CONCRETE LIBRARY OF JSCE NO. 29, JUNE 1997
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The difference between the normal-shear and volumetric-deviatoric-shear component formulations,
on which microplane models by Hasegawa and Prat are respectively based, is examined by numerical
analysis for a wide range of stress conditions. Then the Hasegawa model (Microplane Concrete Model)
is improved to expand its applicability and reformulated as the Enhanced Microplane Concrete Model
serving as a more general constitutive law. One of the major improvements is to take into account the
resolved lateral stress in normal compression response on a microplane as well as the resolved lateral
strain. Another major improvement is to adopt a model for the transition from brittle to ductile fracture
for the shear response on a microplane at increasing resolved normal compression stress. It is verified
that the Enhanced Microplane Concrete Model can predict well the experimentally obtained constitutive
relations for concrete reported in the literature, covering various stress conditions and cyclic loading.
Examination of the microplane responses in each analysis explains the load-carrying mechanisms in
concrete in terms of the responses on the microplanes.
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1. INTRODUCTION

Since the accuracy of finite element analysis for concrete structures depends on the constitutive model
(stress-strain relation) of the concrete, which describes cracking, damage, plasticity, etc., various
constitutive laws dealing with the complicated nonlinearity of concrete have been developed. The
microplane model is one of such constitutive laws. It has a clear physical image at the microscopic
level, and is based on a characteristic hypothesis that the inelastic origin of concrete as a heterogeneous
material is microcracks which occur within the interface region (microplane) between the coarse
aggregate particle and the mortar matrix.

The model was first proposed by Bazant [1], and various types of the model have been developed by
he and his co-workers as shown in Fig.1. However, some of the models sacrifice the conceptional
clearness of the microplane to expanded applicability. Bazant and Gambarova [2] developed the
normal component formulation in which an additional elastic body was incorporated with the microplane
system to adjust Poisson’s ratio. Recent models by Bazant and Prat [3], Ozbolt and Bazant [4], and
Carol et al. [5] adopted a volumetric-deviatoric-shear component formulation to obtain an arbitrary
Poisson’s ratio. It seems to go against the basic hypothesis of the microplane model to split microplane
responses into an overall macroscopic response and individual microplane responses. In view of the
previous microplane models losing conceptual clearness, Hasegawa and Bazant [6] developed the
Microplane Concrete Model based on a normal-shear component formulation in which no additional
elastic body or volumetric component of microplane is used to adjust Poisson’s ratio.

In this study [7] the Microplane Concrete Model, based on the fundamental idea of the microplane, is
pursued with accuracy so that it can be used as a practical constitutive law. The prediction limitations
of this model as well as those of a previous model are clarified through various analyses. Then the
model is reformulated as the Enhanced Microplane Concrete Model to provide a model that is reasonably
sophisticated and more accurate while offering wider applicability. The model is verified by comparing
the analytical results with experimental data from the literature. The load-carrying mechanisms of
concrete are discussed through comparison between constitutive relations (macroscopic behavior)
obtained by the model and the responses on microplanes (microscopic behavior).

2. GENERAL APPLICABILITY OF MICROPLANE MODELS TO CONCRETE

Among the previous models shown in Fig.1, only the models based on a volumetric-deviatoric-shear
component formulation (Prat model, Ozbolt model, and Carol model) and the Hasegawa model
(Microplane Concrete Model) based on a normal-shear component formulation are applicable to general
multiaxial stress conditions. In this first part of the present study, the prediction accuracy of both
formulations for general multiaxial stress conditions are examined by comparing the calculated results
they yield.

Since the Hasegawa model and the Prat model are different not only in basic formulation but also in
their definitions of shear strain on microplane and the constitutive relations of the microplane
(microconstitutive relations), it is not appropriate to directly compare results obtained by the two
models. In this study attention is focused on the difference in the basic formulations of the models,
and the characteristics of these formulations are clarified. For that purpose, the Hasegawa model with
the normal-shear component formulation is compared with a modified model in which the basic
formulation is substituted by the volumetric-deviatoric-shear component formulation.

