-structures, modeling of smeared and distributed
reinforcing bars in space is thought to offer advantages, over detailed structural modeling
since it does not require any additional nodes or elements as would be necessary for discrete
or embedded representations. Hence, it simplifies the generation of 3D reinforced concrete
meshes. Furthermore, if a discrete reinforcing bar model were to be chosen, much finer finite
elements would have to be allocated to numerically simulate localized yielding of
reinforcement close to crack planes.

In contrast, the smeared reinforcement model can take into account the localized plasticity in
a finite element by adapting a spatially averaged constitutive law of steel embedded in
concrete with bond interaction. Then, for reinforcement orthogonally arranged in space,
numerical representation without dowel shear stiffness had been adopted. In the smeared
approach, localization of initial steel plasticity close to cracks and local bond slip effects are
considered in computing the mean stress-strain relation based on the local bond-slip-strain
behaviour^.

3. SPATIALLY ANISOTROPIC POST-CRACKING RESPONSE

3.1 Effective embedment (RC) zone
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In 3D finite element computations of actual scale reinforced concrete structures, the number
of finite elements is limited due to restricted computational power. For engineering purposes,
larger elements are likely to be employed. Within the volume of the finite element domain,
both primary and secondary cracks may develop (Fig.4), whilst concrete between cracks can
still sustain tensile stresses transferred through bond action from the reinforcement. Hence,
spatially average stress - average strain relations1' representing the mean behaviour of the
element volume have been developed and are widely used.

If we could allocate many smaller elements, such that all local cracks as well as un-cracked
concrete between primary cracks could be separately identified, no average-based concrete
and reinforcement models would be necessary. In such a case, of course, no tension
stiffening or RC-zoning needs to be considered, since the contribution of concrete between
cracks is intrinsically considered.

However, as noted above, such a fine FE mesh cannot be analysed for RC structures of
engineering interest within reasonable time considering available computer technology. Thus,
for 3D finite elements of some finite volume, a so-called zoning concept 8) is necessary to
correctly handle distinct average constitutive laws of concrete to close to and far from
reinforcement and to consider spatial orientations of the bonding effect on concrete.

As a matter of fact, bonding is an inherently 3D problem given the conical shape of
secondary cracking (Fig.4), which cannot be treated physically consistently in the 2D realm.
Strictly speaking, any 2D approach65 that omits tension stiffening formulations and uses a
large number of small elements instead is inconsistent. In that case, secondary bond cracks,
once generated, can propagate progressively since the crack front is just a point. In reality,
secondary bond cracks may propagate in a conical shape and the circular crack front enlarges
as the crack ligament develops. Here, cracking cannot be progressive; rather because of the
enlarging crack front, propagation eventually comes to a half.

The tension stiffening model for reinforced concrete, as mentioned in the previous section as
an essential part of the average-based cracked concrete routine, was derived from uni-axial
tension tests 7). In these tests, tensile strain was nearly uniformly distributed over the section
and the reinforcement ratio was above the minimum one. In this case, cracks form only
normal to the reinforcement and the softening behavior of the concrete volume as a whole is
controlled by the reinforcement. In actual reinforced concrete structures, however, strain
gradients and reinforcement ratios below the critical level may be found, and cracks may not
always form normal to the reinforcing bars. Consequently, concrete close to the
reinforcement may, due to the bonding effect, stiffen in a similar way as observed in the
uni-axial tension tests, while concrete far away from the reinforcement behaves as brittle
plain concrete8'.

Gupta and Tanabe9) raised the question of
whether tension-stiffening diagrams
obtained from uni-axial tension tests could
be applied to the general loading of RC
structures exhibiting strain gradients.
Barzegar and MaddipudiIO) presented a
solution for this problem by selecting
distinct fracture energies for different
plain and reinforced concrete structures,
which might reflect the average behavior
of the structure. For an un-reinforced
specimen, the specified fracture energy is
in the common range of concrete. For
reinforced concrete members, on the other
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Fig.4 Formation of cracks in finite element
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hand, an isotropic tension stiffening effect is implicitly considered by allocating larger
fracture energy values. Then, depending on the reinforcement arrangement and the expected
strain gradient, a kind of fracture energy could be decided, which would be a structural
rather than a material property. However, no information is given ash how the fracture
energy would be determined for different RC structures or whether it can be clearly
determined or is just a mere fitting parameter.

The above discussion makes clear that some sort of more rational method is desirable. This
would allow us to determine the volume of concrete to which bonding extends, for which
softening behavior is controlled by the reinforcement through bond action and which must be
distinguished from plain concrete because of its evident tension stiffening characteristics.
Such a zone might be called the effective embedment or RCzone8). A simple engineering
method of determining the RC zone in 2D problems based on a single-bar equilibrium
condition as shown in Fig.5 has been proposed by An et al.8). The RC zone for a single
reinforcing bar is determined from the condition that the tensile force carried by the RC zone
concrete just prior to cracking must be equal to the yield force which the reinforcing bar can
support at maximumthrough the bond mechanism after cracking. This is formulated as8)

J\ 0I-'

A.. -f..

(2)

where, ARC is the maximum area of the
bond effect zone in concrete, As, is the area
of the steel bar, ft is concrete tensile strength,
and fy is yielding strength of the steel bar
(Fig.5). Or, in other words, the
reinforcement ratio of the RC zone is
assumed equal to the critical reinforcement
ratio, ft/fy. Overlapping RC zones associated
with neighboring reinforcing bars are not
additionally accounted for, and neither are
parts of the RC zone that fall outside the
structure boundary, as illustrated in Fig.5.

