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In this paper, an advanced method of quality control for the mixing of roller-compacted dam
(RCD) concrete is presented. The method to predicting the workability function VC value from
the input parameters of mix proportion and mixing energy using a neural network. A successful
neural network system for prediction of VC value was developed using experimental data.
According to sensitivity analysis, the parameters surface moisture of fine aggregate, volume of
fine aggregate, water volume and power consumption are shown to be important parameters
which have a significant effect on VC value.
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1. Introduction

Roller-compacted dam (RCD) concrete is widely used for dams due to its advantages of
economy and suitability. RCD concrete contains little water per unit volume and it is very
important to control water volume, since variations in water volume may sensitively affect the
quality of concrete (consistency). Water content is usually controlled by measuring the
moisture ratio of aggregates and by VC testing after mixing. The former, the measurement of
the surface moisture ratio of aggregate, is carried out of every batch. VC testing is carried out as
a sampling test about once an hour. Concrete is a complex none-homogeneous material that
consists of aggregate, cement, and water. It is difficult to predict consistency by developing a
physical model, so a model based on fluid mechanics with cohesion is not suitable. When such
a physical model can not be developed, predictions based on inverse analysis are usually carried
out experimental. Such prediction rely on stochastic methods such as regression analysis and
quantitative theory.

However, in order to deal basically as the linear equation using a stochastic method, the
regression analysis entails replacing the nonlinear parameters with linear regression analysis
approximately and eliminating the parameters with high correlation among the many
explanation parameters. Recently, great attention has focused an neural network systems"? as a
way to solve problems that are difficult to estimate using existing stochastic method. There are
same cases of neural network systems being applied to civil engineering evaluations. Examples
are the solution and evaluation of complicated and experimental problems, scenery
evaluations”, slope stability evaluation® and damage level evaluations®~®. Uomoto’s”'? use of
a neural network in the quality control of ordinary concrete mixing as one of them. This study
shows that a system based on choosing a concrete mix proportion, and the maximum and
integrated mixer power consumption can predict the final compressive strength of the concrete,
its air ratio, and slump. Based on the findings, an optimum system for controlling variations in
quality at batching plants is proposed. In comparison with ordinary concrete with slump, it is
difficult for RCD concrete to apply such a quality control method to be used in ordinary
concrete so that the mixing torque by mixer could become to be constant after increasing at the
beginning.

It has been proposed the idea that quality control can be base on the relationship between mix
proportion characteristics and VC value obtained by linear regression analysis such that the
paste fine aggregate pore ratio that assumes to divide the paste volume in concrete 1m’ by the
fine aggregate pore volume can relate closely with the consistency'”'”. Although this idea
helps in mix proportion design, some problems remain predicting VC value in real time because
of limitations an available input items. ‘
In this paper, the neural network system is developed by choosing as input items the volumes
of aggregate, cement, and fly ash, water and the surface moisture ratio of fine aggregate,
specific gravity of aggregate, water absorption ratio, and power consumption in mixing. Real
time VC value are predicted for batching plants. Moreover, the parameters affecting VC value
are obtained by the sensitivity analysis using the developed neural network system.
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2. Estimation of VC value using neural network

(1) Mixer torque

Quality control is carried out at experimentally concrete batching plants using mixer torque as
an important parameter, since mixer torque value easily available on the control panel. An
experienced operators know that a tiny variation in surface moisture ratio of the fine aggregate
can be affected the mixer torque, and consistency may be varied by controlling the surface
moisture. It is well known that there is an optimum mixing time, since the power consumption
of the mixer relates to concrete slump'>**. According to Uomoto”, measuring the mixer power
consumption are method of measuring the force directly acting on the wings of the mixer, while
the energy transferred to the concrete can be predicted from mixer torque value. In this paper,
mixer power consumption in used instead of mixer torque since mixer power consumption can
be considered equivalent to mixer torque.

