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The air-void component has a dominant effect on the frost resistance of
concrete. However, a method for determining the radius distributions of
air voids has not been determined. The present paper proposes a new method
forwards this purpose. Its principle is based on the relationship between
the radius distribution of spheres and that of their cut sections. The
procedure consists of the measurement of the cut sections’ diameters,
and statistical analysis. The validity of the method has been verified
by numerical calculations and experiments. The number of air void sections
to be observed and the area to be examined are also suggested.
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1. INTRODUCTION

Revealing details of the air-void component of hardened concrete is
essential in researching its frost resistance. However, the method for
determining its basic characteristics, such as radius distribution and
number of air voids, has not been determined. For instance, the linear
traverse method now in use [1] only gives a hypothetical size of the air
voids on condition that all the voids are isometric spheres.

This paper proposes a method for determining the actual size distribution
by measuring the radii of circles observed on a sawn and ground surface
of hardened concrete. The number of circles and the area of the cut section
required to obtain precise results will also be discussed.

2. METHOD PRINCIPLE

When a piece of hardened concrete is sawn, large number of circles appear
on the surface as the sections of air voids. These circles will be called
vapparent circles”. Since each of the apparent circles belongs to a
distinct air void, the void is named a “source sphere”. In this paper,
the radius of an apparent circle is expressed by x, and that of an air
void is expressed by r.

It is impossible to derive the value of r directly from x, but in the
case where the air voids comprise an infinite set of spheres with radius
r, the probability that the radius of an apparent circle will be x is
expected to obey a definite law of probability. Naturally the circles
with a radius larger than r would never appear, so when a set of source
spheres is a mixture with various radii, the radius of the largest source
spheres can be known from the largest radius of the apparent circles.
Provided the above mentioned law of probability is known, the radius
distribution of the apparent circles having originated from the source
spheres with the largest radius can be calculated through the law. And
besides, as one apparent circle corresponds to one source sphere, the
total number of the apparent circles originating from the source spheres
with radius r is equal to the number of source spheres with radius r.
Thus, the number of source spheres with the largest radius and the radius
distribution of apparent circles originating from them can be determined
statistically.

When thus obtained radius distribution is subtracted from the originally
observed distribution, the second largest radius of the original
distribution becomes the largest of the residual secondary distribution.
By treating it in the same way, the number of the second largest source
spheres 1is determined. If this process is repeated, the radius
distribution of the set of source spheres will entirely be revealed. It
is rather easy to calculate the radius distribution of the air-void
component of concrete from that of the source spheres.
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3. THEORETICAL ANALYSIS

3.1 Probability density function of the radius of apparent circles in
the case where all air voids are isometric spheres

Concrete contains a myriad number of various sized air voids. At first,
only the voids with radius r are considered, and the radius distribution
of the apparent circles stemming from them will be analysed.

Supposing that spheres with radius r exist randomly in concrete and the
number of apparent circles n is sufficiently large, the distribution of
their radius x may be the same as the radius distribution of n plates
of thin disks which will be formed by cutting a single sphere with n sheets
of parallel planes at equal intervals. Consequently, the probability of
the radius of an apparent circle being x is equal to the probability of
the radius of a disk picked up randomly out of those which have been formed
in the previously described way being x.

Considering this concept, a sphere is singled out, and x, Z axes are set
as in Fig. 1. Then the relation between z and the radius of a cut section
x 1s expressed by the following equation.

Z=r—\/r2—x2 (l)

Let z+dz correspond to x+dx,

dz x
dz = (—)dx = === dx 2
z (dx) = (2)
z
dz
1 d
\ N/
z | Nl A X
“X‘J*“
dx
Fig. 1

Consequently, the probability P. that the radius of a section will be
x~x+dx is
P =dz/r=g(x)dx

x

gx) = —————

mrt—x?

As g(x) 1s the probability density function of x, the cumulative
distribution function G(X) is given by

0<x<r) (3)
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«Jrz—-xz (4)

G(x)=rg(x)dx=1——-————-—— 0<x<r)
0 r

3.2 Relation between the radius distributions of apparent circles and
air voids

a) Relation between the number of apparent circles and air voids per unit
volume of concrete

A rectangular prism of area A and height H (Fig. 2) is considered as
a specimen. The measurement is tobe performed on the entire upper surface.
Supposing the specimen contains N, particles of air voids with radius
r, the number of alr voids per unit volume N, is given by formula (5),
and the total number of the voids apparent at the surface N, is estimated

by formula (6).