As originally proposed, this 2D RC-zoning
method8) does not account for the directional
features of the bond effect on concrete.
Finite elements found to be within the
effective embedment zone of a reinforcing
bar are designated as isotropic tension
stiffening. For a simple arrangement of
reinforcement and a load pattern that chiefly
generates cracks perpendicular to the
reinforcement, this assumption may lead to
good results.

To overcome this restriction by adapting a
more versatile RC-zoning concept, an
imaginary three-directional, orthogonal
reinforcement system is introduced. In each
of the respective directions, the RC-zoning
method is applied independently. Then, if
none of those three directions of a control
volume contains reinforcement, isotropic
plain concrete is assumed, while all three
directions containing reinforcement would
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represent isotropic reinforced concrete. Any other combination, however, would lead to an
anisotropic reinforced/plain concrete behavior of the respective finite elements in the control
volume (Fig.6).

It had been found that for deep structural members, such as beams or columns, the influence
of splitting cracks on bonding and tension stiffening is negligible, even if the concrete cover
is deficient on one sidell'. This is because of the confinement of the surrounding concrete
and possible hoop reinforcementll'. Consequently, in this study, no reduction of the RC zone
to account for insufficient concrete cover is made for simplicity.

3.2 Anisotropic tension fracture

The post cracking concrete tension model was proposed by Okamura and Maekawa1' as

<7t = ft0u/£tJ (3)

where "c" is a parameter describing the inclination of the descending envelope curve and etu
is the cracking strain.(see Fig.7).

For plain concrete softening, in order to avoid spurious mesh dependence, the softening
parameter in Eq.(3) has to be defined by means of an energy, based fracture mechanics
requirement8'. According to the crack band theory12', plain concrete softening can be
determined from the fracture energy in association with the reference length of smeared
crack elements (Fig.8). In the present post-cracking tension model, the softening parameter
denoted by "c" is obtained by satisfying

latdst = Gf/lr (4)

where, G/; lr are the fracture energy of concrete and the reference length on which the
average softening stress-strain relation is defined. Simple a priori methods for determining lr
using the square root of element area8' or volume are, strictly speaking, restricted to
regular meshes with cracks running mostly parallel to the mesh peripheral lines.

However, for the general case of rectangular solid elements with inclined cracks, a more
precise estimation seems desirable. In this research, tension softening is determined in each
global direction, respectively, by taking the corresponding element dimension as the
reference length (Fig.8). For cracks not running parallel to one of the element faces, an
interpolation scheme based on normalized fracture energy Gf* is described in the following
section.

a,/f,

Cracking (£lu ,f| )

1 000 2000 3000 4000

TensileStrain (micro) £ t

Fig.7 Tension model for plain and reinforced
concrete1* Fig.8 Crack band theory for smeared modeling of

concrete tension fracture in 2D and 3D
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The tension stiffness model for reinforced
concrete has the same mathematical form as
the softening model1*. In the case of RC,
softening factor c in Eq.(3) has been verified
as constant (0.4 for deformed bars) and
independent of finite element size, provided
that the reinforcement ratio of the volume
concerned is higher than the critical
reinforcement ratio15. With respect to the
RC-zoning method previously described, this
condition is always fulfilled.

The different softening/stiffening behaviour
of plain and reinforced concrete and the
zoning method have been introduced in
general. Now, their interaction in 3D
applications will be discussed. A crack
generated in a concrete control volume may
have any arbitrary inclination in space. If
such a crack is located in the plain concrete
zone, the softening behaviour differs with
crack orientation and element geometry. For a
control volume containing reinforcement in
one or several directions the average
softening/stiffening behaviour depends
furthermore on the crack inclination relative
to the bar. A cracked concrete normal to the
reinforcement will exhibit stiffening due to
bond development while another parallel
crack without any intersection with the steel
would see softening. Consequently, a crack
which is neither parallel nor normal to a
reinforcing bar but arbitrarily inclined must
result in mixed softening/stiffening behavior,
as shown in Fig.9. It might be opportune to
call this dependency of reinforced concrete
post-cracking behaviour on crack orientation
with respect to reinforcement "anisotropic
softening".

Firstly, applying RC zoning in all three
directions of the reinforcement system
defines distinct softening and stiffening
characteristics in an orthogonal system. For
randomly inclined cracks, the softening
behavior must be interpolated. Since the
relationship between the softening parameter
and fracture energy is highly nonlinear,
parameter "c" cannot be extracted by mere
interpolation. Non-dimensional fracture
energy, normalized by tension strength and
reference length, can be used instead. It is
defined as

Mixed behaviour
G /(2) {Gf 0.2, 0 Gf(n) {Gf(\\ Gf0),* }

=>c(n)orc(6)

Softening parameter c(1). c(2) according to Re- bar
arrangement

Normalised Fracture Energy Gf*
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of fracture energy
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Fig.9 Fracture energy-based interpolation
scheme of softening parameter for
inclined cracks
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By substituting Eq.(3) into Eq.(5) and executing the integration, we have
0-C

G

£,.

/'

c-1
+

r- (6)

where, e,e denotes the ultimate tensile strain used as the integration limit. Then, G/* for
plain concrete can be computed based on fracture mechanical requirement Eq.(5) and for
reinforced concrete based on the empirical stiffening parameter in Eq.(6).