A comparison of power consumption between ordinary concrete and RCD concrete is shown in
Figure.1 and Figure 2, respectively. High-frequency components in the time history of mixer
power consumption are observed in both. However, although a flat curve is observed with RCD
concrete, it is peaked in ordinary concrete. The reason derives from the mortar ratio, since
mortar acts as a lubricant between coarse aggregates particles. In the case of ordinary concrete,
the gear friction between aggregates governs the torque value since the mortar can not be
formed at first. The concrete becomes a viscous fluid as the mortar component forms with
elapsed time. On the other hand, in the case of RCD concrete, the concrete does not become a
viscous fluid even at the end of mixing because of low mortar ratio, so torque remains gear
friction. Since the power consumption with RCD concrete is flat, the mean value can be used as
a characteristic parameter. Integration power consumption per unit dividing integrated value of
time history of power consumption during mixing is chosen as an input parameter in this paper.
Therefor, the simple parameter of integrated power consumption is assumed in the developed
system.
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Figure 1 Power consumption in mixing (ordinary concrete)
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Figure 2 Power consumption in mixing (RCD concrete)

(2) Input parameters of proposed system

The data obtained before and during mixing are chosen as input parameters and the VC value
obtained after mixing is the output parameter. There are 19 input parameters, as shown in Table
1. Criteria for choosing input parameters are limited to obtain automatically and to obtain as
daily care for the sake of real time prediction. Therefore, although graduation of fine aggregate
size, solid content ratio, fine aggregate under 15 mm, and surface moisture ratio of the coarse
aggregate (G4) are related to consistency, we do not choose these as input parameters in the
proposed system. Since the surface moisture ratio of the coarse aggregate can be measured only
once a day, the mix proportion is adjusted by the weight of coarse aggregate with a particular
surface moisture content. However, since the surface moisture ratio of fine aggregate affecting
greatly VC value is measured in each batch, the surface moisture ratio of fine aggregate is
chosen as an input parameter. The specific gravity of aggregate and water absorption ratio are
also chosen as input parameters. This is because the VC value may be affected by varying a
kind of stone in each pit of dam site. It is well known that ready-mixed concrete temperature
can greatly affect the consistency. The data used in this paper are obtained for a short period
from spring to summer. Although the temperature varies between 18 and 30 ‘C, the concrete
temperature varies only by 20 * 1.0°C. Therefore, The concrete temperature is not chosen as an
input parameter because its variation is small.

Since VC testing is carried out for the quality control of RCD concrete consistency, it is
chosen as the output parameter. The VC value is obtained from a small test machine in this
paper. Concrete with aggregate under 14mm is obtained as a specimen for VC testing by wet-
screening. Thus, the results obtained are slightly different from the consistency of concrete
obtained from batching plants. However, it is well known that a VC value obtained from a small
testing machine can be correlated to a VC value obtained from a full-size machine with full-size
aggregate. The proposed system is developed using a small testing machine. The cement used
in mixing is a moderate-heat Portland cement. Mixing duration in the tests is 90 sec. Mixer
power consumption is obtained by integrating the power from the time of material input until 30
sec of mixing.
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Table 1 Input items

Input items Range of data
1. Volume of coarse aggregate G1 (80 to 120mm) 916~1096kg
2. Volume of coarse aggregate G2 (40 to 80mm) 748~812kg
3. Volume of coarse aggregate G3 (20 to 40mm) 630~790kg
4. Volume of coarse aggregate G4 (5 to 20mm) 818~978kg
5. Volume of fine aggregate (S) 1278 ~1464kg
6. Volume of cement and fly ash (C+S) 207.4~264.9kg
7. Water volume(W) 53.46~127.40kg
8. Surface moisture ratio of fine aggregate (Sr) 3.1~8.3%
9. Specific gravity of coarse aggregate (G1) 2.7~2.74
10. Water absorption ratio of coarse aggregate (G1) 0.19~0.39%
11. Specific gravity of coarse aggregate (G2) 2.7~2.75
12. Water absorption ratio of coarse aggregate (G2) 0.18~0.50%
13. Specific gravity of coarse aggregate (G3) 2.70~2.74
14. Water absorption ratio of coarse aggregate (G3) 0.33~0.87%
15. Specific gravity of coarse aggregate (G4) 2.68~2.73
16. Water absorption ratio of coarse aggregate (G4) 0.79~1.53%
17. Specific gravity of fine aggregate (S1) 2.65~2.67 ..
18. Water absorption ratio of fine aggregate (S1) 1.34~1.82%
19. Integrated power consumption (30sec) 606 ~680kWh/m’