N, =N, /AH (5)
N, =2rN,/H (6)
By eliminating N, from formulas (5) and (6), formula (7) is obtained as
N, =2rAN,, (7)

Denoting by n, the number of apparent circles which satisfy the conditions

of both having a radius of x~x+dx and of having originated from a source
sphere with radius r, N, is given as the product of the total number of

xr
source spheres N, and the probability of radius being x~x+dx. Thus, N,
is obtained as follows.
nxr = NS?‘PI
x
=2AN,,

N

dx (8)

cut surface

O O v examined area A

Fig. 2
b) Relation between the radius distributions of apparent circles and air

voids
If the density function of the radius distribution in terms of the number
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of air voids per unit volume of a specimen is given by the function f(x),
N,{r ~r+dr}, the number of air voids with radius r~r+dr, will be

No{r ~r+dr} =N f(dr (0<x<r) (9)
in which N, is the sum total of air voids contained in a unit volume of

the specimen. By combining Eqg. (8) with Eg. (9), the number of the apparent
circles n(x,r), which at once have a radius of x~x+dx and have originated
from source spheres with radius r~r+dr, can be obtained as follows.

n(x,r) = 2AN, £(r) X e (0<x<r0<r <o) (10)

st

Consequently, n(x), the number of apparent circles with radius x~x+dx,
and n, the total number of apparent circles are expressed by

n(x) = 2ANOJ'°°i2@d3fz-—dx (11)
r‘—x
n=2aN,["[/ J’gv_(”_, dxdr
=2AN, jo Hf(r)dr = 2ANF (12)

The symbol r in Eq.(12) is the mean value of the distribution f(r), that
is

F= [ rf(rdr (13)
Thus, the probability P that the radius of an apparent circle will take
a value between x and x+dx is

n(x) f(rydx
e e M b 14
n J 0 2 —x? (14)
= P(x)dx
f
= —w————dx : 1

in which, p(x) is the distribution density function of the apparent circles
having originated from a group of air voids with a radius distribution
f(r) and an average radius r.

¢) Relation between the total number of apparent circles and source spheres
Considering Eq. (7) and Eg. (9), the number of source spheres with radius
r~r+dr can be expressed by

N{r ~r+dx}=2rAN,f(r)dr (16)
Then, the total number of source spheres N, becomes

N, =2AN, [ 1f(r)dr = 2AN,7 (17)
Since the right side of Eg.(17) is the same as Eqg. (12),

N, =n (18)

This result verifies analytically that the total number of apparent
circles is equal to that of the source spheres.
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3.3 Relation between the distribution of radius frequency of apparent
circles and that of air wvoids

a) Expression of radius by discrete variable

In practice, data on the apparent circles will be ordered by the frequency
of circles with a certain range of radius. In that case, the radii x and
r are expressed by

x=iAx (19)
r=jAx (20)
where Ax is the interval of the class in a histogram. When the number
of the classes is m, r,, the maximum value of r is

r, =mAx (21)

b) Notation of numbers
To represent various kinds of numbers, the following symbols will be used.

n : the total number of apparent circles found in examined area A.
n(i) : frequency of the apparent circles included in class .
n(j) : number of the apparent circles originating from the source spheres

in class jJ.

n(i,j) : frequency of apparent circles which at once belong to class 7 and
have originated from source spheres in class j.

N, : total number of source spheres. .

N.(j) : number of source spheres in class j.

N, . number of air voids per unit volume of concrete (/mm’).

Ny(j) : number of air voids per unit volume of concrete in class j.

