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The aim of this study is to obtain the spatial average stress-average strain relationships of both reinforcing
bars and cracked concrete in RC members based on the local bond characteristics between concrete and
reinforcing bars. The computation is capable of predicting the crack spacing and the ultimate average strain
of reinforcing bars when total rupture takes place. A systematic verification through experimental work is
conducted to clarify the versatility of the proposed model
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1 . INTRODUCTION

The tension stiffening effect represents the capacity of concrete to carry the internal tensile force that
develops between adjacent cracks. In distinct cracked sections, the local tensile force is carried by both the
steel reinforcing bars and the concrete residual softened tension. The force that develops in the
reinforcement is partly transferred to the concrete between adjacent cracks through bond stress transfer
between reinforcing bars and concrete, while the residual tensile stresses in crack sections act directly on the
fracturing planes. The tension stiffening effect is usually treated by assuming a relationship between the
average concrete tensile stress and the average concrete tensile strain over a long gauge length in the
direction normal to the cracks (.Shima.et al.4)).

At the same time, the stress-strain relationship of the reinforcement has to be treated on an averaged basis.
Since the stress in a reinforcing bar embedded in concrete varies along its axis, the average stress-average
strain relationship of the reinforcement is significantly different from the pointwise behavior of a bare bar
after yielding (Shima et al. 4)). In fact, a bar starts to yield at the location of a concrete crack before any
other point. Therefore, the spatial average yield stress is generally lower than the yield stress of a bare bar,
as clearly pointed out by Okamura and Maekawa 5). After yielding, some parts of the reinforcement close to
cracks enter the strain-hardening zone, whereas other parts remain in the elastic zone. Therefore, the average
response is a mix of elastic and hardening stiffness. Usually, a bilinear model is assumed for the average
response of the steel bars.

Shima et al. 4) assumed that the reinforcing bar stress has a full cosine profile, and based on this distribution
they obtained the average stress-average strain relationship for reinforcing bars. Their choice of a cosine
stress distribution was based on the fact that the cosine function is symmetric and its derivative is zero at
both the cracked section and the center of the segment. This agrees well with the fact that the bond stresses
at the cracks and at the midway points between two successive cracks are zero.

Belarbi and Hsu 6) assumed a different stress profile consisting of the summation of Shima's cosine function
and two other sinusoidal functions. The purpose of this modification was to simulate the fact that, after
reinforcing bars yielding, the bond stress between reinforcing bars and concrete deteriorates and the
reinforcing bar stress in the vicinity of the cracks becomes uniform.

The assumptions madeby both Shima and Belarbi are acceptable for medium and highly reinforced concrete,
where the spacing of cracks is relatively small. However, for lightly reinforced concrete, the crack spacing is
larger and tends to be localized much as in plain concrete. In this case, both Shima and Belarbi's stress
distributions are no longer valid and the local steel stress has to be computed from micro-bond
characteristics.

The importance of considering tension softening in cracked sections also arises in lightly reinforced
concrete, as its contribution becomes higher compared to the contribution of bond stress transfer. In this
study, the microscopic bond stress transfer and tension fracturing of plain concrete are coupled. The local
stresses and strains of steel and concrete are computed, and hence the macroscopic behavior is evaluated.

In Shima and Belarbi's modes, the stress profile between cracks is assumed to be similar, so bond
deterioration is taken into account only indirectly and the absolute value of crack spacing is not necessarily
incorporated. However, over the past decade, there has been some progress in the understanding of bond
deterioration close to crack planes (Qureshi rand Maekawa 8)) and the fracturing process at a crack section.
The authors therefore judged that it is the right time to re-formulate the average-based tension model of
cracked concrete and embedded reinforcement, using a direct theoretical derivation from microscopic
mechanics. In computing the critical ductility, when the steel ruptures inside the concrete, a microscopic
approach is indispensable since the rupture criterion is set for the local behavior of the steel. Furthermore,
RC ductility in the case of low reinforcement ratios is of great importance in estimating the seismic
performance of existing large-scale structures. Low reinforcement cases in which the simplified stress
profile cannot be applied have long been of interest to engineers involved in seismic analysis.