Here, the normalized fracture energy defined in the orthogonal system has to be interpolated.
As a slight deviation of the crack from the bar direction would not cause much reduction of
fracture energy, a 2nd order interpolation is proposed as a simple mechanical model. An
in-plane simplified situation as illustrated in Fig.9 would lead to
       n

j <00»

          f.   nf+nj

where, n} and n2 are the components of the crack normal unit vector n. If we introduce the
directional angle 6 of the crack normal relative to the reinforcing bar, these components are
tij = cos8and n2= sin6and hence, we can write the interpolation as

          G/(6) = cos20 G/*(l) + sin26 G/(2)    (8)

Having computed G/*(0), the softening parameter "c" for an arbitrary angle can be obtained
by inversely solving Eq.(6), as shown in Fig.9. The conforming 3D interpolation is
straightforwardly obtained as !G:(l) +n2G;(2) +n32G:(3)

'

/V"' (0)}G>)=

Distinct tension softening and stiffening characteristics in full 3D space are defined and the
respective information is transferred to the 2D sub-spaces 4) where the softening parameter is
finally utilised in Eq.(3) for post-cracking tension analysis1*.

3.3 Anisotropic shear transfer model

Since the generation of cracks in concrete is determined by the maximum principal stress
criterion, shear stress and strains are zero on the crack plane normal to the maximum
principal stress direction at the moment of cracking. However, as loading proceeds, the
principal axes of stress and strain rotate, and this eventually leads to the introduction of a
new crack. At the same time, the original crack is subjected to shear strain, since it is no
longer normal to the principal direction. Then, with the concept of the fixed crack approach,
shear transfer along the cracks must be addressed1*.

The shear model of cracked concrete used in this study is based on the simplified contact
density model13* in which the rough crack surface is idealized as a large set of contact,units
with various inclinations and distributed according to a contact density function. In each
direction, a contact unit transfers normal and shear stresses, which are formulated by a
rigid-plastic model.

The infinite plastic deformation of contact units is in fact imaginary. Bujadham et al.14)
reported that softening of the shear transfer mechanism was a function of shear displacement
along cracks and introduced a degradation component for use in computing the contact stress.
A simple shear softening concept that adjusts the contact density shear transfer model for FE
computations was been proposed by An et al.8). This involves multiplying the original
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(10)

integral-formed shear transfer model by a decay function (Fig.10) as
r=(G*x)l.O if v<Y,

/X-, \/ / \C .�

T=\uxY}(yl0/y) if yzylt

where, T is the mean shear stress, Y is the mean shear strain, G is the shear secant
modulus according to the contact density model13', YU is the ultimate shear strain at which
softening initiates8) , and c is the softening parameter. The ultimate shear strain was adjusted
to 400 ju for plain concrete and, 4000 ju for reinforced concrete8' and the softening
parameter is, for simplicity and lack of other information, assumed to be the same as used
for tension softening/stiffening8'. It has been shown that the shear failure mechanism of RC
beams and columns can be numerically simulated for 2D problems8' if the distinct
tension/shear softening as stated above is applied to the reinforced and plain concrete zones,
respectively.

In the formulation of the shear decay term
in Eq.(lO), the slope of the descending
branch is altered according to Mode II
fracture energy85. In interaction with the
softening parameter interpolation scheme
for anisotropic tension fracturing, the
assumed softening branch of the shear
transfer model is consistently defined for
cracks at arbitrary inclinations with
respect to the reinforcing bars.

T/ fst

» (YU/vr

Contactdensity13' \ Decay8'
model x function

yu
à"*- Y

Fig.10 Original shear transfer (contact density)

On the contrary, the onset of shear transfer decay denoted by yl0 needs to be defined for the
intermediate case between plain and reinforced concrete. We propose varying the onset of
shear transfer decay yu (ultimate shear strain) depending on the crack inclination in space
relative to the reinforcing bars (Fig.ll) in a similar manner as used for the tension softening
parameter. In the orthogonal reinforcement bar system, yu can be indicated for directions (1),
(2), and (3) according to RC zoning and for the arbitrary crack angle, yu is interpolated as,

x»
<KH(D + n2>1((2) ->X xH(3)

-2AM2
"l T«2

o

+ /lf
"J

(ll)

where n/, n2, and n3 are the components of the crack normal unit vector n. An in-plane
simplified situation is depicted in Fig.ll and Fig.12.
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3.4 Anisotropic embedded reinforcement model

A constitutive law for reinforcing bars in concrete has to be numerically modelled based
both on the properties of the bare bars and on their bonding effect to concrete0. For
reinforcing steel, compressive strains are usually significantly smaller than tensile strains,
preventing reinforcement from excessive yielding in compression before spalling of concrete
cover has occurred. On the tension side, however, highly localised plasticity in the vicinity
of cracks has to be taken into account15. Consequently, the modelling of reinforcement
behaviour in compression and in tension may be different155. In compression, complete strain
compatibility can be assumed, such that the average behaviour and local behaviour of the
reinforcing steel coincide, and a simple bi-linear approximation of bare-bar behaviour
suffices. For tensioned reinforcement, on the other hand, to include the effect of localised
steel plasticity and bonding within the concept of smeared modelling, an average
stress-average strain formulation different from local bare-bar behaviour must be used15. An
essential input parameter for computing the average response of reinforcement is the
effective reinforcement ratio, which is defined as

Peff = AS,/ARC (12)

where, Ast is the area of steel considered to be effectively bonded to concrete in tension and
ARCis the area of the effective embedment (RC) zone of the concrete where the reinforcing
bars can influence crack width (see Fig.5). With respect to reinforcement behaviour, peff
describes the concrete area relative to the bar size which is effective in restraining free
elongation of the steel bar (RC-zone). The larger the effective concrete area (or the smaller
peff) is, the lower the average yield level will be. For direct tension, the average yield stress
of reinforcement embedded in concrete may be computed as16)

fy =fy -^- (13)
** reft

After a lower apparent yield stress is defined, a higher average hardening modulus often
determines the average stress-strain diagram for tensile reinforcement embedded in the
concrete. For the analysis of the most common reinforced concrete structures, such a
bi-linear assumption1* is sufficient since high tensile strains are not encountered due to early
concrete compression failure.