N . number of air voids contained in lcm® of concrete (/cm®), that is
N = 1000N, (22)

N(j) : frequency of the air voids in class (/er®), that is
N(j) =1000N,(j) (23)

c) Relation among the radius distributions of apparent circles, source
spheres, and ailr voids
When the density function of a radius distribution for air voids is given

by f(r), the freguency of the air voids in class j is expressed by
jAx

NoD)=No [ f(r)dr
Representing the primitive function of f(r) by F(r), the previous equation
becomes
Ny (j) = N[ F(jAx) = F{(j - DAx}] (24)
Hereafter, F(jAx) will be abbreviated to F(j). From Eg. (7), the frequency
of the source spheres in class j is
N,(j) =2AN,jAx

= 2AN jAx{F(j)~ F(j - D} (25)
By analogy from Eqg. (18), the total number of apparent circles originating
from source spheres in class j is egqual to the number of source spheres
in class j. Then
n(j) =N,
By referring to Eg. (4), n(i,j) becomes

nGi, /) = (i), g0x)dx
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=—‘NS.(j){\/J'2—(i—1)2“\/J'z—iz} (26)
J

=2AN0Ax{Jj2—(i—1)2—Jj2—i2}x{F(j)—F(j—1)} (27)
Though the apparent circles in class i have originated from different
source spheres, the radius of an apparent circle can not exceed the radius
of its source sphere and a circle can not originate from a sphere whose
radius is smaller than that of the circle. Thus, the number of apparent
circles in class i, the total number of apparent circles, and the
probability density of class i are written as follows.

n@) = 3G, /)

j=1

= 24N, ary {77 = (=17 = = }x{F(j) - F(j - 1} (28)
j=1
n=3nw =33 i) _ (29)
i=1 i=1 j=i
pliy =22 (30)
n

F(j)—F(j—~1) in the previous formulas is not necessarily given by a known
function, but it will be sufficient if its numerical value is given.

d) Selection of the number of classes m

If the class interval Ax is fixed, the number of classes m will be decided
as a necessary consequence from the minimum and the maximum values of
the radius. However, in such a case as the aim of the analysis is to reveal
the law of distribution which the radii of air voids obey, the upper limit
of X or r is not clear. In that case, it is considered adequate to determine
m as follows.

Let &(j) be the ratio of the total volume of air voids in class j to the
sum total volume of those in class l~class j, and m be a value of j which
satisfies €(j)<é€, in which € is a constant to be selected according to
the desired accuracy. Then, m can be determined as the smallest integer
which satisfies the condition

£(m) = (m~1/2°{F(m)~ Fm~D}/ 3. (i~ 1/ 2 {F() = F(i-D} < £ (31)
j=1

Considering the effect on the calculated air content, condition (32) is

sufficient to confine the error to within 0.1 percent as a value of air

. content.
£=0.01 (32)

4. DEDUCING THE RADIUS DISTRIBUTION AND OTHER PARAMETERS OF AIR-VQID
COMPONENT

4.1 Analysis of histogram components

Consider a histogram of apparent circles with m classes and an interval
Ax . When x is on the boundary of two classes, it is included in the smaller
class, that is,
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(i—)Ax < x < iAx (33)

From the first expression of Eg.(28), n(j) for i=1~m can be written as
n(l) = n(LD)+n1,2) +-- - +n(l,m)
n2) = n(2,2) +eeee +n(2,m)

........................ (34)
n(m) = n(m,m) |

These formulas mean that a histogram of observed circles is composed of
m individual histograms of apparent circles originating from source
spheres in class m~class 1. This is schematically illustrated by Fig.
3. For this reason, the original histogram for the observed circles will
be called an m-dimensional histogram.

n(i)

j=m-2

\m!

=
N
Sl

Vs
1 2 3 teveseans m i

Fig. 3 Composition of the histogram of apparent circles

J=m

DN

4.2 Procedure for determining the radius distribution of air-voids from
a histogram of observed circles

a) Calculation of the radius distribution of source spheres

As shown in Fig. 3, n(l,m)~n(m,m) are the numbers of apparent circles
originating from the source spheres in class m, and the total will amount
to N,(m), the number of source spheres in class m. In addition, the
apparent circles belonging to the largest class m should all have
originated from the source spheres in class m. Then, by substituting m
for 7 and j in Eq.(26), the relationship equation (35) can be obtaind.

n(m,m)=——-2—mn-1:—lNS(m) (35)

Rewriting Eq.(35), the formula to compute N (m) from n(m,m) becomes

Ns(m)=\/—2=::———_7n(m,m) (36)

Tt should be noted that n(m,m) is a known number given by the frequency
of apparent circles in class m.