The present tension-stiffening model proposed by Shima et al 4) is an empirical one and does not take into
consideration the amount of reinforcement. As a matter of fact, the experimentally obtained tension
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stiffening of cracked concrete is hardly affected by the reinforcement ratio (Okamura and Maekawa 5)).
However, the amount of reinforcement has a considerable effect on the tension stiffening of lightly
reinforced members. In the present study, the tension stiffening is also analytically computed and the effect
of the amount of reinforcement is quantitatively taken into account. The aim of this study is to obtain a
versatile smeared tension model for reinforcing bars and concrete in both heavily and lightly reinforced
concrete. At the same time, the average crack spacing and the average ultimate stress are computed.

2. SPATIAL-AVERAGED CONSTITUTIVE LAWS IN TENSION

(1) Bond-slip-strain model

Shima et al. 4) proposed a universal bond stress-axial slip-steel strain model for RC. The model offers a
unique relationship that expresses the bond characteristics as derived from both pullout and axial tension
tests. The authors adopt this model for the local stress interaction between concrete and reinforcement as,

T(e,s) = T0(s)g(s) (1)

where,T(E,s) is the local bond stress and T0(s) is the intrinsic bond stress when the strain is zero and
denotedby,

T0(s) = /c' k [ln(l + 5s)] (2)

g(e)=
1

1+KTE (3)

where,/c' is the compressive strength of the concrete, k is constant=0.73, c is constant=3, s is the non
dimensional slip =1000S/d, S is slip, and d and 5 are the diameter and strain of the bar.
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Fig. 1 Definition of slip in bond-slip-strain model (Shima et al. ' ) Fig. 2 Bond stresses in the post-yielding range

Figure 1 shows the parameters used in the model. The model is applicable to both the elastic range and the
post-yield range (Shima et al. 4)). Using this model, the phenomenon of bond reduction in the post-yield
range can be coherently explained. When the reinforcing bar starts to yield, in the vicinity of a crack, the
strain suddenly increases to the strain hardening zone leading to a drastic drop in the strain function denoted
by g(e) in Eq. 3. However, the slip function may be unchanged since the slip rises little since the integrated
strain, which is equivalent to the slip, remains almost the same because the plastic region just after yield is
so limited. This drop in the strain function causes a fall in the bond stress as shown in Fig. 2. It should also
be noted that local bond in the post-yield range of the steel is apparently influenced by the stress-strain
characteristics and elasticity of the bare bar. The drop in bond stress of reinforcement with a short yield
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plateau is expected to be less than that of reinforcement with a long yield plateau. This qualitative feature of
the bond mechanism can be systematically treated in the use of the local bond-slip-strain model. The authors
chose to accept this scheme in their investigation.

(2) Bond Deterioration Model

Whena reinforcing bar is tensioned against concrete, the lugs of the reinforcing bar act against the concrete
and cause conical diagonal compressive struts (Goto ')). Tensile stresses are generated in a direction
perpendicular to these struts, causing splitting conical cracks. In the vicinity of the crack planes, these struts
have no concrete to support because the cracks penetrate to the crack planes. Therefore, concrete spalling
easily occurs, resulting in bond deterioration as shown in Fig. 3 (Qureshi and Maekawa 8)). Shima's model
cannot be applied to the bond deterioration zone where the "near crack surface effect" is predominant
(Okamura and Maekawa5)).

In fact, the localization of plastic yielding is initiated at the bond deterioration zone. Thus, the modeling of
the bond close to cracks plays an important role in the analysis of the post-yield behavior of RC in tension.
Qureshi and Maekawa 8) assumed in their RC joint model that the bond stress linearly decreases to zero at a
distance 5 d (d is defined as the bar diameter) from the crack surface, and that the bond stress drops
suddenly to zero at a distance 2.5 d from the crack surface due to concrete splitting and crushing around the
bar beside the crack surface. Figure 3 shows a schematic drawing of the bond deterioration model, which
describes,

T(x)=Tm ~-
u

T .

x --^-L,
2

T(X)=0

-̂-Lb<x<^L-^
2 b 2 2

K -K<X<K
2 2 2

(4)

(5)

However, an important consideration is that when the crack spacing falls below lOd, the bond deterioration
length cannot logically equal 5d as the splitting conical cracks cannot physically intersect. Also, when the
crack spacing falls below 5d, concrete spalling cannot happen. Consequently, it was assumed that the bond
deterioration length is equal to zero when the crack spacing is less than 5d, and it changes linearly from zero
to 5d when the crack spacing changes from 5d to lOd as shown in Fig. 4. Nevertheless, this situation rarely
occurs and only in cases where the reinforcement ratio is very high and the tensile strength is so small.