2.1 The Hasegawa Model (Normal-Shear Component Formulation)

In the Hasegawa model the incremental forms of the microconstitutive relations are written separately
for the normal component and the shear components in the K and M directions

normal component: doy = Cydey —doy" (1a)
K-shear component: do, = CrxdEpy —dOry" (1b)
M-shear component: d6 gy, = Cpydep, — dO " (1c)
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— Static constraint type
Prat model (creep model for anisotropic clay)
I kinematic constraint type
— normal component formulation
Gambarova model, Oh model
[—— normal-shear component formulation
Kim model
— volumetric-deviatoric-shear component formulation
Carol model
— mixed kinematic-static constraint type
[~ volumetric-deviatoric-shear component formulation
Prat model, Ozbolt model
—— normal-shear component formulation
Hasegawa model

Fig.1 Various types of microplane model

in which doy, dorg, and dop,, = microplane stress increments; Cy, Cry, and Cp,, = incremental

elastic stiffnesses for the microplane; and doy", do", and doy," = inelastic microplane stress
increments.

The incremental form of the macroscopic constitutive relation for the Hasegawa model is written as

2).

doy; = C,de,  —do;" ' (2a)
3 1
Cjrs = EEJ‘S[n,.n nn,Cy + Z(k,.n + kg )(kng + kg, Y Crg
1
+Z(min i +m jn,.)(m,ns +mgn, )Cry ] f(n)dsS (2b)
1" 3 1" 1 " 1 t
do;"= ) nn;doy +5(kinj +kn; )dO'TK +E(m,nj +mn; )dO'TM f(n)dS (2¢c)
in which C;, . = the incremental elastic stiffness tensor; do ;" = inelastic stress increment; S = surface

uyrs
of unit hernilsphere; n; or n = the normal unit vector of microplane; k; and m; = in-plane unit coordinate
vectors normal to each other on microplane; and f(n) = a weight function for the normal direction n.
In this paper, indicial notation is used for tensors and the Latin lower-case subscripts refer to Cartesian
coordinates x;, i=1,2,3 (x, y, 2). '

The derivation of (2) is shown later. The formulation of individual microconstitutive relation is well
described in [6].

2.2 Volumetric-Deviatoric-Shear Component Formulation

In the volumetric-deviatoric-shear component formulation considered here, normal strains € v in the
normal-shear component formulation are decomposed into a volumetric strain &, = €,, /3 and deviatoric
strains €p, = €y — &, which are different for each microplane, and a volumetric stress ¢, corresponding
to the volumetric strain &, and deviatoric stresses o, corresponding to the deviatoric strains £, on
the microplanes are calculated.

The incremental form (1a) of the microconstitutive relation for the normal component is replaced by
incremental forms for volumetric and deviatoric components ((3a) and (3b))

volumetric component: doy, = Cyde, — do," (3a)
deviatoric component: doj, = Cpdep, —dop" (3b)
in which doy,, Cy, and do," = microplane stress increment, incremental elastic stiffness, and inelastic

microplane stress increment for the volumetric component; and do,, Cp, and dop," = microplane
stress increment, incremental elastic stiffness, and inelastic microplane stress increment for the deviatoric
component.
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Table 1 Material parameters for Table 2 Material parameters for volumetric-

normal-shear component formulation deviatoric-shear component formulation
oyr(kgf/om’)| 40.0 odr(keffem®)| 250
Enr 0.5 deviatori $or 05
normal eviatoric
tension LML 50 tension | /2L 5.0
PNt 1.0 Por 1.0
pyr  (sec) | 10° por  (sec) | 10°
ofc(kef/om”)| -400 odc(keffem®)| 200
normal_ bnc 93 deviatoric bnc 05
compression| Yne 1.0 compression Yoc 2.0
(softening) e 1.0 Poc 10
pvc  (sec) | 107 poc__ (sec) | 10°
o (kgf/cmz) 17.0 o2 (kgf/cmz) 60.0
& 0.5 & 0.5
1.5 2.0
shear T shear Yr
Pr 1.0 Pr 1.0
H 0.6 U 0.7
pr () | 10° or (ec) | 10°
elp 0.01 oor(kef/em?)| 25.0
lateral strainf—,
effect = oo volumetric b o3
m 1.0 . Yvr 5.0
tension
Pvr 1.0
prr - Geo) | 10°
m0=Co/CY 10