When N, (m) becomes known, the frequencies of apparent circles originating
from source spheres in class m can all be computed by formula (37) for
class l~class m-1.

n(i,m) = Nx(m){Jm2 G- —m’ —iz} (i=1~m-1) (37)

m
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By subtracting these results from an m-dimensional histogram, an
(m-1)-dimensional histogram is obtained, and the frequency of its
uppermost class m-1 becomes a known number, that is
nm—~1,m—-1)=n(m-1)-n(m-1,m) (38)
Consequently, formulas to compute the number of source spheres in class
m-1 and the frequency of apparent circle sizes originating from source
spheres in class m-1 are obtained by substituting m-1 for m in formulas
(36) and (37) respectively. Thus, N,(m-1) and n(i,m—-1) (i=1~m-1) become
known numbers. If this process is repeated down to the l-dimensional
histogram, the radius distribution of the entire set of source spheres
will be revealed.

In practicing these calculations, it may occur that the number of apparent
circles in some class of some dimensional histogram will be negative.
In that case, the frequency of such a class should be zeroed by adjusting
the value to be subtracted from the preceding histogram. However, this
adjustment will cause the calculated number of source spheres to exceed
the observed number of apparent circles by the absolute value of the
negative number. To compensate for this discrepancy, the number of source
spheres obtained by formula (36) is used as a temporary value to carry
out the operation of formula (37), and a virtual value for the number
of source spheres Nq(j) will be determined by summing the subtracted values

n(i,j) (i=1~j), that is

]
AOEDWR)) (39)
=1

b) Relating the radius distribution of air-voids to that of source spheres.
Since the relation between the number of source spheres N, and air voids

per unit volume of specimen N, was given by Eq.(7), the number of air
voids in class j per unit volume of concrete Ny(j) is

N, ()
N.(j)=—1 40
o(]) 2AjAx (40)
and the frequency density f(j) is
f( )—-M (41)
7= JAN, jax

c) Air content, average spacing of air voids, and modified spacing factor
When N,(j) is known, the volume of the air voids in class j per unit volume

of concrete V(j) is

V() = 4n{r(H} No(j)/3 (mm*/mm*) (42)
in which, r(j) is the median of class j computed by

r(j)=(-1/2)Ax (43)
If the ailr content of concrete as a percentage is denoted by A, then
A=V, x100 (%) (44)

where V, is the total volume of air included in a unit volume of concrete,
that is

Vo =2 V(j) (mm’/mm?) (45)

j=1
As for the spacing of air voids, an average spacing C, will be defined
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as

P, = _
C, =332 +V —2F (46)
NO
where, P, is the volume of cement paste exclusive of air voids per unit
volume of concrete (mm®/mm’), and f’: represents the volume of an air void
with the average radius r (mm), that is
V. =477°/3 (mm’)
Since one half of C, is equivalent to the formula which will be obtained
by replacing both the radius in the so called spacing factor formula with

the average radius, and the volume of an air void with the volume of an
air void of average radius, it can be called the modified spacing factor

L. Then

L=""3—2 4V —F (mm) (47)

5. VERIFICATION OF THE VALIDITY OF THE PROPOSED METHOD

5.1 Verification by numerical calculations

a) Procedure
In order to verify that the radius distribution of air-voids can be deduced

from the histogram of apparent circles, the following steps were carried

out.
1: The total number of air voids per unit volume of concrete and the

examined area was assumed to be Ny=10* (/cm’) and A=1000mm’.
2: A density function of air void radius distribution f(r) was selected.
3: An interval of classes as Ax was set, and the frequency distribution
of air void radii was tabulatated by multiplying F(j)—F(j-1) by N,.
4: A table was made containing the frequencies of radius distribution
of the apparent circles corresponding to that of the air void radii

made in the previous step.

5: By treating the table obtained at step 4 as measured data, a radius
distribution of air voids was derived from it by the method discussed
in Section 4.2.

6: The processed result was judged to agree with the given distribution

of air voids at step 3 by a x’-test.