C rack Surface Bond Deterioration Length

5d

Crack Spacing

Bond-Slip-Strain
Model

Bond Deterioration
Model

Bond-Slip-Strain
Model

Fig. 3 Bond deterioration close to cracks (Qureshi and
Maekawa 8)).

(3) Tension Softening at Crack Surface

Fig. 4 Modification of bond deterioration model for small crack
spacing

Whenconcrete cracks, the stress carried by the concrete at the crack surface does not drop to zero suddenly.
The interlocking of the two faces of the crack causes a transfer of some residual stresses. This phenomenon
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i s known as tension softening of plain concrete. Regarding reinforced concrete members with ordinary
reinforcement ratios, this softening can be neglected compared to the force carried by bond stress transfer.

However, in the case of small reinforcement ratios, this softening may not be neglected. To study the effect
of tension softening coupled with RC behavior, a combination of fracturing softening and bond tension
stiffening is a fruitful approach. Usually, tension softening is expressed as a relationship between the
residual tensile stress and the crack width, which is the main parameter of the tension softening phenomenon.
The surface crack width can be considered being compatible with the reinforcement slip at the crack. Thus,
the surface crack width is equal to the sum of bar slip on both sides of the crack. In other words, the surface
crack width is equal to twice the reinforcement slip, on one side at the crack location. The average crack
width used by Qureshi and Maekawa8) is adopted here:

w =à¬(28^), S^SU^ (6)

where C is equal to (1/1.3). The tension softening model adopted in the analysis (Uchida et al. 7)) is defined
as,

°br =ft 1 +0.5| -^-
G ,

-3

/ ,
(7)

where, o\,r is the bridging stress across the crack,/, is the tensile strength, w is the crack width, and Gf is the
fracture energy and ranges from 0.1 to 0.15 N/mm for plain concrete 7).

3. LOCAL ANALYSIS AND AVERAGING

In order to obtain the steel stress profile, other governing equations have to be simultaneously solved. By
dividing the portion of the reinforcing bar between two adjacent cracks into infinitely small segments and
satisfying the static equilibrium of all elements, we obtain the first of these, the following continuum
equilibrium equation :

da rai Aa 7id_ .. . .
-=-T=>à"-=-T(incomputation) (8)
dx As Ax As

where, dcr/dx is the axial stress gradient along the axis of the reinforcing bar, As and d are the cross-
sectional area and diameter of the reinforcing bar, and T is the average bond stress.

The second equation to be solved is the bond-slip-strain model (Eq. 1, 2, and 3), together with the bond
model in the bond-deterioration zone (Eq. 4 and 5). The third equation derives from the slip compatibility.
The slip is computed by integrating the strain over the length of the reinforcing bar starting midway between
adjacent cracks, as shown in Fig. 1, i.e. the slip at the midway point between cracks is zero. Thus, wehave,

S(x)= JX£dx (9)

The fourth equation is the constitutive equation for the bare bar, which represents the point-wise
relationship between the reinforcing bar stress and strain at each bar section obtained from the uniaxial
stress-strain relation of the bar used as,
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cr=Es£ ,0<£<Ey

tr=/, ,£y< £<£sh

a=/, +{l-e(^-£)/k}(L01/M -/,) ,e > ssh <10)

k = 0.032(4000//,)2/3

The overall scheme of the computation is summarized in Fig. 5 and Fig. 6 10)' n). Firstly, the crack spacing is
equal to the total length of the target control volume. The load is increased gradually and local stresses in
both concrete and steel are computed.-When the maximumlocal concrete stress exceeds the;tensile strength
of the concrete, a new crack is introduced in the middle of specimen. Computations are carried out again
with a crack spacing equal to half the initial bar length. The new crack spacing is in fact the average crack
spacing, since the real location of the crack is not necessarily in the middle of the specimen. The location of
the crack depends on the distribution of local tensile strength along the length of the specimen. Due to the
non-uniformity of concrete, tensile strength varies along the specimen length. For simplicity however, an
average crack spacing is assumed.

