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An enhanced computational model for the prediction of reinforcing bar behavior under generic axial pullout and
transverse displacement conditions is presented. Based on the compatibility relationship between transverse
displacement and curvature induced in the embedded bar, localized bar phenomenon close to the interface are
formulated. This formulation makes it possible to express the reduced pullout stiffness of embedded bars which is
observed under combined axial pullout and transverse dowel action.
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1. INTRODUCTION

There are several constitutive laws which can be combined to formulate plate and joint models for smeared and
discrete crack elements in FEM applications. In general, these constitutive laws have been verified under
simplified loading conditions, and their applicability under generic conditions needs to be checked. The
relation between bond stress-slip-strain has been formulated 2) by treating the reinforcement in concrete as a
one-dimensional cord. This consideration is valid for a single-mode deformational path in which the
reinforcement is subjected to axial deformation only. However, when deformational paths are of a mixed-mode
nature, i.e. axial pullout coupled with transverse displacement, the applicability of this model is invalidated in
terms of a reduction in axial stiffness and meanyield strength of the reinforcement due to a zone of localized
yielding in the reinforcement close to the crack plane, as detailed elsewhere16). The shear capacity of a crack
plane, which might govern the ultimate load under specific structural conditions, is therefore not governed by
the axial stiffness and strength represented by bare steel bars under uniaxial deformation, but by that of the
coupled interaction between longitudinal and transverse displacement. This depends on the equilibrium and
compatibility requirements of a crack plane, and cannot be ignored when an RCjoint plane has small roughness
and/or heavy reinforcement ratio5).

In this paper, an enhanced computational model for the prediction of reinforcing bar behavior under the generic
conditions of axial pullout and transverse displacement is presented. It is based on the relationship between
transverse displacement and the maximumcurvature induced in the embedded bar, along with a consideration of
localized phenomenafor a bar close to a crack and interface.

2. REINFORCING BAR PULLOUT COUPLED WITH TRANSVERSE SHEAR

Anumberof previous studies have developed separate constitutive models for steel and concrete components,
but most have been verified under simplified and idealized loading conditions. Reinforcement has been
modeled by separately considering the two actions of axial pullout and transverse shear, and then superposing
these behaviors. Models of reinforcement under uniaxial pullout have been proposed by several researchers,
whohave established microscopic and macroscopic bond models2)'7)'8). Shima et al.2) formulated a constitutive
model for bond stress, strain, and axial slip considering both microscopic and macroscopic aspects of the bond.
This model become the framework for modifications leading to this proposed enhanced model for embedded
bars under generic displacement paths.

Results of tests on embedded bars under loads transverse to the bar axis have been utilized by several
researchers to predict the maximumdowel capacity and transverse load - displacement relationships of
reinforcement 4)>6). Nonlinear "beamonelastic foundation" models with variable subgrade stiffness have been
proposed, but these are limited to reinforcement subjected to transverse loads only; consideration of bar
plasticity or additional damage build-up in concrete - due to radial bond micro cracks originating from the
coupled axial loads - has been absent, although these are the conditions which reinforcement is subjected to in
most RC interfaces.

In the past, the shear capacity of RC interfaces5) has been predicted by the superposition of the bar axial bond
stress-strain-slip mode!2) with a plain concrete stress transfer mode!3). However, such predictions are
unsatisfactory 16) , usually resulting in over-estimation of capacity and associated shear displacement when the
crack planes are heavily reinforced, even while neglecting the dowel contribution of reinforcing bars. Since the
bond stress-slip-strain model proposed in (2) was formulated under pure tensile conditions, it was presumed
that one of the major reasons for this errors estimating shear capacity is the incorrect model for estimating
confinement provided by the axial stiffness and strength of the reinforcement under the coupled action of crack
opening and transverse shear.