(3) Structure of neural network system

A neural network system is a system in which the neurons and synapses of cerebral nerves are
modeled mathematically by cells and networks'. Learning using a combination of well-
selected data can lead to the development of a complicated nonlinear model. A hierarchical
neural network developed by the learning method with teaching data is adopted, as shown in
Figure 3. One layer used widely in general is adopted as the medium layer. Nodes between 1.0
to 2.0 times the nodes of the input layer are experientially appropriate, although no rule to
determine the number of nodes of the medium layer can not generally established. 30 nodes that
is 1.5 times the nodes of input layer are chosen as the nodes of the medium layer from the
results of case studies in this paper. Since values between 0.2 to 2.0 as the temperature T of
sigmoid function are appropriate from existing studies'®, T is chosen as T=1.0.

3. Input data used in learning

Data are gathered using a batching plant equipped with a forced concrete mixer with a double
axis and 3000 ¢ capacity. The parameters affecting variations in VC value are (1) error of VC
test, (2) variation in surface moisture ratio of aggregate, and (3) measurement errors of
materials. Measurement equipment errors are such that the coarse aggregate (G1) is within 3%,
the fine aggregate and the coarse aggregate (G2 to G4) within 2%, and the volume of fly ash,
cement, and water within 2%. 97 mixing data are chosen by varying the combination of mix
proportion with volume of cement and fly ash 110, 120 and 130 kg/m® in test construction as
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Figure.3 Developed neural network system

shown in Table 2. The range of test data as shown in Table 1 widely cover the range of actual
data with actual mix proportion with 2000 ¢ /batch. Therefore, the proposed system obtained in
this paper is reliable if the uncertainty of the actual data is considered.

21 mixing data for verification are chosen from 97 mixing data in order to eliminate bias errors.
Therefore, 76 data are obtained as learning data. It is well known that neural networks improve
as the number of data points increases for the same reason that linear regression analysis with
the evaluation equation of least mean squares method. Since actual data contain errors, it is
important for data used to appropriately represent the population. From existing studies'”, it is
judged that the number of data obtained in the above manner are suitable for the prediction of
the population.

4. Learning and verification
Generally, in solving complicated problems with neural networks, the errors fall with

increasing leaming. However, excessive learning leads to the increasing of prediction errors. In
order to avoid excessive learning, the relationship between the number of learning steps and
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Table 2 Mix proportions in test mixing

No.| W/ | C+F Per unit (kg/m’)*1 N. of
C+F |kgm’ | W [ C | F | S Coarse aggregate kg/m’ | Ad | mixes
kg/m’ Gl | G2 G3 (G4 %o *2
1 78.2 110 86 77 33 637 | 417 | 417 | 417 | 417 | 0.275 3(1)
2 82.7 110 91 77 33 634 | 415 | 415 | 415 | 415 | 0.275 5(2)
3 87.3 110 96 77 33 630 | 412 | 412 | 412 | 412 | 0.275 1(0)
4 | 70.8 120 85 84 36 635 | 416 | 416 | 416 | 416 | 0.300 | 4(2)
5 75.0 120 90 84 36 632 | 413 | 413 | 413 | 413 | 0.300 | 20(6)
6 | 79.2 120 95 84 36 628 | 411 | 411 | 411 | 411 | 0.300 | 4(1)
7 69.2 130 90 91 39 629 | 412 | 412 | 412 | 412 | 0.325 | 10(3)
8 | 75.0 120 90 84 36 699 | 396 | 396 | 396 | 396 | 0.300 | 2(0)
9 | 79.2 120 95 84 36 695 | 394 | 394 | 394 | 394 | 0.300 | 5(0)
10 | 75.0 120 90 84 36 636 | 416 | 416 | 416 [ 396 | 0.300 | 15(4)
11 | 73.3 120 88 72 48 636 | 416 | 416 | 416 | 416 | 0.300 | 7(2)
Total number of mixes 76(21)