However, in seismic analysis or for steel-encased RC-structures, the strain may reach very
high tensile values leading eventually to a rupture of the tensile reinforcement. In such a
case, bi-linear model would be quite a crude approximation, and may lead to less accurate
results. Thus, the versatile computational model for tensile reinforcement proposed by Salem
and Maekawa16) is implemented as a quattro-linear approximation of the average stress-strain
law up to failure point (Fig. 13).

Experimental work and subsequent mathematical modelling of the average response of steel
bars embedded in concrete has been focusing on pure tension with cracks normal to the
reinforcement7)>16). In a more generic situation, however, cracks cannot be expected to
always form normal to a steel reinforcing bar. Consequently, formulations derived for direct
tension must be revised for application to 2D and 3D computations with arbitrary crack
inclination relative to the reinforcing bars.

In Fig.14, a simplified 2D situation is depicted. As cracks form normal to the reinforcing bar,
the average steel behaviour can be computed according to models derived from direct tension,
e.g. Eq.(13), where the effective reinforcement ratio is obtained from the RC zone. If,
however, cracks are parallel to the reinforcement, a considerable concrete volume that
otherwise could restrain the free elongation of the steel bar may be cut off. In this situation,
bare bar behaviour is assumed for simplicity, although some small concrete volume may still
be attached to the steel. For any other situation with arbitrarily inclined cracks, the steel
response must be between bare-bar and direct tension, as simply illustrated in Fig.14.
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To consider the varying mean yield strength of steel bars embedded in concrete with respect
to crack direction, a 2nd order interpolation between bare-bar (fy) and embedded-bar direct
tension (fy) behavior is introduced (see Fig.16). In each respective reinforcing direction (f),
the effective mean yield strength f ff may be computed with respect to crack direction as

fy,eff(0 = fy(0 - &y(0 -fy(0}«- (14)

where n,- is the component of the crack normal unit vector n in the bar direction (i), and
fy(0 is the mean yield strength of a reinforcing bar (i) if normal cracks are assumed.

Introducing the orientation 6,- of the crack normal n relative to the reinforcing bar (i)
(Fig.14), we have «,à"= cos0,- and hence can also write

fy,e0 (i) =fy(i)- ^y(0-fy(i)]cos2di (15)

To materialise the above-introduced interpolation scheme for effective mean yield level, two
reinforced concrete beams subjected to pure torsion are chosen17) (Fig.15, Table 1). In the
case of torsion, cracks would form at an inclination of about 45° to the reinforcing bars,
ensuring a situation different from uni-axial tension. In Fig.16, the 2nd order interpolation
for specimens VQ1 and VQ4 between direct-embedded bar behaviour in tension and bare bar
behaviour,is shown. In the original test report, the crack pattern is given and the average
crack spacing can be estimated (Table 1). The average crack spacing can also be computed
according to the local bond based semi-empirical model by Salem18) as

L. -L.oK^K.K^K, (16.)

Kp =o>,ff/o.oir («*)

where, Lc0 = 50cm. The coefficients describe the influence of effective reinforcement ratio,
steel yield strength, concrete tensile and compression strength as well as bar diameter on
average crack spacing. Since the average crack spacing is known, Eq.(16) can be re-arranged
as .
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and the effective reinforcement ratio is inversely computed according to the observed
average crack spacing. Finally, the apparent mean yield level is obtained from Eq.(13) and
plotted over the observed directional angle of 0i«45°, as shown in Fig.16. Fair agreement
with the proposed 2nd order interpolation of mean yield strength, as assumed in Eq.(14), is
observed, implicitly verifying the proposed crack direction dependent interpolation of mean
yield strength. As an explicit verification, the effectiveness of Eq.(14) in finite element
computations will be demonstrated in the next section.

4. RCMEMBERS SUBJECTED TO TORSION
Among the basic load bearing mechanisms of structures, namely axial loading, flexure, shear,
and torsion, only the latter is a truly three-dimensional problem. All the other basic
mechanisms are problems of two dimensions or even only one. For reinforced concrete
structures, the case of pure torsion is rather exceptional; torsion commonly acts in
combination with other shear and/or bending mechanisms. However, the pure torsion case
as a pre-requisite for the general solution of complex loading has been the target of many
researchers17)'19)>20). Since torsion of structural concrete has been experimentally well
investigated, it also makes a good analytical target for improving and verifying the 3D
analysis concept. After passing the "torsion test", the numerical tool coded as COM3 can be
expected to be a step closer to the goal predicting reinforced concrete response under
arbitrary load conditions, which is the true and final goal of full 3D reinforced concrete
modelling.

4.1 Mesh size sensitivity

To verify the general analytical frame and mesh objectivity in inclined cracking situations,
free from the effects of reinforcement, RC-zoning, and tension stiffening formulations, plain
concrete beams subjected to pure torsion are analysed. Two concrete beams, with square and
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rectangular cross-sections, respectively, are chosen21). The analysis input parameter is
simply the mean cylinder compressive strength of the test series21). Tensile strength,
Young's modulus, and tensile fracture energy are estimated from the cylinder strength by the
JCI and CEB-FIP model code (1990) empirical formulas, respectively. Three different
meshes are investigated. These are a coarse mesh representing the lower bound, a standard
mesh as commonly employed in analysis, and a fine mesh requiring considerable
computational resources.