Deducing the radius distribution in step 5 is performed independently
of the function f(r), so if the result of step 5 agrees with the tabulated
frequency distribution from step 3, it proves the deducing method to be
valid regardless of the radius distribution exhibited by the air-voids.

b) An example of uniform distribution

Let the radii of the air-voids be distributed uniformly in the range of
0~7,. Then
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f»y=1i/r,, Fry=rlr,, F(H-F(j-D)=1/m

OEDWHIN (48)
Z’;i{\/jz—%i——l)z —sz—i2}

S S -6 -

Assuming 7,=0.5 mm, the radius distribution can be shown as in Table 1.
The values of p(i) in Table 2 are the densities of apparent circles computed
by formula (30), and the values shown for n(i) are the expected frequencies
of apparent circles in each class.

Table 1 Histogram for air voids with a uniform distribution

class radius frequency
J r (mm) N, (7) N(F)
1 0.00~0.05 1 1000
2 0.05~0.10 1 1000
10 0.45~0.50 1 1000
total - Ny=10 N=10000

Table 2 Deduced results for uniform distribution

class - density expected estimated radius

frequency distribution

i 2 p(i) n(i) of air voids

1 1.99188 0.036216 199.19 998

2 4.04143 0.073481 404.15 999

3 5.35936 0.097443 535.94 1000

4 6.23502 0.113364 623.50 1002

5 6.76814 0.123057 676.81 1001

6 6.99892 0.127253 699.89 1001

7 6.93339 0.126073 693.40 999

8 6.54816 0.119057 654.81 1001

9 5.76421 0.104804 579.42 999

10 4.35890 0.079253 435.89 1000

2= 55.00001 1.000001 5500.00 N=10000

ij

If the integers of n(i) are regarded as observed data, the number of apparent
circles in class 10 is 436, and the temporary number of source spheres
in class 10 will be computed by formula (36) as

m
N (10) =| ———= ) =1000.25
,(10) { r-wzm_ln(m m)Lzm

Consequently, the number of apparent circles derived from the source
spheres of class 10 can be obtained by formula (37) as follows.

n(l,lo) = M{Jm2 “(l— 1)2 _\/m2 —i2}
m
=5.014
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n(2,10) =15.195

n(10,10) = 435.999

Thus, the total number of source spheres with a radius belonging in class
10 will be estimated as
Nq(IO) =5014+15.195+---- +435.999

=1000.25
This result verifies that N,(10) is equal to N,(10).

By using formulas (40) and (23), the number of air voids with a radius
belonging in class 10 can be determined.

N, ()
N, (10) = Za 21000 (mm?)

2AjAx |,

j=

N(10) = 1.000 (/cm?)
Then, a 9-dimensional histogram can be obtained by subtracting
n(1,10)~n(10,10) from the 10-dimensional histogram. The values of the
rightmost column of Table 2 are the estimated results from repeating
similar calculations down to a l-dimensional histogram.

Here, the xz value of the estimated results was calculated to be 0.014
when compared with Table 1. Since the value of xz—distribution, expressed
by x; hereafter, with 10 degrees of freedom and 5 percent probability
is 18.31, the x* value is far greater than the Z; value. This test result

indicates that the estimated radius distribution corresponds exactly to
the assumed distribution.

¢) Results for a normal distribution
Table 3 shows the results for a normal distribution with an average radius

7=0.25mm and a standard deviation 0 =0.05mm. In this case, the x2 value
was 1.341 and the y; value was 21.03.

Table 3 Deduced results for normal distribution

class radius theoretical expected estimated radius
‘ frequency frequency distribution

i,7 r (mm) of air voids of circles of air voids

1 0.100~0.125 49 46 56

2 0.125~0.150 165 143 171

3 0.150~0.175 441 257 436

4 0.175~0.200 919 389 918

5 0.200~0.225 1499 510 1499

6 0.225~0.250 1915 569 1919

7 0.250~0.275 1915 526 1912

8 0.275~0.300 1499 396 1501

9 0.300~0.325 919 238 917

10 0.325~0.350 441 114 443

11 0.350~0.375 165 42 163

12 0.375~0.400 49 12 50
total 10000 3242 9981
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d) Results for an exponential distribution
The assumed distribution is

fr)={exp(-r/p)}/p

and the number of classes m is determined to be 22 by formulas (31) and
(32). When the examined area A is 1000mm’ and the number of air voids
ig 10%/cm’®, the calculated number of apparent circles will total 6059.