Again, the load is increased gradually and the local concrete stresses are checked. When the concrete stress
exceeds the tensile strength, another new crack is introduced in the middle of one of the two halves of the
specimen and the average crack spacing is now one-third of the initial length, as shown in Fig. 5. The new
crack occurs in only one half, since in reality it is not possible for two cracks to develop simultaneously.
This is experimentally verified by the fact that the maximumcrack spacing is twice the minimum crack
spacing (Goto ]), and Rizkalla 3)). After the formation of the second crack, it is possible for the third crack to
talk place in the other half of the specimen. Following the same concept, cracks are generated until the
stable state is reached. At this moment, no new cracks are generated, and it arises after yielding of the
reinforcement due to a drastic drop in the bond stresses.

To compute stress profiles, a finite discretization of the reinforcing bar between two successive cracks is
performed, as shown in Fig. 5 and Fig. 6. Starting from the midway point between two adjacent cracks, a
finite segment of length Ax is studied. The boundary conditions for this segment are set by equating both
the slip and the bond stress at the middle section to zero, and assuming an arbitrary value of strain at the
middle. This arbitrary strain value represents the loading level. The four equations are simultaneously
solved using an iterative procedure. Upon finishing the computation for this segment, the boundary
conditions of the next division are defined and a similar computation procedure is followed. Hence, the
strain and stress profiles of the steel reinforcement can be drawn. It results in the steel average stress and
average strain as,

^L LC.

£=^- J£(x)dx=^- £e(x)Ax (ll)
L

L c Lr

(12)
~SV j j(_j~!-,^'~'

c 0

a

s=7~~|X(x) dx= --5X(x)Ax
à"Lc0 Lc 0

By computing the stress profile of the reinforcement, the stress profile of the concrete is obtained by
subtracting the reinforcement force profile from the reinforcing bar force in crack. Adding the bridging
stress defined by Eq. 7, the average stress of the concrete is mathematically defined as,

2 2 2 2_t

tfc=crbr +y-J crc(x)dx s abr +-£ac(x)Ax
(13)

L
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Fig. 5 Scheme for solving bond governing equations with finite discretization
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Fig. 6 Flow chart for solving bond governing equations with finite discretization
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Fig. 7 Cracking of concrete
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Figure 7 provides a deeper understanding of the cracking behavior and the tension stiffening of concrete.
The dashed curves represent the average stress-average strain relationship of concrete for different crack
spacings considering no cracking at all and the solid curve represents the behavior when cracking is
considered in the scheme proposed here. The initial specimen length is 3,000 mm,and the final crack
spacing is 330 mm.Whena certain crack spacing is considered, the typical curve comprises two major parts,
and these are connected by a point representing the initiation of reinforcement yielding. Before yielding of
the reinforcement, the average stress of the concrete is an ascending line, whereas after yielding it falls. This
is due to the fact that the bond stress suddenly decreases after yielding, resulting in a decrease in the load
carried by the concrete. Once this point is reached, it is highly likely that no more cracks will be generated
because of the reduced force transferred to the concrete. In the example shown in Fig. 7, yielding starts
when average crack spacing reaches 330 mm,and no more cracks are computationally generated. Hence, the
final crack spacing is designated as 330 mm.

In carrying out the analysis, however, it was found that when the cracking load of the concrete is close to the
reinforcement yielding load, which is mainly the case with low reinforcement ratios, cracking may occur
after yielding. This is due to the fact that when the cracking load is close to the yielding load, the crack
spacing is relatively larger. As a result, the plasticity zone close to cracks is relatively small compared to the
crack spacing. Hence, even though the average concrete stress falls after yielding, on the local level far from
the crack surface, the local concrete stress may still increase and lead to new cracks.