The results for the rectangular section (specimen A2), as shown in Fig.17, indicate that even
a coarse mesh gives close to acceptable predictions of cracking and ultimate torque (a value
that is 15% too high). Only the descending branch gives divergent results. This is because
computational failure is localised and located outside the twist reference length, and the
unloading response of the material is mostly included in the reference zone specified in
experiment due to the relatively large size of elements. Results with standard and fine
meshes almost coincide until the peak and only slightly deviate in the descending part. For
the square section (specimen A3), computed results are similar. Considering the spread of
material parameters within the test series, the results are taken to be acceptable.

In Fig.18, the normalised ultimate torque for specimen A3 is plotted for the three different
meshes. With the standard and finer meshes, the same ultimate torque is obtained, while the
coarse mesh results in a slightly higher value since discretisation is too rough to follow the
actual strain gradient.

A2 (25.4x38.1 cm) A2 (25.4x38.1 cm)
2.5 i- D Experiment21>

coarse mesh

standard mesh
fine mesh

n

Experiment 21)

coarse mesh

standard mesh

fine mesh

2 3
Twist, rad/m x 1000

2 3
Twist, rad/m x 1000

Fig.17 Plain concrete rectangular (A2) and square (A3) section torsion beams: mesh size sensitivity
study

0.5 1 1.5

( No. of Elem.)1/2 / ( No of elem. standard mesh)1/2

Fig.18 Ultimate torque for mesh size-dependent and independent tension softening (specimen A3)
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At the same time, specimen A3 is also analysed using mesh-independent tension softening,
described by constant softening parameter c (c=2.0) in Eq.(3) !). Now, as the mesh gets more
refined ultimate torque increases as expected.

However, it is interesting to note that for the standard mesh fracture mechanics approach85
and experimentally obtained constant softening parameter15 yield similar good results.
Nevertheless, using the fracture mechanics approach the required objectivity with respect to
mesh refinement seems to be obtained if too coarse a mesh is avoided.

4.2 Influence ofRC zoning on torsion analysis

The efficiency of the 2D sub-space-based 3D-smeared crack mode!4) and the
mesh-independence of results have been demonstrated by analysing plain concrete beams
subjected to torsional loading. Here, the concept of 3D RC zoning and anisotropic softening
as well as mean yield strength (Chapter 3) are scrutinised by analysing RC members with
full three-dimensional load bearing mechanisms, namely reinforced concrete torsion beams.

Mitchell and Collins205 have tested several prestressed concrete beams under pure torsion
load. Only one of these was a conventionally reinforced beam (P6), and this is chosen as
the first target of analysis. Dimensions, material properties, and finite element discretization
and load application are given in Fig.19. The results of the computed torque-twist
relationships are compared with the experimental data205 in Fig.20. When the RC zone is
defined as only twice the concrete cover (2c), a large amount of energy is rapidly released
just after initial cracking. Consequently, post-cracking stiffness and ultimate capacity are
considerably reduced in comparison with experimental data.

Torque, tfm
12 I

Hoop yield
Rebars: 30 D1 6

Hoops: DID, s = 9.6 cm

fc' =389 kgf/cm2

10

x,y,z: reinf.

stiffeni ng

x,y: mixed
z: stiffening

x,y,z: softening

Compression fail ure

Fig.19 Properties and RC-zoning ofP6
torsion beam

20)

2 0 30

Twist, RACym x IOOO

Fig.20 Influence of RC-zoning on post-cracking
torsion response (Specimen P6).

On the other hand, if the whole concrete volume is assumed to be reinforced concrete, the
post-cracking stiffness and ultimate torque capacity are far too high. The RC volume
determined according to the 3D zoning technique in chapter 3 (the proposed standard in this
paper) leads to a reasonable torque-twist relationship. From this example, it is clear that
neither the whole concrete volume nor a very small RC skin is appropriate for torsion
analysis.

4.3 Influence of anisotropic yield strength

Figure 21 shows hollow and solid section torsion members, designated by VH1 and VQ1.17).
Reinforcement quantity is low such that yielding is anticipated as the primary failure
mechanism. According to RC zoning and Eq.(12), an effective reinforcement ratio of about
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0.4 % is obtained. With this value, the specimens are first analysed using average yield
strength computed according to Eq.(13), independent of crack inclination. As depicted in
Fig.21, premature yielding of the reinforcement occurs in this case. Next, peff is directly
computed from the observed crack spacing using Eq.(17) and the corresponding mean yield
strength is again obtained by Eq.(13). The computed torque-twist relationship matches fairly
well with the experimental data17). In particular, the yield moment and ultimate torque agree
nicely (Fig.21). Finally, mean yield strength interpolation is employed as the proposed
standard here for predicting structural response without the use of factor identification from
the experimentally observed crack patterns. As with the first analysis, peff is obtained from
RC zoning and the corresponding mean yield strength for direct tension is computed from
Eq.(13). Here, the resulting mean yield strength is reduced owing to the crack inclination
relative to the reinforcing bars, as described by Eq.(14). The obtained results agree with
those obtained from direct utilisation of crack spacing as well as the experimental data19), as
shown in Fig.21, explicitly supporting the validity of the interpolation approach.
Good agreement between numerically predicted and experimentally observed reinforcement
yielding can also be found for specimen P620) (see Fig.20), further substantiating method.
Thus, it may be concluded that the average yield strength of reinforcement does indeed
depend on crack inclination relative to the steel bars, as proposed in this paper. Tension
stiffening anisotropy and softening associated with steel orientation is crucial.
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4.4 Effect of anisotropic shear transfer decay

Shear transfer decay, as introduced in chapter 3, may influence shear capacity or even
failure mode as has been demonstrated for shear beams8). But, as pointed out previously, the
shear strain level from which the decay of transferred shear stresses begins may also play an
important role. In order to evaluate the effect of the proposed shear decay onset
interpolation between that for cracks normal and parallel to the reinforcement, all other
model parameters as previously introduced are kept constant in a further analysis.
Computational results for specimen P6I9) are shown in Fig.22.