To investigate embedded bar behavior when subject to a coupled displacement path, pure shear loading was
adopted in beam-type specimens as shown in Fig.l16). The shear displacement and associated dilatancy of the
shear plane simulates the generic loading path for the embedded bar. By varying either the confining force on
the interface, the reinforcement ratio, or the shear plane geometry, different displacement paths were studied
for the targeted reinforcing bar. Test results, which form the basis of this study, showed a significant fall in bar
axial stiffness and strength under these coupled displacement paths as compared with pure uniaxial traction 2).
Details of the test setup and results can be found in the accompanying study (16).
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3 . ANALYTICAL MODELING

(1) Mechanical behavior of embedded bar across interface

In a reinforced concrete interface subjected to a shear stress defined as TC,a shear displacement, 8, is produced.
Also, because the crack surfaces ride over each other, a normal compressive stress, o'c, is induced along with an
associated normal displacement denoted by CO(crack dilatancy). This normal displacement causes a pullout
force on the confining embedded steel reinforcement at the interface, S, thereby inducing an axial strain es. The
shear displacement also produces a zone of curvature (j) along the reinforcement close to the interface, at the
location where the induced curvature reaches its maximum,(j)max.Due to symmetry, the curvature value is zero
at the interface and thus the meanconfining steel stress, <7S, at this location is determined only by £s induced by
the bar pullout force.

However, within the curvature affected zone, Gs is influenced by both the pullout force and shear slip at the
interface owing to the steel' s three-dimensional extent. These parameters, which define the deformational and
mechanical characteristics of a RC interface, are shown in Fig.2; here the crack width and shear slip are
magnified to clearly indicate the notation. To determine the load deformation relationship and the capacity of
the interface, a formulation of embedded bar axial stress under the action of normal and transverse
displacement is essential.

(2) Review of bond stress-strain-axial slip model

Shima et al.2) proposed a bond stress-strain-axial slip model for reinforcement under uniaxial pullout rods
conditions. The differences in bond-slip relations obtained from pullout tests of long and short embedded rods
and from axial tension tests were expressed by using a unique bond stress-slip-strain relationship, in which the
bond stress is formulated as a function of strain multiplied by a function of slip. The latter is defined as the bond
stress when the bar strain is zero. The constitutive law for bond stress is given by,

(1)

ib&s,s) = ibo(s)g&s)

T»0 = /c'*{ln(l+5s)}c

sCej F a+ltfe,)-1

where Tbis the bond stress, Tbois the intrinsic bond stress when the bar strain is zero, g is a function depending
onbar axial mean strain,fc is the compressive strength of the concrete, s is non dimensional slip (= 1000 S/D),
S is slip, D is bar diameter, and k and c are constants of value 0.73 and 3, respectively.

The pullout case of interest in the enhanced modeling of the bar and the boundary conditions are shown in
Fig.3. The equilibrium between bond stress and meanaxial stress is defined by,
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The compatibility between axial slip and axial strain is given by,

S(x)= f
Je

e .,dx+Sn

where S0 is the slip of the bar at the free end.

This bond stress-slip-strain model, which takes into account the effects of bar diameter and concrete strength
and which is applicable to both the elastic and plastic ranges independent of steel properties, is adopted as the
framework on which modifications for the proposed model are introduced.

It has been reported16) that two new features of bar behavior were witnessed experimentally: (1) non-
uniformity in the distribution of mean strain close to the crack plane, with some extreme fibers in the
reinforcement reaching plastic strains in some particular locations although the meanstrain at the interface and
other points away from the interface remains elastic even up to the ultimate load; and (2) the curvature induced
in the bar due to the transverse shear displacement is also non-uniform with zero curvature at, and up to some
distance from, the interface. The mean stresses in the reinforcement close to the crack plane, however, are
rather uniform.

(3) Proposals for model considering localized effects

In view of the localized effects' of bar behavior close to the interface, two basic proposals are postulated taking
into consideration the different stresses and deformational fields to which the bar is subjected near the
interface.

a) Zone of Bond Deterioration:
In the original pullout tests carried out to formulate the bond stress-strain-axial slip model, an unbonded zone
was placed near the loaded surface to ensure uniform bonding over the whole extent of the reinforcement2).
However, bond performance near the real interface is easily lost due to the splitting and crushing of concrete
around the bar. In order to consider this effect, a 'Bond Deterioration Zone' is defined as Lb, the range of which
is a function of bar diameter, i.e. Lb = Lb(D). In the computational model, Lb is taken as '5D', but not less than
the 'Curvature Influenced Zone', which is discussed later. The degradation in bond stress within this zone is
given by a simple bi-linear function as expressed below.