The y° value for the estimated results will be 0.235 and the y, value
will be 33.92.

5.2 Verification by experiment

a) Procedure

In the previous verification, function G(x) was fundamentally related both
to the process of computing the frequencies of apparent circles from the
given distribution of air-void radius and to that of deducing the radius
distribution of air voids from the given frequencies of apparent circles.
Hence, to verify the validity of the method under the condition that the
function G(x) is not related to the former, the frequencies of apparent
circles were experimentally determined. For this purpose, a two-component
mixture of a matrix and spherical particles was prepared and analysed.
The matrix material was agar and the particles were made of starch.

The specimen was a rectangular prism 160mm long, 112mm wide and 55mm high,
in which 429 particles were contained with a volume ratio of 0.448. The
size distribution of the particles is shown in Table 5. To examine the
cut surfaces, the specimen was sliced into plates, each about 10mm thick.
The total area of the examined surfaces was 92400mm®* and the total number
of apparent circles was 500. All of their diameters were measured and
consecutively numbered. The frequencies of the diameters are shown in

Table 4.

Table 4 Histogram for observed circles

class diameter ID number of circles
1 x  (mm) 1~100 1~200 1~300 1~400 1~500
1 0~5 4 12 18 27 33
2 5~10 45 g5 130 166 197
K) 10~15 26 53 94 122 15
4 15~20 25 40 58 85 113

examined area (mm’) 18480 36960 55440 73920 92400

b) An estimate of diameter distribution and its accuracy
In Table 5, the number of particles estimated to be in the total volume
of the specimen is shown in comparison with the number actually used in

the experiment. The value of y’-distribution with 3 degrees of freedom
and 5 percent probability is 7.815. So if a value of xz calculated by

comparing the result with the actual data is smaller than 7.815, the result
can be considered to have a sufficient accuracy. In Table 5, ratios of

x> values to 7.815 are shown as x*/x:, which indicates that about 300
apparent circles are required for accuracy.
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c) Computing the volume ratio of particles
Table 6 shows the computing process and resulting volume ratio for n=500
by formula (45). As can be seen, the obtained value of V, is 0.441--close

to the actual value of the specimen.

Table 5 Reduced results of diameter distribution
snd accuracy of estimation

class diameter of particles estimated number of particles
particles included in number of circles used for the estimation
i,7 (m) specimen 100 200 300 500
1 0~5 0 0 0 0 0
2 5~10 202 217 238 206 185
3 10~15 131 92 102 127 122
4 15~20 96 106 85 82 96
total - 429 408 425 415 403
y?* - 13.1 14.1 2.24 2.05
¥ o - 2.18 2.35 0.37 0.34

Table 6 Calculated result of the volume ratio of the particles

class r(j) N, (F) r(Fj)N, (J) /N, Vo (7)
bl mm 107 /mm’ mm mm’ /mm’
1 2.5 0 0 0
2 7.5 0.1877 0.999 0.0415
3 12.5 1.1238 1.098 0.1266
4 17.5 0.0974 1.210 0.2733

Np=1.409X107/mn’ r =3.31mm Vo=0.441

6. REOUIRED NUMBER OF APPARENT CIRCLES AND CUT SURFACE AREA TO BE EXAMINED

6.1 Requirements for estimating the radius distribution of air-voids

For practical reasons, it is desirable to observe and measure as few
apparent circles as are required to ensure a precise result. So, the number
of apparent circles required to keep the value of xz /xg smaller than unity
will be discussed. The number of apparent circles is controlled by choosing
to examine an appropriate amount of surface area. The distribution
functions and other parameters are the same as those used in Section 5.1.