Since no decay onset interpolations are considered, meaning that shear decay starts at 4,000
u for cracks normal to cracks in the RC zone and at 400 u for all other crack inclinations
with respect to the reinforcement, the analysis predicts premature failure. If the RC zone is
increased beyond the size determined by the 3D RC-zoning method or if we adapt the
standard proposed in this paper, the computational results closely approach the experimental
data. Consequently, the authors tentatively accept the RC-zoning method in view of
engineering applications. However, it is necessary to further discuss the possible
combination of more refined RC zoning in terms of macro bond properties and shear decay in
future.

4.5 Solid and hollow torsion members

For reinforced concrete members, it is well known that there is some variance in torsional
response between thick-walled hollow members and solid ones, which otherwise have similar
properties

20), 22)

To further solidify the analysis scheme for torsional RC members, four
beams with solid (VQ-series) and hollow (VH-series) square cross sections were selected175.
In all these beams, the axial and lateral reinforcement ratios coincide. Specimens VH2 and
VQ4 are distinguished from specimens VH1 and VQ1 by 50% more reinforcement (Fig.23).
All previously scrutinised methods of 3D RC zoning, anisotropic tension softening and
interpolations, shear transfer decay, and anisotropic mean yield strength are considered in
the analysis. The results of numerical simulation are compared with experimental data17) in
Fig.23. For 60th low and high reinforcement quantities, the ultimate torsional capacity of
solid and hollow sections is, as anticipated, very similar. In specimens with low
reinforcement content (VH1 and VQ1), numerical failure was by yielding of the
reinforcement. The resulting large deformations finally caused concrete compression failure.
Highly reinforced specimens (VH2 and VQ4), on the other hand, failed in diagonal concrete
compression before reinforcement yielding. Similar failure mechanisms are also reported for
the tested beams175.
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Fig.23 Influence of anisotropic yield strength
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5. RC COLUMNS SUBJECTED TO BI-AXIAL SHEAR
Studies of plain and reinforced concrete torsion members are useful for general verification
of the SDsmeared crack model with unstable and stable propagation of 3D inclined cracks,
respectively. However, it should be noted that even for inherently 3D torsion loading, the
principal stress direction does not vary in 3D but rotates just in a restricted 2Dstress field.
This means that the ability to simulate multi-directional cracks in full 3D has not been fully
explored and verified by the analysis conducted so far. With this background in mind, short
RC columns subjected to varying multi-directional shear forces are selected for scrutiny of
the proposed schemes for 2D break down of the strain field and 3D re-composition of 2D
partial stresses as well as the 3D anisotropy of tension fracturing and its interpolation, as
described in section 3.

Figure 24 illustrates the set-up of the short
RC columns23) used for verification of the
full 3D non-linear analysis frame. A constant
axial load (150tf) and fixed horizontal load
in the Y-direction (0, 15, 25, 35 tf for
different specimens) are applied. After
setting these forces, varying enforced
displacements in the X-direction normal to
the already applied shear are monotonically
applied until failure (Fig.24). Under this
load application scheme, there is
considerable complexity in the stress fields
accompanying tri-axially varying inclined
cracks and corresponding principal stress
directions. This means that spatial
development of stress induced cracks is
irregular, in contrast with reinforced
concrete in 2D shear.

Specimens with two different reinforcement
arrangements are tested235. The S-series
specimens include only three stirrups while
specimens in the D-series have additional
hoops in the X-direction (Fig.25). The
reduced effectiveness of the additional hoops
in D-series due to non-uniform stress
distribution is taken into account by
subtracting twice the minimum anchorage
length (CEB-FIP MC-90) from the actual
length and considering only this reduced
length in the computation of premature bond
stress development close to the concrete
cover.

.5.1 Influence of anisotropic tension
fracturing and interpolation

The concept of spatial variable tension
softening/stiffening associated with crack
direction relative to the steel reinforcement
was discussed in section 3. It was concluded
that cracked concrete should obey tension
stiffening normal to the reinforcing bars and
localised tension softening parallel to them.

N: fixed load

N=150tf

Y=0,15,25,35tf

Fig.24 Setup of short RC column loaded in
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This was referred to as anisotropic tension softening. The concept seems to be
self-explanatory since it is physically evident that parallel cracks must soften and
perpendicular ones stiffen (Fig.26), and hence element-wise isotropic tension stiffening is
not versatile within the concept of spatial average-based modelling.

Nevertheless, utilising specimen D35 from D-series, as above described, the isotropic and
anisotropic tension softening concepts are numerically compared. In all trial analyses, the
horizontally applied constant force in the Y-direction is no longer sustained in computation,
no matter how stably horizontal displacement is settled. Consequently, no plastic flow in the
X-direction is shown in Fig.26. It is clear that isotropic tension stiffening can overestimate
the actual load capacity. Only if all cracks form normal to the reinforcement can isotropic
idealisation be expected to yield equivalent numerical results.

Anisotropic tension softening will be regarded as the standard from this point award.
However, it remains necessary to scrutinise the influence of the interpolation method for
arbitrally inclined cracks. It was previously argued that a direct interpolation of softening
parameter c, which governs the slope of the descending branch of the tension stress-strain
diagram as described in Eq.(3), would lead to a severe underestimation of the.anticipated
tension stiffening effect for cracks non- perpendicular to reinforcement, since it is
non-proportional to the consumed fracture energy (Fig.9). Thus, the concept was introduced
for solving the softening parameter for variable crack inclination from the interpolated
normalised fracture energy G/*, as illustrated in Fig.9.