The incremental form of the macroscopic constitutive relation of the volumetric-deviatoric-shear
component formulation is written as (4).

do; Cmd&‘ —-do;" (4a)
1 1
Cyps == 2 [ nn;6,.Cy +mn j(nrns - EE,S)CD +Z(kinj +kn; )(k,ns +k,n, )Crg
+— (m n;+mm )(mrns +mgn, )Cry } f(n)dS : (4b)

" " w1 .1 )
% = .[ [ n(doy"+da") E(k"nﬁk"n")d%" +§(mi”i+mj”i)d0m }f (n)dS  (4c)

in which §,; = Kronecker’s unit delta tensor.

In the volumetric-deviatoric-shear component formulation a lateral strain dependence of normal
microplane response is indirectly taken into account by resolving the normal microplane response into
volumetric and deviatoric responses. The volumetric loading curve in the volumetric-deviatoric-shear
component formulation is identical to the hydrostatic loading curve of the normal component in the
normal-shear component formulation.

2.3 Comparative Analysis

To compare the normal-shear and volumetric-deviatoric-shear component formulations, a series of
numerical analyses is done using both over a wider range of stress conditions.

Triaxial compressive tests along the compressive meridian carried out by Smith et al. [8] are first
simulated using both formulations, and then triaxial compressive analysis along the tensile meridian,
biaxial compression analysis, biaxial compression-tension analysis, and biaxial tension analysis are
done with identical input material parameters to simulate the tests by Smith et al. The material
parameters for the analyses are shown in Tables 1 and 2 for the normal-shear and volumetric-deviatoric-
shear component formulations, respectively. The definitions of the parameters are given in Hasegawa’s
study [6], and other parameters not shown in the tables are the same as those used in that study.
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weight

w = 0.0265214244093
w = 0.0250712367487
w =0.0199301476312

>onN

compressive meridian (Balmer)
compressive meridian (Richart et al.)
tensile meridian (Richart et al.)
equal biaxial compression (Kupfer et al.)
- compressive meridian (Chen)
- tensile meridian (Chen)
¢ compressive meridian (Smith et al.)
~——8— compressive meridian (analysis)
—&— tensile meridian (analysis)

Fig.2 Numerical integration points
on unit hemisphere
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(b) Volumetric-deviatoric-shear component Fig.4 Compressive and tensile meridians

formulation

Fig.3 Triaxial compression analysis
along compressive meridian

The integrations in (2) and (4) are evaluated using the numerical integration formula derived by Bazant
and Oh [9]. The integration points and weights for the formula are shown in Fig.2.

a) Triaxial Compression Analysis

In Fig.3 the triaxial compressive responses from the analysis are compared with the test results of
Smith et al., in which o, is confinement pressure and f,' is uniaxial compressive strength. Neither
the normal-shear component formulation nor the volumetric-deviatoric-shear component formulation
can predict confinement effect and the transition from brittle to ductile fracture well. The compressive
and tensile meridians of the failure envelope are evaluated from maximum stresses obtained in the
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Fig.5 Responses in uniaxial compression analysis using normal-shear component formulation
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Fig.6 Responses in triaxial compression analysis (O'C /.= —0.60)
using normal-shear component formulation

analyses, and shown in Fig.4 with experimental results from the literature (Balmer [10], Richart et al.
[11], Kupfer et al. [12], Smith et al. [8], and Chen [13]), where T, = I,/3=0;/3 and 7, = +/2J,/3
are octahedral normal and shear stresses (J, = the 2nd invariant of deviatoric stress tensor). In the
case of the normal-shear component formulation, the compressive meridian under low confinement
stress agrees well with the experimental data; however, it deviates from the experimental data under
higher confinement stress and tends to approach the o, axis. On the other hand, in the case of the
volumetric-deviatoric-shear component formulation the tensile meridian is above the compressive
one in contrast with the experimental results.