^(*)=^maX-^^{*-(4-^)}, (Le-Lb<x<Le-Lb/2)
Lb

xb(x)=0 (Le-Lb/2<x<Le)

(4)
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where Tb,maxis the maximumbond stress attained at the origin of Lb. Le is the bar embedded length of the bar.
The bond stress profile along the embedded length, including the newly introduced profile representing the
concept of a bond deterioration zone, is shown in Fig.4.

The concept of a bond deterioration zone is introduced by considering a linear degradation of bond stress from
the origin of the deterioration zone to the crack surface12). The profile adopted here, where the bond stress drops
to zero after some finite distance in the deterioration zone, represents the locus from which radial bond
micro-cracks reach the surface of the interface plane and Tbdecreases rapidly. It should be noted, however, that
as long as a bond deterioration zone of appropriate size is considered, the profile of degradation is not a highly
sensitive parameter.

In the present model, the strain profile is integrated over the entire embedded length, Le, to find the loaded end
slip. Within the Bond Deterioration Zone, Lb, the mean axial strain, £"^(x), is a function of mean axial stress,
(X (x), which in turn is computed from the pre-defined bond stress profile, Tb(x), within the zone, i.e.,

L Lb_ L

= j &s(x)djc+ )es(ib(x»dx+S0 (5)
o 4-4

Thus, the quantitative effect of bond deterioration on additional bar pullout can be obtained, irrespective of the
embedded length.

b) Zone of Curvature Influence: To consider the effect of localized curvature of the bar close to the shear plane,
the concept of a 'Curvature Influenced Zone1, Lc, is introduced. In the tests, Lc was observed to be between '4D'
and '5D' initially, with a small increase of 'ID' to '2D' as the load increased, as shown in Fig.5. In the model, the
initial zone size, Lc (=LCO), at small displacements (when both materials can be considered to behave
elastically), is idealized by considering the bar behavior analogous to a beam on an elastic foundation (BEF).
This gives,

q = -(kD)§b (6)

where 8b is the local downward deflection of the supporting concrete foundation under the bar, q is the
downward (and -q the upward) force per unit length of the bar, and k is the foundation modulus taken as
constant over the bar diameter, D. Using the classical beam equation, and substituting Eq.(6), we have,

<*'& (kP) = p' (7)
dx4+Eslb b Eslb

where p' is any external linear downward load acting on the bar, and Es and Ib are the elastic modulus and
momentof inertia of the bar section, respectively. Since the embedded bar is not subject to any external linear
load, the 'reduced' (p'=0) general solution to the above equation is therefore,

8* = exp(fk)(C/ cos(3jt + à¬2 sin fix)

+ exp(-p^) (à¬3 cospjc + C4 sin(to,)

where P=^/

(8)
kD

4Es It

If the origin of x is taken to be the shear plane interface and defined as x', the constants of integration can be
worked out from the boundary conditions at the two ends for an embedded bar of semi-infinite length subjected
to only an external shear force V at the interface with zero bending momentM(=0). That is,

At *'-»oo, &=0 (d=C2=0)

At x'=0, EJbtfb=M=Q (9)

and EJb%=V

Solution of this differential equation yields,
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EJb§b *r= V{exp(-pxl)(cosp^'- sinp^O} (10)

Then, the location of the maximumbending moment, and consequently of maximumcurvature, xc', from the
interface, is given by,

(ll)

For the model, Lcois taken to be three times the size of the distance to the point of the maximumbending
moment,as would be derived from BEF analogy, to give,

3TI 14E,I,
L /co -

R . LJ

(12)

150f MPa
where \k=---( -)

[_ D mm

The definitions of x'c and Lcoare illustrated in Fig.5, along with a schematic representation of variations in the
curvature profile as seen in the test results.

curvature profile : 0(x)
after loading

Initial stage

Embedded bar
^^^^^^^^^^^^^%l

global coordinate

location (ID)