Specimen D35 is chosen again for comparison of numerical results. It features the strongest
directional shift between the initial and ultimate shear planes combined with uni-directional
additional shear reinforcement making an accurate definition of tension softening/stiffening
in crucial space. In Fig.26, numerical results for both the above-mentioned interpolation
strategies are plotted. As expected, mere interpolation of softening parameter results in a
load capacity much below the experimentally obtained value23). Interpolation of normalised
fracture energy and the implicitly obtained corresponding softening factor, on the other hand,
leads to fair agreement between analytical and experimental values of bi-axial shear capacity,
and this is taken to be a verification of the proposed scheme of anisotropic tension fracture
and fracture energy-based interpolations.

5.2 Bi-axial shear force interaction diagram

In order to further confirm that the proposed model is able to predict the evolution of the
spatially inclined variable shear plane under non-proportional loading, all specimens in the
above-described experimental series23) are analysed. In Fig.27, the experimental and
computed X-load versus X-displacement curves for all S- and D-series specimens are plotted.
As the level of pre-imposed Y-load increases, the initial stiffness in the X-direction

D35

Anisotropic tension fracture,
softening parameter interpolation

Anisotropic tension fracture,
fracture energy interpolation

Isotropic tension fracture
1 2 3

X-Displ. (mm)

0 30 60 90

Directional angel 0 (degree)

Fig.26 Effect of isotropic or anisotropic tension fracture and interpolations
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decreases in the computations due to pre-accumulated damage. The influence of additional
hoops in the X-direction, improving stiffness and ultimate shear capacity in that direction, is
qualitatively and correctly reflected in analysis.

Figure 28 shows the shear force interaction diagrams. Failure mode in computations was
judged by checking the instability of iterative calculations. Progressive cracking within
finite elements and the accompanying energy release under enforced displacement are the
criteria of shear failure. In cases where no post-peak response could be obtained, the
numerical instability point was defined as the computed ultimate capacity and the instability
was checked for absence of load steps influence. The analysis reflects the reduction in shear
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capacity in one direction as the shear load in the other direction increases. For the D-series
specimen with additional X-reinforcement, shear capacity in the X-direction is improved.
Here, the effect of the hoops seems to be overestimated in the simulation, even though only
the reduced hoop length was considered in the computations, as noted above. Consequently,
the predicted capacity in the X-direction is a little higher when there is lower shear force in
the Y-direction.

As mentioned before (Fig.24), load application was mixture of force and displacement
controlled loading. In force-controlled loading, no post-peak response is generally obtained.
Then, looking at the computed load-displacement diagrams shown in Fig.27, it seems
reasonable that for specimens with larger force-controlled pre-imposed Y-load (S25, S35,
D25, D35) that remains at a constant level, no post-peak response could be computed. Since
the constant Y-load largely contributes to the total force, no post-peak solution exists for
numerical simulations with these perfect boundary conditions (Fig.24).

However, during the experiments23^ once the ultimate load had been reached, the
pre-imposed Y-load could not be kept constant but dropped swiftly. Only under such
imperfect conditions, which different from the numerical simulations, does a post-peak
response exist. On the other hand, for specimens with no or only a small force-controlled
contribution to the total load (SOO, S15, DOO, D15), the descending branch could be
computed with sustainable orthogonal shear force in Y-direction, though it is much steeper
than that observed in experiments235.

Up to the peak of the load displacement diagrams, full 3D constitutive models work well
with adequate accuracy for engineering purposes. The load interaction for multi-directional
action can be well predicted in accordance with the experimental results. Nevertheless, in
the descending portions of the diagrams, computation is not successful. In the experiments,
significant residual post-peak strength and ductility are observed235. In fact, the
arc-length method of iteration with some restraint cannot be adopted due to the
almost-constant horizontal load. Here, strain localisation in compression remains unsolved in
the finite element analysis. Post-peak compression softening can be regarded as one of the
essential requirements for a sound prediction of the descending part of the load-deflection
diagram. Furthermore, it should be noted that the present formulation does not explicitly
consider any dowel action of the reinforcing bars, which might become important as an
element of resistance in localised shear cracks close to or post-peak.

5.3 Bi-directional displacement path

In evaluating the numerical simulation results it is not sufficient only to compare the
bi-axial shear force diagram with experimental data. As a further verification, the
displacement path of bi-directional loaded short columns is studied. In Fig.29, the
bi-directional displacement history is plotted. Displacement at the ultimate shear capacity is
marked by ° for the numerical values and by * for the experimental data23). Any further
displacement is that of the post-peak descending branch. In comparing analytical results with
experimental data, the effect of reinforcing bar pullout from footing needs to be
considered0'245. And because the experimental data 23) includes only the total response, with
no separate member and joint-based displacements, joint behaviour needs to be taken into
account in the analysis15.

First, the analytical displacement path on a member basis is already shown in Fig.27. In the
following, joint-based displacement is determined in a separate analysis employing the RC
discrete crack model25'265 for the column-footing joint together with rigid brick elements for
the columns. The joint element models the pullout of reinforcing steel from concrete and the
mechanism of stress transfer due to aggregate interactions along the crack surface255. Dowel
action of the reinforcing steel is neglected.
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Fig.29 Bi-axial displacement path: member + joint response in analysis

Figure 29 is a superposition of the computed joint and member displacements with the
experimental data23). The general trend of the experimental data seems to be reproduced by
this analysis, especially the flow direction of column heads under multi-directional action.
Nevertheless, it must be admitted that some quantitative discrepancy remains. One reason for
this could be that the shear transfer model13' used in the joint element 25) is one developed
for 2D problems. Applied to 3D analysis in the X- and Y-directions, shear transfer is not
interrelated but assumed independent. This could partly explain the larger gap between the
experimental and analytical displacement paths for specimens with strong bi-directional
loading (S25, S35, D25, D35).