*1:Maximum size of coarse aggregate Gmax=120mm, air=1.5+t1%
*2: Number of mixes and number in () indicates number of verification mixes.
W: water volume, C: cement, F: fly ash, S: fine aggregate, Ad: admixture

errors is investigated. The relationship between the number of leaming data and the resulting
error is shown in Figure 4. Recognized errors become smaller with increasing learning.
However, prediction errors become smaller with increasing learning at the first and larger later.
Unknown obliviously the reason to arise the excessive learning, it is supposed that the origin of
the excessive learning may be on the system structures such as node number, number of
medium layers, the characteristics of input items and learning data. Parametric studies are
carried out by varying the node number of the medium layer N=25, 30, 35, and 40 and the
temperature of the sigmoid function T=0.5, 1.0 and 2.0. The developed system is adopted as an
optimum system when recognized errors is minimized. The system obtained using 7000
learning steps with N=30 and T=1.0 is chosen as the optimum. The workstation to develop the
system was HP-Apollo Model 715/50. The time taken to develop the system was about 5
minutes. Predictions are instantaneous. The results of learning data and the results predicted the
verification data using the developed system show Figure 5 and Figure 6, respectively. These
figures indicate the relationship between actual data and output data that predicted by the
developed system using inputs corresponding to actual data. It can be said that verification and
learning are satisfactory with the developed system. The target VC value is 20sec. Although
many data concentrate around the target VC value, VC values over 30 sec. are also predicted as
well. It is found that the coefficient of variance (C.0.V.) of prediction error is a constant, since
the error increases with the VC value increasing. Histograms of recognized error on learning
and prediction error on verification are shown in Figure 7 and Figure 8, respectively. The
standard deviation (S.D.) of recognized error and predicted error are or =5.71sec and o

p=7.45sec respectively. Both S.D. values are smaller than the target control criteria for the error
in VC value, 20t 10sec, and are not biased. According to existing studies'®"”, the C.0.V. of
VC values obtained by VC tests in laboratory is about 0.2. Clearly the developed system using
a neural network is accurate enough to predict VC values because the S.D. at the target VC
value of 20sec. is 4sec. This example demonstrates that a neural network is a useful way to
solve complex problems with multiple nonlinear input parameters.
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On the other hand, in developing the hierarchy structure of the neural network system, as
shortcoming is that decisions about medium layer and the number of learning steps must be
made through trial and error, since no formal method of development has been established.
However, it can be solved the problem using the sensitivity analysis described in the following
chapter.
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5. Sensitivity analysis

(1) Method of sensitivity analysis

Sensitivity analysis of outputs against inputs is carried out with the developed neural network
system. The process of predicting VC values is verified by comparing the sensitivity of output
against input. Although a theoretical description of sensitivity analysis is given in Reference (®),
the computational method used is explained bellow.

Variation in VC value can be computed by discretely varying the value of target items in the
range + o ( o is the S.D.) from the mean value while holding other inputs fixed their mean
values. The sensitivity ¢ ; of input item i around the mean value can be calculated as Equation

n.

5 = [VC,, - VC_|+|vC, - VC_,
i 2VC

m

6]

Where, ¢ ; : the sensitivity of input item around the mean value against VC value, VC,,: VC
value corresponding to mean value +1.0 ¢ of input data, VC_, : VC value corresponding to
mean value -1.0 ¢ of input data, VC,: VC value corresponding to mean value of input data.

Combined sensitivity on the adjustment of mix proportion induced from the variation of
surface moisture ratio using the sensitivity around mean value of each input items is obtained to
combine as 3. & ? using Equation.(1).

However, when parameters indicate a correlation among input items, it is assumed as the
probability with a condition as shown in Figure (2).

P, = P(Eja)-P(a) )
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The probability with a condition can be described as the occurrence probability Pr of E with the
condition of parameter a. A similar approach can be also used in sensitivity analysis. A
correlation exists between the surface moisture ratio and the fine aggregate. The fine aggregate
is adjusted the in mix proportion according to measurements of the surface moisture ratio. Thus
the measured volume of fine aggregate tends to increase with rising surface moisture ratio.
Assuming the parameters with a correlation as independent parameter, a contradiction occurs
among the combination values obtained using each parameter. Computing the sensitivity, the
parameters with correlation are treated as the probability with a condition in this study. The
sensitivity analysis is proceeded by input items with a correlation varying the value
corresponding to the correlation and other parameters fixing the mean value. Concretely, the
parameters with the correlation over 0.7 are chosen and the parameters having not a
contradiction with characteristics of fresh concrete among the chosen parameters assume as the
parameters with a correlation.