Fig.5 Location of maximumbending momentand
size of curvature zone

Fig.6 Test 16) and predicted profile of curvature
distribution along bar axis for a typical specimen

p : reinforcement ratio; fy : yield strength

Here it is important to mention the equivalence and differences between the 'curvature-distribution model' and
the "beam on elastic/inelastic foundation model'. It is possible to start with an inelastic reaction model of the
concrete foundation, based on which the curvature profile may be derived. In this case, however, the model is
very complex and it becomes necessary to consider variations in bearing reaction along the bar axis at different
distances from the interface. These cannot be directly measured through an experimental approach, because
there is a concrete surface in contact with the opposite side. Furthermore, since the bearing reaction in the
supporting concrete develops from the transverse displacement of the embedded bar, relaxation of the contact
pressure due to localized yielding of the bar is difficult to model using this approach.

For these reasons, it was decided to begin computations with a profile pattern of the curvature and the size of its
influence zone; these can be directly observed in experiments. This approach is similar to the method used by
Izumoet al.10) to model the tension stiffening behavior of reinforced concrete based on a trigonometric function
for the tensile stress profile of the main reinforcing bars. The main advantage of adopting this approach is that
reliable experimental data - not microscopic data but macroscopic data with a lose association with the
microscopic fundamentals of a transversely supported reinforcing bar --formthe basis for the model.

The BEF analogy acts as the basis for computing the location of the initial maximumbending momentbased on
the parameters which influence the curvature zone, since there are no available test results of curvature profiles
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f or a wide range of variation of these parameters. For the reasons detailed above, however, the BEF analogy
cannot be considered reliable in the later stages of bar pullout and shear displacement, since both the embedded
bar and the supporting concrete behave nonlinearly. As seen in the test results16', there is a small shift in the
curvature influenced zone with increased shear displacements. The mechanical meaning of this shift is that it
reflects inelasticity in the reaction spring properties, because the inelasticity relaxes the momentlocalization.
Changes in the influence zone are basically associated with local crashing or high inelasticity of the reacting
concrete near the interface. This gradual softening in the supporting concrete due to increasing bar shear
displacement, 8b, and radial micro bond cracking due to bar pullout, S, is modeled by considering an increase in
Lc, as a function of Lcoand introducing a non-dimensional damage build-up parameter, DI, as expressed below.

(13)

DI =(1+150S/D) 5b/D

LC= LCO (forDI <0.02)

Lc=Lco{1+ 3(DI -a02)a8}

(forDI >0.02)

The shape of the curvature distribution, (|)(x), within Lc is modeled by a skewed parabola. This conforms well
with the curvature profile seen in test results16), as shown for a typical specimen in Fig.6, and is expressed as
below.

^)= ^U-(4-4)f

for Le-Lc<x<Le-Lc/2

(K*) = -3%H3{*-(Le - Lc/2)}2
Lc

-Lc{x-(Le -3Lc /4)}]

for Le-Lc/2<x<Le

A comparison of variations in Lc with test results for a few typical specimens is shown in Fig.7.
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The size of the curvature influenced zone and the shape of the curvature profile are modeled primarily to
reproduce the curvature profiles observed in test results. The expression for underlying concrete subgrade
stiffness, k, is within the range of values of k adopted in the literature by different researchers, as summarized
by Poli et al.4). Equation (12), derived from the BEF analogy, is a convenient way to model the zone size based
on all relevant influencing parameters, i.e. bar size, and concrete and steel stiffnesses. Predictions of axial and
transverse bar stresses for tests conducted for this study along with data available in the literature, as will be
shownin a later section, validate this modeling of subgrade stiffness along with the zone size and shape for a
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sufficiently wide range of influencing parameters. A direct verification of zone size and shape against test data
from experiments conducted for this study was also carried out, as shown in Fig.6 and Fig.7.

(4) Compatibility between bar transverse displacement and curvature distribution

Using the assumptions of classical beam theory, the compatibility conditions require that the sum of the double
integral of the curvature distribution, <|)(x), and the integral of the transverse shear deformation, y(x), along the
bar axis must equal the displacement of the bar normal to that axis, 5t,(x). To satisfy boundary and continuity
conditions, we have,

6, =jj (K*)^+5fo
f (15)

^ =^y(x)dx

where Lc indicates the size of the curvature influenced zone. Integrating over this zone gives the transverse
displacement of the bar at the interface, which by compatibility becomes half of the shear displacement of the
interface, 8, as shown in Fig.2.