Further, attention must be paid to the time-dependent flow of displacement when the force is
kept constant at a level close to capacity in experiment. This was experienced in the
experiment, but the analysis with time-independent RC modelling does not cover rapid
inelastic creep flow.

5.4 Visualisation of varying crack inclination

A full 3D analysis of concrete structures results in a huge amount of output data giving
displacement and reaction force for each nodal point as well as complete average stress and
strain vectors and internal parameters of plasticity, damage, and cracking at each Gaussian
integration point. In employing a quadratic interpolation function and 2nd order integration,
we have information for 20 nodes and eight integration points for each finite brick element.
Handling such an abundance of information in a thoughtful way could provide researchers
with many valuable insights into the numerical, and presumably the real behaviour of
complex concrete structures.

Post-processing for 2D computer codes is well advanced and many nice graphical tools are
available to make the daily life of concrete researchers and engineers easier. However, there
is a shortage of analysis tools of full 3D and, naturally, post-processing codes for 3D data
are even less developed. Nevertheless, especially for the understanding of varying 3D
inclined crack planes as observed in multi-directional loading of reinforced concrete, such
visualisation is essential. The advent of multi-media technology now presents new
opportunities for quick advances. Using the Virtual Reality Modelling Language, Takahashi
and Maekawa27) provide a new opportunity for "looking inside" cracked concrete. Node and
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Fig.30 Evolution of 3D inclined variable cracks under multi-directional non-proportional loading: 35

integration point data are read and transformed into a VRML input format. Particular care is
taken of the spatial orientation of the predominant crack at each integration point27). As
non-proportional loading changes in direction, new cracks are introduced and came to govern
in place of the existing crack, so the visualised crack direction changes. Deformation data
are also collected. In this way, a graphical tool has been constructed that makes it possible
to observe the complex cracking behaviour of multi-directionally loaded reinforced
concrete27).

As an example, the step-by-step development of predominant three-dimensionally variably
inclined cracks for specimen S35 is given here. Specimen S35 is selected because it
guarantees the maximum directional variation of the initial shear cracking plane and
intersection of the final shear failure plane. A relatively large Y-force of35tf is first applied,
followed by displacement-controlled loading up to failure in the perpendicular X-direction
as seen in Fig.30. The crack plane at each Gaussian integration point is indicated by a small
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plate with a spatial orientation determined according to the observed predominant crack.
Deformation of the specimen is shown as well.

In step 1, an axial load of 150tfis applied and naturally no cracks are found for the load is
compressive and far from ultimate. In steps 2 to 4, the fixed horizontal Y-force is applied in
ll.67tf increments, resulting in a total of 35 tf. Once the full Y-force is applied in step 4
(Fig.30), typical inclined shear cracks have developed. As the Y-direction is kept clamped
and displacement-controlled loading is applied in the perpendicular X-direction from step 5
on, the initially induced cracks remain predominant until step 6 (Fig.30) and only few cracks
change orientation through the generation of new non-orthogonal cracking. By step 10
(Fig.30), most of the plates representing the governing crack planes of each integration point
have already turned from the initial Y-plane inclination toward spatial inclination. This
tendency is reinforced in the following steps, resulting in final shear failure taking place in a
completely different plane from the originally induced shear crack plane. Step 14 (Fig.30) is
ultimately identified as the step just before unstable crack propagation occurs and, hence, is
designated as the ultimate load level. Here, the fully three-dimensionally inclined shear
plane can be clearly identified.

6. CONCLUSIONS
Full three-dimensional constitutive laws for reinforced concrete have been proposed for
RC solids with multi-directional cracks, and their applicability under monotonic forces was
examined. A complete SD-space expanded EPF model2)l 3) was proposed for un-cracked
concrete. For 3D cracked concrete, a 2D breakdown and 3D re-composition scheme of
smeared crack analysis45 was scrutinised. The mesh-independence of the formulation was
demonstrated by analysing plain concrete torsion beams with different mesh discretizations.
Anisotropy of tension fracturing was recognised as bond mechanism is stably controlled, and
dispersed crack propagation for cracks normal to the reinforcement must be distinguished
from unstable, localised behaviour of cracks parallel to the reinforcement.

To account for the anisotropy of tension fracturing in the 3D domain, a method of
three-dimensional RC zoning and fracture energy-based softening parameter interpolation
was presented. In a similar way, it was concluded that the average-based response oftension
reinforcement depends on the crack inclination relative to the reinforcement. Where cracks
parallel to reinforcement may result in behaviour close that of an unconstrained bare bar,
normal cracks results in localised plasticity in the vicinity of those cracks. Crack
inclination-dependent interpolation of average yield strength was found an effective measure
to address this phenomenon.

The proposed framework of 3D nonlinear analysis was successfully applied to the numerical
response prediction of hollow and solid torsion members with low and high reinforcement
rations. For short RC columns under multi-axial loading, the 3D inclined variable shear
plane and its associated shear failure were simulated.

Further development toward a truly versatile computational tool for examining the structural
performance of reinforced concrete under complex loading patterns is a challenging topic of
research. The performance-based design schemes that future structural codes will demand
mean that engineers must check for specified limit states. Here, especially, structures have
to be checked for seismic or accidental loading in reasonable consistency with material and
structural mechanics. The physically consistent solutions of the compression localisation and
buckling of reinforcement embedded in concrete are regarded as crucial areas of further
research toward obtaining a reliable post-peak response.
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