Average Stress (MPa)
600

B are Bar

Bond Only
Bond + Bridging

p =0.3%

p =0.1%

p =0.01%

0.0003 0.0006 0.0009 0.001 2 0.00 15

Average Strain

Fig. 10 Tension softening effect on tension stiffening of RC
with low reinforcement ratios
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Fig. 8 Average response of reinforcement with different
reinforcement ratios
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Fig. 9 Average response of concrete with different
reinforcement ratios
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Fig. ll Tension softening effect on tension stiffening of RC
with ordinary reinforcement ratios
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Figure 8 shows the average response of the reinforcement at different reinforcement ratios compared to the
behavior of a bare bar. In this analysis, the ultimate average strain is defined as the average strain at which
the local steel stress at the cracked section reaches the ultimate local stress. In this figure, it can be seen that
the average yield stress falls with the decrease in reinforcement ratio. It is also obvious that the higher the
reinforcement ratio, the higher the ultimate average strain, i.e. the higher ductility.

Figure 9 shows the average tensile response of concrete for different reinforcement ratios in comparison
with the current model of Okamura and Maekawa5). It can be seen that this analysis agrees with the model
in the case of normal reinforcement ratios of around 1 and 2%. However, for light reinforcement close to the
minimumlevel specified in the'codes, the macro model underestimates the tension stiffening of concrete. In
case of a very small reinforcement ratio or plain concrete, the model on the contrary overestimates the
tension stiffening. This means that the current tension stiffening model is reasonably valid in the case of
ordinary reinforcement ratios, but it requires more versatility to cope with varying reinforcement ratios and
material strengths.

Figures 10 and ll illustrate the analysis of two groups, one with low reinforcement ratios where only one
crack is computed and the other with ordinary reinforcement ratios where several cracks are predicted. For
the low reinforcement ratio group, the contribution of the bridging stresses is significant. Increasing the
reinforcement ratio leads to an increased contribution by bond compared to the bridging stress even in the
one-crack case. The bridging stress can be neglected as compared with the bond contribution in the high
reinforcement group, as shown in Fig. ll.

AverageStress (MPa)
2 .5 1

2 .0

1.5

1.0

0.5

0 .0

p =0.01%

L =1000 mm
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A verage Stress (MPa)
2 .5

0 0 .0004 0. 0008

AverageStrain
0 .0012

0.02 0.04 0.06 0.08 0. 1 0. 12

AverageStrain

Fig. 12 Size effect on average response of concrete with very Fig- 13 Size effect on average response of concrete with
low reinforcement ratios ordinary reinforcement ratios

Figures 12 and 13 shows the gauge length effect on the average response of the concrete. Comparing two
cases, one with heavy reinforcement and the other with light reinforcement, it can be seen that tension
stiffening is more stable and independent on gauge length in the case of heavy reinforcement, while it
depends very muchon gauge length in the case of a low reinforcement ratio or plain concrete. In fact, this is
due to the localization of cracks in lightly reinforced concrete, leading to behavior similar to that of plain
concrete and the average response becomes dependent on the gauge length. On the other hand, for
reinforced concrete with a high reinforcement ratio, cracking is controlled by the reinforcement through the
bond mechanism, resulting in an almost equal crack spacing no matter how different the gauge lengths are.
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4 . EXPERIMENTAL VERIFICATION

(1) Comparison with the Experimental Work of Belarbi and Hsu Ö

As a verification of this analysis, a comparison with the experimental work conducted by Belarbi and Hsu 6)
was carried out. The experiments were carried out on full-size reinforced concrete panels 1,400 x 1,400 x
180 mm.Specimens were first subjected to tension in the horizontal direction. After attaining a designated
average tensile strain in the panel, compressive stresses were gradually applied in the vertical direction until
failure while maintaining the average tensile strain developed in the initial testing phase. A comparison of
the authors' analysis with those experiments is shown in Fig..14. The analysis of Belarbi and Hsu 6) is
plotted on the same graph. The author's analysis seems to be better than Belarbi's, especially in panel E4-0.5
with a reinforcement ratio of 0.5%. In fact, the reinforcement ratio in this panel is low, resulting in a
relatively large crack spacing and a stress distribution far from that proposed by Belarbi.