This geometric compatibility, which holds true irrespective of bar elastic and plastic behavior is one of the key
relations in the computational model. Once the bar transverse displacement, §b, is known, the curvature profile,
(j)(x), and the axial and transverse stresses in the embedded bar can be computed under the coupled action of
axial pullout and transverse displacement.

The force system acting on the embedded bar due to the displacement path at the interface, which will be
discussed in detail in the next section, causes insignificant shear deformation of the bar at the interface. The
imposed boundary conditions at the ends of the curvature influenced zone, i.e. the origin and the interface mean
that the bending momentmust be zero. The profile of the shear force acting on the bar therefore follows a
positive and negative contour. Under elastic conditions, the transverse bar displacement due to shear
deformation only, 5bS, can be expressed as,

5^^kv^ ^M (16)
where, a is a shape factor which is a function of the shear stress distribution in the cross section, G is the shear
modulus of elasticity and As is the cross-sectional area.

As a result of the boundary conditions, as mentioned above, the difference in bending momentacross Lc must
be zero. Therefore, shear deformation under elastic conditions can be considered non-existent. After localized
yielding of the outer fibers of the bar due to curvature, plasticity develops on both sides of the maximum
curvature location, i.e. it encompasses both positive and negative shear force regions, and additional shear
deformations at the interface location caused by loss of shear rigidity close to the interface are also mostly
balanced between these two regions. In view of this behavior, in general, the effects of shear displacement are
not considered in the computational model. Verification against test results also indicates that by considering
only the transverse displacement due to bending rotations, the normal displacement of the bar at the interface
can be predicted satisfactorily, as shown in later sections.

(5) Stresses, strains, and force system acting on embedded bar modeled as 2-D cord

From the assumed distributions of bond stress and curvature, computations can be carried out for the
sectionally averaged meanbar stresses and strains along the bar axis (O^ (x) and £"5(x), respectively), the local
stresses and strains over the bar cross section, (Os(x,y) and es(x,y), respectively, where y is the local coordinate
with an origin at the centroid of the section concerned), and the system of forces (including axial force P(x),
bending momentM(x), shear force V(x), and contact pressure below the bar fb(x)), along the bar axis. The
discretized bar local stresses, as(x,y), are computed from the uniaxial stress-strain relationship of a bare steel
bar^. Making use of the relationships between the mean axial bar stresses and strains with the local stresses and
strains, wehave,
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D/2 D/2

lds(x, y)dAs(y) lzs(X, y)dAs(y)
as(x)=^ , s,(x)=^a

A, As

where, D is the bar diameter. The governing equations are detailed below.

4

GS(X)= - J tb(X)dx
0

where ib (x)=ib (x, xb,mj (Le-Lb^x< Le)

(18)
0 N ''

which is the general equation obtained by integrating Eq.(2). The mean axial bar strain is then computed from
<7^ (x) and <j)(x) as,

e,U)=e,((|)U),oJ(j:)), Le-Lb <x<Le (19)

D/2

where o,U)= J o, (zs)dAs(y}IAs and e,=e,(*)+<K*)à"y (20)
-D/2

The system of forces acting on the bar is then computed as below.

P(*) = q(*)A (21)

£>p
M(x} = ]Gs(x,y)- ydAs(y) (22)

-D/2

VW = ^M (23)dtc

,M=^i
The effect of shear stress, TS, resulting from bending curvature on the yield stress of the bar is taken into
consideration by applying the Von-Mises yield criterion, as below.

/;(*) = /,V1-3^)//,)2 <25)

This yields the reduced meanyield stress, fy, used to check the fiber stress state of the bar.