Figs.5 and 6 show the normal, K-shear, and M-shear responses of microplanes (integration points) 2,
3, and 14 as well as the average volumetric responses &,, for the uniaxial (O'C /1= 0) and triaxial
(0./f,'=-0.60) compression analyses using the normal-shear component formulation (&,, = €;/3).
It is obvious from Fig.5(b) that normal tension damage of microplane 3, representing splitting cracks
under lower macroscopic compressive stress, results in lower macroscopic strength in the uniaxial
compression analysis. On the other hand, normal compression stress occurring on microplane 3 when
macroscopic confinement pressure is applied delays normal tension damage of the microplane as if it
were a prestress, resulting in higher macroscopic strength in the triaxial compression analysis (Fig.6(b)).
Since all microplanes ultimately exhibit strain-softening responses, as shown in Figs.6(a) - (c), increases
in macroscopic strength and ductility with confinement pressure cannot be predicted well by the normal-
shear component formulation.

Figs.7 and 8 show the deviatoric, K-shear, and M-shear responses of microplanes (integration points)
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Fig.7 Responses in uniaxial compression analysis
using volumetric-deviatoric-shear component formulation
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Fig.8 Responses in triaxial compression analysis (o, /f,'=—0.60)
using volumetric-deviatoric-shear component formulation
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2, 3, and 14 as well as the volumetric responses for the uniaxial (0,/f,'=0) and triaxial (o,/f.'
=-0.60) compression analyses using the volumetric-deviatoric-shear component formulation. The
total normal responses ( €,y -0y, relations) as sums of the deviatoric and volumetric components are
also shown in Figs.7(a) - (c) and Figs.8(a) - (¢). The difference between the deviatoric and the total
normal responses on each microplane, shown in Figs.7(a) - (c) and Figs.8(a) - (c), represents a
microplane strength increase due to the volumetric response depending on confinement pressure. The
difference in the triaxial compression analysis is much larger than the uniaxial compression analysis,
and this difference enables the volumetric-deviatoric-shear component formulation to evaluate
confinement effect.

As shown in Fig.7(b) and Fig.8(b) the total normal responses of microplane 3 are unacceptable, i.e.,
the microplane stress-strain curves go into the fourth quadrant of the coordinates. This means that the
microplane as the basic load-carrying element at a microscopic level loses its original physical meaning
as a result of resolving the normal component into the volumetric and deviatoric components. Since
all microplanes in the triaxial compression analysis ultimately exhibit strain-softening responses, and
unloading occurs for the volumetric component, as shown in Figs.8(a) - (d), increases in macroscopic

strength and ductility with confinement pressure cannot be predicted well by the volumetric-deviatoric-
shear component formulation.

b) Biaxial Analysis

Fig.9 shows the stress-strain relations obtained in biaxial tension analysis with the normal-shear and
volumetric-deviatoric-shear component formulations. The volumetric-deviatoric-shear component
formulation predicts tensile lateral strains after a certain tensile axial strain in the uniaxial tension
analysis, which implies that a uniaxial tension fracture results in lateral expansion with a negative