The parameters with a correlation obtained by above manner are one of concerning with
variation of water. As an example, Figure 9 shows the relationship between the surface
moisture ratio of fine aggregate and the water volume, Figure 10 shows the relationship
between the surface moisture ratio of fine aggregate and the fine aggregate value and Figure 11
shows the relationship between the mixer power consumption and the water volume. According
to the relationship mentioned above, combined sensitivity is obtained by assuming that four
parameter, the surface moisture ratio of fine aggregate, the water volume, the fine aggregate
value, and mixer power consumption, are completely correlated. Five parameters without a
correlation, such as cement and fly ash value and coarse aggregate (G1 to G4) value are
assumed as independent parameters. Since the sensitivity analysis is carried out using the same
mix proportion and aggregate obtained from the same pit, the specific gravity and water
absorption ratio associated with the aggregate are assumed constant.
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(2) Results of sensitivity analysis

The sensitivity analysis is carried out using 22 mixing data with the same mix proportion and
the same aggregate from among 97 mixing data tested. Figure 12 shows the histogram of VC
value for sensitivity analysis. The mean VC value is 21.8sec., the standard deviation 10.6sec.
and the coefficient of variance 48.5%. The VC value varies widely as shown in the figure, even
with the same mix proportion. Figure 13 shows the results of sensitivity analysis of each input
items against VC,

The most sensitive input item is the water moisture ratio of fine aggregate. Sensitivity of
surface moisture ratio of fine aggregate because the variation of water volume and fine
aggregate may have an extreme effect on VC value. Although the surface moisture ratio of fine
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aggregate is measured every batch, adjustments are not carried out until the next batch. Expert
engineers know as well that reflecting abrupt changes in surface moisture ratio of fine aggregate
on the mix proportion can lead to consequent instability in concrete consistency. Thus, the
adjustment of mix proportion is a complex process of complicated decision-making that takes
into account trends in time history of variation in surface moisture ratio. In comparison with
most parameters explained by equipment measurement error, large variations in VC value
result from parameters related to water that are difficult to control.

The variation of VC value in Figure 12 is compared using each sensitivity obtained above. It is
supposed that the sensitivity of each input items mentioned above may be induced by the
variation of VC value. The adaptation of developed neural network system is estimated to
compared the variation of actual VC value with the variation obtained to sum up the variation of
VC value computed by the sensitivity of input items.

The sensitivity of VC value to each input item is summed up using Equation (3).

5y, =Y 5% ®
i=1

Equation(3) is obtained by assuming that every input item is independent. Although strictly a
computation that considers the correlation between parameters is necessary, the gross
sensitivity is obtained by the sum of squares as a simplified model in this paper. From
computations, ¢ 1=0.49 is obtained. Moreover, VC values obtained in the VC test contains
measurement errors. Since measurement errors are ¢ ,=0.2 according to an existing study, the
variation in VC value is obtained as Equation (4).

8rg =8y +8,," =0.49% +0.2? =0.53 4

In comparison with the actual VC value of 58.5%, these results demonstrate the accuracy of the
developed system, although there are some scatter. Thus, these results back up the concept of
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Figure 12 Variation of VC value
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Volume of coarse aggregate (G1) 0/071
Volume of coarse aggregate (G2) l 0.014
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Figure 13 Sensitivity of each input items

the developed neural network, and it is thought that this system can be applied to batching
plants in situ.

5. Conclusion

It is clear that this advanced system of quality control for roller-compacted dam concrete based
on a neural network can successfully predict VC values. The findings of this paper are as
follows.

(1)VC value in actual batching plants are well-predicted using neural network by taking the mix
proportion, mixer power consumption, and measurements equipment of surface moisture
ratio as inputs.

(2)The accuracy of predictions of VC values of RCD concrete is about 5 sec. Thus, the
developed system is accurate enough to predict VC value given that criterion for VC values
in VC tests is 20 10sec.

(3)The parameters affecting VC value have been verified by carrying out the sensitivity
analysis with the developed neural network. The parameters found to have high sensitivity
are @ surface moisture ratio of fine aggregate, @ volume of fine aggregate,(® water volume,
and@integrated power consumption.
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