By solving a) the bond constitutive model in Eq.( l-4) simultaneously with b) the compatibility conditions with
respect to transverse shear displacement and force in Eq^lS-lS) and c) the equilibrium of sectional forces in
Eq.(17-25), we obtain the coupled effect of pullout and dowel actions. The spatial distribution of computed
parameters obtained by simultaneously solving Eq.(l-5) and Eq.(13-24) along the bar axis are shown in Fig.8.
Also shown is the profile of fiber stresses across the bar section in the 'Curvature Influenced Zone'.

(6) Ultimate axial force criterion for embedded bar

The ultimate axial force provided by the reinforcement under a coupled displacement path, which gives rise to
interacting bending, shear, and axial forces on the embedded bar, can be derived on the basis of the maximum
possible interactive stresses in the bar under such conditions. Using the plane section theory of beams, and
idealizing the material stress-strain behavior as rigid plastic with a capacity equal to the bar axial yield capacity,
the solution of two equilibrium conditions for a given cross section as described by Eq.(26) gives an interaction
equation in terms of the ratios of actual forces to the strength of the section under pure axial and bending
forces13) as formulated in Eq.(27).

D/2 D/2

l<5s(x,y)dAs(y)= P(x\ !<5s(x,y)-ydAs(y)= M(x) <26>
-D/2 -D/2
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M(x)

M. (F.)
+M-l (27)

Extending this relation to consider the effect of sectional shear forces according to the Von-Mises criterion for
combined axial and shear forces, we obtain,

A,(*) =

A ,(JC) = 1

M(x) P(x)
M ,

+

V(x)

(28)

where M(x), P(x), and V(x) are the actual bending moment,axial force, and shear at a section, respectively; M0
(=fy D3/6), P0 (=AS fy), and V0(=ASfy / V3) are the corresponding ultimate capacities under non-interactive force
conditions. Under any combination of interacting stresses, when the limit criteria expressed by A,(x) equals
unity, the ultimate bar axial stress is implied unless there is a reduction in the other interactive forces.

The experimental verification for deriving an interaction failure criteria such as A, (x), based on plane section
theory, is shown in Fig.9. Test results for the ultimate capacity of the section concerned, subjected to combined
axial thrust and a bending moment13) without instability problems, were analyzed using two different
approaches. The first was the interaction criteria, as described above, and the second was by considering failure
as occurring whenthe extreme bar fiber reaches fracture (as defined by the axial stress-strain relation of the
bar,) under increasing bending momentand constant axial force. (Since the actual stress-strain relation of the
steel section is not mentioned in reference (13), a typical relation for steel with similar yield stress was
utilized15)'.) It can be seen from Fig.9 that satisfactory predictions of ultimate capacity can be obtained using the
interaction criteria, whereas the second approach overestimates the data. Similar verification of the interaction
equation for tests on hollow rectangular box sections subjected to a bi-axial momentand axial tension without
instability problems can be found in reference (14).
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4 . VERIFICATION OF PROPOSED MODEL

(1) Curvature-shear slip relation

Since the basic compatibility proposal in the model relates the curvature distribution with reinforcement shear
slip, a comparison of experimentally measured and computed shear slips using Equation (13-15) and
neglecting shear deformation (8bS=0), based on the experimentally obtained maximumbar curvature, is shown
in Fig.10 for some typical specimens. Satisfactory correlation can be identified despite considerable variation
in maximumbar curvature for different specimens. This verification further confirms the earlier point that
plastic shear deformation is not significant in coupled displacement path tests till the maximumbar axial
capacity is attained.
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(2) Bar axial stress-pullout relation at interface

Verification of bar stiffness and strength is done by testing reinforced crack and joint planes, as explained in the
test setup shown in Fig.l for the introduction of a coupled displacement path for the embedded bar. Testing
wascarried out for different shear plane geometrical types (processed (P), and unprocessed (U), construction
joints, CJ, and rough cracks, RC) and material properties (normal concrete, NC and self-compacting high
performance concrete, HPC), along with different reinforcement ratios16). These define unique coupled
displacement paths according to the equilibrium and compatibility conditions at the interface.