— 165 —



--------- tests by Kupfer et al.: f,' =190 kgf/cm®
tests by Kupferet al.: f.'=315kgf/cm?
— — - tests by Kupfer et al.: f,'=590 kgf/cm®

axial . e normal-shear model
/Oy, =0/+1 (uniaxial tension) —=— volumetric-deviatoric-shear model
— — - Ox/0,, =+0.50/+1
ceeman O[Oy =+1.00/+] 0.5
-, 04
NE 60 =03
S sob £_02
o~ —
B 4. AN S okl e
' B 4 ‘~~ N 5 = 0 pr—
x 30} : -1. 0.5 0 0.5
b>§ 30 i ‘\.\ 0 a.penk/f-
% 20} / | \\\\. ~ 2 ¢
2 10} Tl (a) Compression-tension and tension-tension
B I 1 I stress regions
3 1 0 1 2 3 4 05
. . -3 .
axial and lateral strains €, , €, (10 )
(a) Normal-shear component formulation 0 =
& 60 [
g 0.5 f
5L i
= 40 N te -0k
= AN R
b;: 30 | \‘\ § s
% 20~ | AN ’
g 10 | R 20k
g I ] 1
3 4 0 1 2 3 4
axial and lateral strains €., € (10’3) 25
yyo Cxx
1C~ 1 1C— -3.0 i 1 I 1 |
(b) Volumetr}c deviatoric-shear component T e s e s o oS
formulation

G{eak/f;.'
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Fig.10 Biaxial strength envelopes

Poisson’s ratio. This is because the volumetric tensile response becomes prominent and induces
volumetric expansion in uniaxial tension analysis with the volumetric-deviatoric-shear component
formulation. As shown in Fig.9(a), the normal-shear component formulation predicts a reasonable
stress-strain relation with a positive Poisson’s ratio in uniaxial tension analysis. The formulation
describes the characteristic of a concrete material that peak stresses under biaxial tension are almost
the same as the uniaxial tensile strength.

The biaxial strength envelopes given by the normal-shear and volumetric-deviatoric-shear component
formulations are compared with experimental envelopes of Kupfer et al. [12] in Fig.10. The normal-
shear component formulation gives a relatively good biaxial compression-tension strength envelope
compared with the experiments, although the formulation predicts a slightly higher uniaxial tensile
strength and somewhat overestimates biaxial compressive strengths. On the other hand, the volumetric-
deviatoric-shear component formulation predicts much higher biaxial compressive strengths as well
as biaxial compression-tension strengths when compared with the experiments. In analysis with the
volumetric-deviatoric-shear component formulation, the peak stress of volumetric tension component
is assumed to be the same as the deviatoric tension component (v, = 0';) according to the Prat
model [3], in contrast with Hasegawa’s study [6] where Gy, > 0y, was assumed to obtain a good
biaxial tensile strength envelope. Therefore, biaxial tensile strengths are underestimated with the
volumetric-deviatoric-shear component formulation.
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3. REFORMULATION OF ENHANCED MICROPLANE CONCRETE MODEL

The volumetric-deviatoric-shear component formulation loses the conceptional clearness of the
microplane because the volumetric component is used. Furthermore, the aforementioned analyses
demonstrate that the model cannot predict constitutive relations under multiaxial stress conditions
with accuracy. On the other hand, the normal-shear component formulation (the Hasegawa model),
based on the fundamental idea of the microplane, is proven to have practically better prediction accuracy
for biaxial and low confinement stress conditions; however, this model cannot describe well the strength
increase and the brittle-ductile transition under high triaxial stress conditions.

In view of the finding that the normal-shear component formulation (the Hasegawa model) gives
relatively better prediction accuracy than the volumetric-deviatoric-shear component formulation, an
improvement to the former model is made in this second part of the present study. To develop a
rational constitutive law with more general applicability, or Enhanced Microplane Concrete Model,
the prediction accuracy of the Hasegawa model on confinement effect is improved by taking account
of the complicated interactions between microplanes, not only for the shear components but also for
the normal component.

3.1 Modification

Improvements to take account of interactions between microplanes are mentioned first.

a) Lateral Strain and Stress Effects on Normal Response of Microplane

In the Microplane Concrete Model, the normal stress increment on a microplane depends not only on
the normal strain €, but also on the resolved lateral strain €; (lateral strain effect). This hypothesis
means that each microplane response is determined uniquely by the microplane strains, which closely
follows the basic concept of the microplane model that each microplane is independent. However, as
shown in the preceding analyses, appropriate confinement effect is not obtained only with the lateral
strain effect.