(2) Comparison with the Experimental Work of Shima et al. 4)

Another verification of the analysis is carried out through a comparison with the experimental work
conducted by Shima et al. 4) as shown in Figs. 15, 16, and 17. The tested specimens were 2700 mmin length.
This length was selected as long enough to correctly represent the average response since a longer specimen,
which includes more cracks, will give higher accuracy. Cross sections of 150 x 200 mmand 200 x 250 mm
were used. A deformed steel bar having a diameter of 19 mm was used and the reinforcement ratio was
adjusted by changing the cross-sectional area of concrete. The authors' analysis agrees well with the reality.

(3) Authors' Test Specimens

a) Introduction

The specimens tested by Shima et al.4) were loaded up to an average strain of 1-2%, and were not loaded to
failure. Further, no specimens with very low reinforcement ratios, where the cracking behavior is localized,
weretested.

As a completion and complement to Shima's experimental work, the authors tested 3 specimens, of which
two were loaded up to failure. The reinforcement ratios of 2 specimens were selected to be slightly larger
than the critical reinforcement ratio and the third was smaller than the critical reinforcement ratio, which is
definedas,

Per = 7- (14)Jy

When the reinforcement ratio equals the critical reinforcement ratio, the yielding load equals the cracking
load. If the reinforcement ratio is less than the critical reinforcement ratio, the behavior of reinforced
concrete is expected to be similar to that of plain concrete and cracking will be localized. In other words,
once the first crack occurs, the reinforcement starts to yield and no more cracks or certainly few cracks are
generated.

b) Specimens

Figure 18 shows details of the specimens and the mounting of displacement transducers. The length of the
specimens was 1,700 mm.This was the longest possible within the limitations of the laboratory facilities.
The cross section of all specimens was 100 x 100 mm.A deformed reinforcing bar was used and no stirrups
were incorporated. Specimens 1 and 2 were reinforced with a 10 mmdeformed bar, whereas specimen 3 was
reinforced with a 6 mmdeformed bar. The reinforcement ratio of specimens 1 and 2 was 0.75%, a value
slightly larger than the critical reinforcement ratio, whereas that of specimen 3 was 0.32%, which was less
than the critical reinforcement ratio. A 30mm coupler was attached to the end of reinforcing bar at the
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Displacement
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30 mmcoupler.
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Fig. 18 Specimens' details Fig. 19 Loading set-up

gripping and loading end, so as to avoid yielding of the reinforcing bars before cracking of the concrete.
This was essential for specimen 3 where the yielding load is smaller than the cracking load. However, the
coupler was used also in specimens 1 and 2 since the reinforcement ratio is close to the critical
reinforcement ratio. The testing machine used was a universal one of 1 ,000 kN capacity. The loading set-up
and testing machine are shown in Fig. 19. The total elongation of the specimen was measured using two
displacement transducers on two sides of the specimen. The displacement transducers were attached to 3
mmsteel plates affixed to the concrete face with an epoxy adhesive, as shown in Fig. 18. The purpose of the
steel plates was to prevent any possible cracks beneath them, which would affect the transducers' readings.
Three electrical strain gauges were attached to each side of the reinforcing bar at its center point and at 50
mmtoward each end.

c) Test Results

The results of these experiments are shown in Fig. 20 through Fig. 27. The analysis agrees fairly well with
the experiments. It can thus be concluded that the crack spacing prediction is reasonable. For specimen (3),
the analysis agrees with the experiment in predicting only one crack. This is due to the small reinforcement
ratio used. However, the analysis computes only up to the ultimate point on the stress-strain relationship for
the steel bar. Thus, the descending portion of the load is not considered in the analysis. This may explain the
difference in ductility at failure between experiment and analysis. In the case of specimen (2), the
descending branch is rather short compared to specimen (3). That is due to the fact that in specimen (2)
there are several cracks, but reinforcement failure occurs only at one crack. Consequently, the total
elongation is not much affected by the descending branch.
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-166-



Load (kN)

10 15

Elongation (mm)
20 25

Fig. 22 Specimen(2): Experimental verification in tension

Load (kN)
40

30

20

10

Re-ba^ Rupture

7 i7"

Longitudinal and additional
Experi ment trans verse cracks

Analysis

Specimen (2) Up to Failure

50 100

Elongation (mm)
150

Fig. 23 Specimen(2) up to failure: Experimental verification in
tension

Fig. 24 Specimen(2): Observed cracking pattern Fig. 25 Specimen(2): Observed cracking pattern at failure

Load (kN)
20

15

10

Experi ment.