Figure 4 illustrates the relations between the number of apparent circles
n and the xz—test result. As can be seen in the figure, the values of
n corresponding to x* /x§=1 are about 150 for uniform, 350 for exponential,
and 600 for normal distribution. Therefore, even in the case where the
radius distribution of air-void component is not known, it can be deduced
from approximately 600 appeared circles with an acceptable accuracy. If
the number of apparent circles is fixed, the area to be examined will
increase with a decrease in the number of air voids per unit volume of
concrete. Denoting by A, the area required to be examined in terms of air
content, A should be larger for concrete with less air content.
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Fig. 4 Relation between number of observed
circles and accuracy of estimation

6.2 Area to be examined for determining the air content of concrete and

the spacing factor of air-voids

The accuracy of the determined radius distribution of the air-void
component is mainly dependent on the number of observed apparent circles.
However, such parameters as the air content of concrete, the average
spacing of air voids, and the spacing factor of those air-voids are related
not only to the air-void component but also to the other constituents
of concrete. Therefore, the area to be examined must be large enough to
determine the concrete’s composition, especially the coarse aggregate
content, because the coarse aggregate particles are the fewest in number.

If the symbol A, is used to represent this area, A, will increase with
an increase in the maximum size of the aggregate. So, the value of A, will
be discussed for three maximum sizes of coarse aggregates:20,25, and 40mm.
Their size distributions are shown in Table 7 both by weight ratio and
by particle ratio. The properties and mix proportions of concrete are
assumed to be as shown in Table 8.

Table 7 Assumed size distributions of coarse aggregates

Max.size weilght ratio particle ratio
mm 20mm 25mm 40mm 20mm 25mm 4 Omm
5~10 0.30 0.18 0.14 0.732 0.659 0.683
10~15 0.40 0.27 0.19 0.211 0.213 0.200
15~20 0.30 0.35 0.17 0.058 0.101 0.065
20~25 - 0.20 0.15 - 0.027 0.027
25~30 - - 0.14 - - 0.014
30~35 - - 0.12 - - 0.007
35~40 - - 0.09 - - 0.004
Table 8 Assumed mix proportions of concrete
Max. air w/C s/a unit content (kg/m’)
size content
(mm) (%) (%) (%) W C S G
20 6.0 50 45 170 340 777 946
25,40 5.0 50 40 158 316 720 1079
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The total number of coarse aggregate particles which were calculated from
the mix proportions of concrete and the size distribution of aggregates
are 96.76X10° for 20mm, 5.13X10° for 25mm, and 3.85X10° for 40mm. The
particle ratio in Table 7 is identical to the distribution density, so
if the area of the cut surface to be examined is given, the frequency
distribution of the radii can be calculated. By assuming this result as
observed data, the size distribution of the coarse aggregate can be
determined with the procedure described in Section 4.2.

Tn order to judge the accuracy of estimation, the value of lexg in
comparison with the assumed distribution from Table 7 was calculated.
Figure 5 illustrates the relation between the examined area and X /X,
for three sizes of coarse aggregate. As shown, the examined areas
corresponding to lexg -1 are about 900cm’ for aggregate with a maximum
size of 20mm, 1300cm’® for 25mm, and 1800cm’ for 40mm.
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x%x2
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Fig. 5 Effect of examined area on accuracy of estimation

7. CONCLUSIONS

From the theoretical analyses and the experiments described above, the
following conclusions may be reached.

(1) when a large set of spheres with a uniform radius are intersected
by a plane, the radiil of the cut sections of the spheres will distribute
in accordance with the relation G(x) given in Section 3.1. According to
this function, the radius distribution of air void spheres in hardened
concrete is statistically connected with that of the air void circles
on the cut surface of the concrete.

(2) To bring the theory into practice, the variables representing the
radii of the air void spheres and cut circles in the theoretical formulas
need to be expressed as discrete variables. In this way, the observed
air void circles can be ordered and represented in the form of a histogram.
By analysing this histogram with the procedure developed in Section 4.2,
the radius distribution of the entire air-voids will be revealed.
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(3) The precision of the estimated results is dependent on the examined
area. When the measurement is planned to ascertain the radius distribution
of the air-voids, the area is regquired to include about 600 circles. If
the intent of measurement is to determine the air content of concrete
or the spacing factor of the air-void component, the area to be examined
will be about 1000cm® for concrete containing coarse aggregate with a
maximum size of coase aggregate 20mm, 1500cm® for 25mm, and 2000cm? for

40mm.
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