Due to heterogeneity resulting mainly from the existence of coarse aggregate particles, microcracks,
plasticity, and damage occurring in one direction at the microscopic level in concrete affect the inelastic
responses in the other directions within the concrete, and this effect forms a microscopic interaction.
When the interface region between the coarse aggregate particles and the mortar matrix is compressed
under the suppressed lateral strains of the region and large compressive confinement stress occurs in
the lateral direction of the region, microcracks are not likely to occur. Therefore, the strength of the
region increases and a plastic hardening state is reached. Since the lateral stress acting in the interface
region consists of the normal stresses acting in other interface regions perpendicular to it, microscopic
interactions can be modeled by taking account of lateral stresses of the interface regions, i.e.,
microplanes.

In the Enhanced Microplane Concrete Model interactions between microplanes relating to normal
components are taken into account by assuming that the normal compression response of microplane
depends on the lateral stresses S; , which are the resolved lateral components of stress tensor o;;

(lateral stress effect), in addition to the lateral strain effect (Fig.11(d) ). The lateral strain and stress
effects are also considered for hysteresis in unloading and reloading of microplane normal components.

b) Transition from Brittle to Ductile Fracture for Shear Response of Microplane

The shear peak stress 7, of a microplane is assumed to depend on the normal stress S, which is the
resolved normal component of the stress tensor ¢;; on the same microplane in the Microplane Concrete
Model (dependence of shear peak stress on resolved normal stress). The shear friction law is used to
describe the interactions among shear responses of microplanes through the stress tensor 0, which is
the integral of shear and normal stresses for all microplanes. As clarified in the precedmg analyses
the transition from brittle to ductile fracture in concrete as confinement pressure increases cannot be
described only by applying the shear friction law to the shear peak stress.

Considering the shear frictional phenomenon at a microscopic level in concrete, a microcrack tends to
close and does not develop further when the normal compression stress on the plane of the microcrack
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increases, i.e., when the confinement pressure increases. Then the microscopic shear response becomes
more plastic, and the post-peak shear response changes from brittle softening to ductile plastic behavior.

In the Enhanced Microplane Concrete Model, the interactions between microplanes relating to shear
components are taken into account in terms of the shear friction law, in that the shear peak stress and
ductility of microplanes increase with the resolved normal compression stress on the same microplane
(transition from brittle to ductile fracture for microplane shear response)(Fig.11(e)). A similar transition
model is also considered for hysteresis in unloading and reloading of microplane shear components.

3.2 Hypotheses

The aforementioned interactions between microplanes are taken into account as Hypotheses III and IV
in the Enhanced Microplane Concrete Model. The following are the hypotheses made in the present
model: ‘

Hypothesis I . Normal strain &y, shear strains €, £, and lateral strain £, of a microplane are the
resolved components of the macroscopic strain tensor &;; (tensorial kinematic constraint).
Hypothesis II : Normal stress o and shear stresses Oy, Oy, on a microplane depend on normal
strain €y and shear strains €74, €p,. The relations between those strains and stresses are described by
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microconstitutive laws. The directions of the shear stresses on each microplane are the same as those
of the shear strains.

Hypothesis III : The inelastic normal stress increment on a microplane depends on the resolved lateral
strain €, of the macroscopic strain tensor ¢; (lateral strain effect) and resolved lateral stress S, of the
macroscopic stress tensor o; onto the same microplane (additional static constraint: lateral stress
effect).

Hypothesis IV : The inelastic shear stress increment on a microplane depends on the resolved normal
component Sy of the macroscopic stress tensor ¢;; onto the same microplane (additional static
constraint: transition from brittle to ductile fracture for microplane shear response).