Analys is
O nset of the Rupture of the;
Experiment re-bar '

p =0.32% &fy=353MPa
ft=1.7 MPa & fc=33 MPa

Analysis: One Crack

Experiment: One Crack

6 8 10

Elongation (mm)
12 14

Fig. 26 Specimen(3): Experimental verification in tension Fig. 27 Specimen(S): Observed cracking pattern at failure

167-



Fiber Stress (MPa)
3 .0i

2 .5

2.0

1.5

1.0

0.5

0.0

Tensile

1 2 3 4 5 6

Crack Width (mm)

Fig. 28 Bridging stress ofSFRC (Nanakorn et al. 9))

A verage Stress (MPa)
3 .0

2 .5

2.0

1.5

1.0

0.5

0 .0

SFRC with ^ =l%

_Ordinary RC

'0 0 .02 0 .04 0.06 0.08

Average Strain

Fig. 29 Tension stiffening for SFRC

0 .1 0 .12

5 . TENSION STIFFENING OF SFRC

When crack is generated in SFRC, the steel fibers bridge the crack and transfer tensile stress between the
two portions of concrete separated by the crack. This stress transfer mechanism allows the concrete to carry
more tensile force, i.e. it increases the tension stiffening of the concrete. An analysis of the tension
stiffening of SFRC can be carried out in a similar manner to that described in chapter 3. If the bridging fiber
stress can be obtained experimentally as a function of the crack width, the tension stiffening can be analyzed
as shown in Fig. 28 and Fig. 29.

As an example, Fig. 29 shows the analysis of two tension members having the same reinforcement ratio.
One of them is ordinary RC, while the other is SFRC. The bridging stress of the fibers was determined
experimentally as shown in Fig. 28. In spite of the fact that the tensile strength of SFRC is higher than that
of normal RC, the tensile strength of both RC and SFRC was intentionally assumed to be the same in order
to discuss the effect of fibers on tension stiffening and ductility regardless of material strength. It is very
clear that, at an average strain of 3%, the tension stiffening of SFRC falls below that of ordinary RC. This
can be explained by the fact that, in the SFRC specimen, the existence of fibers causes more stress to be
carried by the concrete, hence more cracks develope. At an average strain of 3%, the bridging stress
becomes zero due to cut and/or pullout of the fibers. Thus, the tension stiffening at that moment depends
only on the crack spacing; the smaller the crack spacing the smaller the tension stiffening. However, since in
reality the tensile strength of SFRC is higher than that of ordinary RC, the crack spacing may be larger in the
case of SFRC, leading to higher tension stiffening even after the cut and/or pullout of the fibers.

6. CONCLUSIONS

The conclusions of this paper can be summarized as follow:
1) Based on the microscopic bond-slip-strain model in combination with bond deterioration and tension
softening at the crack surface, the stress profile and the strain profile of a reinforcing bar embedded in
concrete can be computed. Hence,..the macro average stress-average strain relationship ofreinforcing' bars as
well as the tension stiffening of concrete can be computed. Thus, from the microscopic behavior of
reinforced concrete, the macroscopic behavior can be deduced.
2) Using a simple stress-based method, the average crack spacing can be effectively computed.
3) In the analysis, the ultimate average strain can also be computed.
4) In reinforced concrete members with ordinary reinforcement ratios, tension softening at the crack surface
can be neglected without significant influence on the average response of the concrete and reinforcement.
However, in very lightly reinforced concrete or plain concrete, tension softening at fractured crack planes is
predominant and has to be taken into consideration
5) The analysis can also compute the average response of SFRC taking into consideration the bridging
stress transferred through the steel fibers.
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