The measured and computed steel axial mean stresses versus pullout resistance and associated transverse
displacement at the interface are shown in Fig.ll. The meanaxial stress versus strain results for a similar test
specimen^ at the maximumcurvature location are shown in Fig.12. Pure axial pullout results are also shown
for comparison in all the figures. The dotted line with an arrow head leading from the coupled path prediction
in these figures represents the point at which the limiting interactive force criterion, A,(x), attains unity. A
further increase in displacement path would result in plastic deformation without an increase in the axial stress,
since the bending momentdoes not decrease with increasing bar transverse displacement. The critical location
along the bar axis where the limit interactive force criterion is attained is always the point of maximum
curvature inside the concrete; this is the point of maximumbending momentand axial force and zero shear.

This results in the formation of a plastic hinge, since additional bending momentcannot be supported and a
possible rotational mechanism develops in the bar between the maximumcurvature location and the interface,
resulting in loss of the axial restraining force at the interface.

The satisfactory correlation over the initial part of the steel stress-pullout relation (before localized yielding
occurs), verifies the first premise of the model regarding the quantitative effect of the profile of the 'Bond
Deterioration Zone'. This explains the increased pullout resistance, as compared to the uniaxial pullout capacity
of the original model with bond deterioration suppressed.
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Fig.10 Comparisonof experimental 16) and predicted results of compatibility relation between curvature and
transverse displacement of bar for typical specimens
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Fig.ll Comparison of experimental 16) and predicted meanaxial bar stress at specimen failure, and associated
displacement path at the interface
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After localized yielding of the extreme bar fibers, the meanstrain profile becomes non-uniform as a result of the
induced curvature, since the mean stress profile is uniform near the crack. Since the integral of mean strain
along the bar represents the pullout of the bar, this non-uniformity in the mean strain profile is the source of the
additional pullout for a given mean stress level observed in coupled displacement path tests as compared to
uniaxial pullout tests. The correlation of the non-linear part of the steel stress-pullout relation verifies the
second premise of the model regarding the quantitative effect of the 'Curvature Influenced Zone1. In
consideration of the limiting value of the interactive stresses possible at the maximumcurvature location due to
combined axial and bending stresses, the ultimate axial force on the bar can also be predicted satisfactorily (See
Fig.ll and Fig.12).
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Fig.12 Comparison of experimental 1^ and predicted
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Fig.13 Comparison of experimental 16) and predicted
meanbar axial stress with associated displacement

paths without limiting failure criteria for bar

In general, the steeper the displacement path, brought about by increased reinforcement ratio, in terms of 6VS,
the flatter the interface geometry, or the lower the concrete strength, then the lower the mean axial stress
attained, as evident through Fig.ll (Specimens 3,6,8, respectively).

In order to clearly understand the significance of the proposed model' s interaction failure criterion introduced
in Eq.(28), a typical test specimen is analyzed without considering any failure criteria for the bar other than
fracture of the extreme fibers at the end of strain hardening. The results of this analysis are shown in Fig.13.
Twocases, with and without consideration of an increase in curvature influenced zone, Lc, are computed so as
to check the sensitivity of this proposal. It can be seen that if no failure criterion is defined, bar pullout
continues to increase with small increase in axial stress, thereby reducing pullout stiffness.

Test results, however, do not indicate such high bar pullout values. On the other hand, the good correlation
obtained with test data for both bar axial capacity and associated pullout at the interface in the case of coupled
displacement paths with the interaction failure criterion meansthat this is an acceptable failure condition for
the proposed model. The sensitivity of the simulation to an increase in Lc, as seen in Fig.13, indicates that
relaxation of the supporting concrete spring properties reduces the rate of curvature increase at a particular
location, and the bar axial stresses attained for a given pullout level are increased. However, till the point of
observed bar capacity, the effect of the increase in Lc on the bar axial stress versus pullout relation is small.

(3) Force-displacement relationship of embedded bar under pure transverse load

The behavior of an embedded bar under a pure transverse load, termed dowel action, has been experimentally
investigated by several researchers4)'6). The proposed generic model for an embedded bar can also be applied to
cases of pure transverse displacement to predict dowel capacity and load displacement relationships. In the
absence of any axial pullout, the nonlinearity in the bar under pure shear is much higher than in the case of a bar
subjected to a coupled displacement path.