Hypothesis V : The microconstitutive laws for the normal and shear components are based on a
generalized Maxwell rheologic model in which a linear viscous element is coupled in series with an
elastoplastic-fracturing element.

Hypothesis VI : The microconstitutive laws for the normal and shear components on each microplane
are mutually independent.

Fig.11 illustrates these hypotheses.

3.3 Basic Formulation

a) Microplane Strains

According to Hypothesis I, the normal strain component on a microplane with unit normal vector n is
Ey =ME; =nmE; (5)

in which n; = components of unit normal vector n of the microplane.

For Hypotheses I and II, two in-plane unit coordinate vectors k and m, normal to each other, are
introduced on each microplane as shown in Fig.11(a), and two shear strain components £, €p, in
those directions are considered. Since the directions of the vectors k and m must be fixed at the
beginning of calculations, some kind of rule to determine these directions is necessary. The rule must
not have a significant bias for any direction, i.e., the frequency of various directions within the
microplanes taken by vectors m and n must be about the same. This is approximately achieved by
the following simple rule: vector m of microplane 1 is determined to be normal to the z-axis, vector
m of microplane 2 normal to the x-axis, vector m of microplane 3 normal to y-axis, vector m of
microplane 4 normal again to the z-axis, and so on. The x-, y-, and z-axes are a set of three mutually
orthogonal axes in the Cartesian coordinate system x;. Then for vector m normal to z-axis

=__m - m
\np +n; NS

but m =1, my,=0; my=0if ny=n, =0.
For vector m normal to x-axis

my = ———=-, my = —p==== m =0 6b
n? +n? n2 +n 1 (6b)

but m; =0; my=1; my=0if n, =n,=0.
For vector m normal to y-axis

3 n
m = ; ms = ; m, =0 (6¢)
1}n12 +ni’ n? +n} 2

but m; =0; m, =0; my=1if n,=ny;=0.

S

After determining vector m, vector K is calculated for each microplane as k =mXxn. The shear
strain components in the k and m directions on a microplane with direction cosines 7; are

n 1
erg =kl = kng; = E(kin s+ Jey (7a)

where the symmetry of g is exploited to symmetrize these expressions. k; and m; are components of
in-plane unit coordinate vectors k and m.
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To implement Hypothesis III, we need derive equations for the maximum and minimum principgl
values €™, g;"" of lateral strain of each microplane. To this end we introduce another in-plane unit
vector p whose angle with the unit vectors k and m is 45°, as shown in Fig.11(a); p=(k+m) / V2.

The lateral normal strains in the directions of k, m, and p are

ex =kik;; (8a)
€p = PiD;E; (8c)

in which p; = components of the in-plane unit vector p of the microplane. _ _
Considering Mohr’s circle for the in-plane strains of the microplane, we can obtain the maximum and
minimum principal values €/, €7 of the lateral strain on each microplane

2 2 .
s [f] g
2 2
ez“i":SK“;gM—\/(gK;EM) +(8K;8M—ep] (9b)

b) Incremental Form of Macroscopic Stress-Strain Relation

As with (1) for the previous model [6], the incremental forms of microconstitutive .relat_ions are written
separately for the normal component and the shear components in the K and M directions:

normal component: doy = Cydey —doy"= fy(ex.€1.5.) = fra(€u>Ousm,) (10a)
K-shear component: dopy = Crgdery, — dog"= fri(erx.Sy) = fra(€u>Cuom, ) (10b)
M-shear component: dopy, = Cpydépy, —do,"= le(sTM,SN) = fn(ekl,okl,nr) (10c)

in which fy,(€x,€.,5,) and fy,(€y,0y,n,) are microplane normal stress increments doy expressed
in terms of &y, £;, and S;, and in terms of g, 0y, and #,; le(eTs,SN) and fm(e,d,ck,,nr) are
microplane shear stress increments doy, expressed in terms of €5, and Sy, and in terms of &, oy,
and n, (Is=TK,TM).