The failure mode is highly ductile with a large spread of plastic strain along the bar axis and large plasticized
depths across the bar section. The presence of a zone of localized curvature is also known under such
conditions45, similar to that seen in tests conducted in this study for coupled displacement paths. A comparison
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of test 4) and predicted results for bars of different diameters is shown in Fig.14, showing good agreement.

Predictions are also attempted for test data from reference (9), with different bar diameters and different bar
and concrete material properties from reference (4). The predictions obtained are again in good agreement with
the test data, as shown in Fig.14, thus, verifying the versatility of the proposed bar model. Not only can it
predict meanbar axial stress versus pullout behavior coupled with transverse displacement, but also bar shear
stress versus transverse displacement in the absence of any axial pullout. Thus, the formulated two-
dimensionally idealized generic bar model can be used to successfully predict axial and transverse bar behavior
under any arbitrary coupled or uncoupled displacement path.

Since the validity of the bar model has been verified in a wide range of tests, it can be used to numerically
simulate the effect of varying axial force on the reduction of dowel capacity, the possibility of which was raised
by Suzuki et al.n) Although test results in reference (1 1) show considerable scatter and higher dowel capacities
than observed in other test results 4)'9), probably due to insufficient elimination of aggregate interlock, the
qualitative trend of reduced dowel capacity with increasing axial force was observed. Computational results of
dowel load-transverse displacement behavior in the presence of varying axial force are shown in Fig.15.

Fromthe computed results, it is observed that under small axial force, the main source of stiffness degradation
in dowel behavior is inelasticity of the supporting concrete due to increasing transverse displacement, which in
turn induces higher bearing pressure. This becomes more and moresevere in the presence of higher axial
forces, and the stiffness degradation is accelerated. Under very high axial forces close to the axial capacity of
the bar, the limit condition of maximuminteractive stresses governs the ultimate dowel capacity.
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Fig.15 Effect of axial force on dowel load-displacement behavior (computation)

5 . CONCLUSIONS
Based on newexperimental findings related to microscopic bar behavior derived from the mechanics of a RC
interface, a generic model for embedded bars has been formulated. The model formulation follows rational
micro and macro concepts and verifications were conducted using test data for each governing step. The
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following are the general conclusions reached within the scope of this work:

1) By making two basic proposals based on experimental results, a 'Bond Deterioration Zone' and a
'Curvature Influenced Zone', and adopting a compatibility relation to predict curvature from transverse
displacement, the internal stresses and strains (both along the bar axis and across its section) along with the
entire system of forces acting on a bar embedded in concrete can be computed when subjected to coupled
pullout and transverse shear slip.

2) The compatibility relation between bar curvature and normal bar displacement can be established using
the in-plane hypothesis of sections and predicting transverse shear displacement of the bar from its curvature
distribution, and this is verified using experimental results.

3) The reduced axial stiffness of the bar can be computed from the initiation of localized plasticity in the
reinforcing bar inside concrete, even if the section at the interface is in a purely elastic state. The progressive
reduction in axial stiffness due to gradually increasing plasticity both along the bar axis and across the bar
section with increasing shear displacement can be predicted.

4) The maximumaxial confining stress attained in the reinforcing bar at the interface can be predicted by
considering the ultimate interactive stress possible at the maximumcurvature location due to combined axial
and bending stresses.

5) The proposed model can also predict the capacity and load-displacement behavior of an embedded bar
under a pure transverse displacement path. This makes the model a generic one applicable to any displacement
path, including pure axial pullout, pure transverse displacement, or any arbitrary combination of the two.

6) The proposed model has been independently verified with displacement paths obtained by experiments
and used as input parameters. For versatile applicability, predictions of the stress transfer behavior of a RC
interface by combining this proposal with an aggregate interlock model is necessary. Since the evaluation of
shear force acting on the bar at the interface, i.e. dowel shear, can be computed from the model, it can be added
to the aggregate interlock model to obtain the total shear transferred at the interface by both mechanisms in a
unified manner.

In future development, the proposed model should be extended to cover more generic conditions in reinforced
concrete members, such as dense arrangements of reinforcing bars, and adjacent cracks with small spacing, etc.
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