Using the principle of virtual work (i.e., the equality of virtual works of the stress tensor within a
unit sphere and microplane stresses on the surface of the sphere), we can write

i’f.dcij&e,j = 2L(chaeN +do 1y 0epy+d 07y 06, ) f(n)dS (11)

3
2 pr/2
in whichJ.dS = J Jsin¢d¢ do ; 8 and ¢ = the spherical angular coordinates; and e,
s 0 Jo

and Oer, = small variations of the strain tensor and of the microplane strains. The constant 47/3
means that the work of the stress tensor is taken over the volume of the unit sphere. The factor of 2 on
the right-hand side arises because the work of microplanes needs to be integrated only over the surface
of the unit hemisphere S. The function f(n) is a weight function for the normal directions n, which
in general can be used to introduce anisotropy of the material in its initial state. We willuse f(n)=1,

which means isotropy. Expressing dey, 0ex, and epy, from (5) and (7) and substituting them into
(11), we obtain

6£N, 68TK’

4 : do do
?do'l.jSSij =92 JS[”i”jdGN + 2TK (k,-nj + k,-n,-) + 2TM (ml.nj +m jn,.)] f(n)dSde; (12)

This variational equation must hold for any variations ¢
substituting (10), we obtain »

3 \ 1 "
doy = L[:nin j(Cudey = doy")+ 2 (kin; + kg ) Credeqy ~ o)
1

j» therefore, we can delete Jg;. Then,

+5(min ;i +m jn,.)(c,MdeTM - dO'TM")} f(n)dS (13)

(5) and (7) may now be here substituted for £y, €, and &,. This finally yields the incremental
form of the macroscopic stress-strain relation, which is the same as (2) in the previous model
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dGij = Cijrsdgrs - do—ij” (143‘)
3 1
Cyrs = E;r--[s[ nnnn Cy + Z(kin ik )(k,n_Y + ksn,)CTK
1
+Z(min -+ myn;)(m,n, +mxn,)CTM:J f(n)dS (14b)
t 3 " 1 : " ]' 1"
do;"= EJ‘S mn;doy +_2'(ki”j +km, )dGTK +§(mi”j +mn; )dGTM f(m)ds (14c)

in which C,, = incremental elastic stiffness tensor; and do;" = inelastic stress increment.

Relation (14) can be expressed in another form (15).

do; = %L[ﬂinjda,v + f-ig'é—T—K—(k,-nj + kjnl-) + dC;TM (minj + mjnl-)}f(n)dS

3 1
= EEJ‘S[:ninijZ(gkl’le’nr) +—2*(kl-nj + kjnl.)fn(skl,o-kl,nr)

+%(m,-nj +mn; )fT2 (sk,,dkl,n,)}f(n)dS (15)

As can be seen from the fact that the incremental stress tensor do;; depends not only on strain tensor
g, but also on stress tensor 0y, the interactions between microplanes are modeled in the Enhanced
Microplane Concrete Model through the additional static constraint that a microplane response depends
on the resolved components of the stress tensor obtained by spherical integration of the stresses of all
microplanes. This interaction effect means that the present model deviates from the basic concept that
individual microplane responses are mutually independent, which leads to the kinematic constraint.
This is necessary to take account of a situation within concrete where microcracks, damage, and
plasticity in each direction have mutual effects.

For the initial isotropic elastic response, we can substitute the initial moduli Cy, and C2 for Cy and
Crx» Cpy in (14b) and set f(n)=1. Since these moduli are independent of the microplane direction,
we could integrate (14b) explicitly if the unit vectors k and m were also known explicitly. However,
they are not explicit, being calculated numerically as described before. For initial elasticity we can

substitute the initial moduli C3 and Cp for Cy and Cyy, Cpy, in (10) and set do),"= doy"=doy,"
=0. Then we have do, = Crder, and dopy, = Codey, for shears. From that, |dGT| = C¥|d£T ,

where |doy|=+/do” +dop,,” and |deg|=/dep* +dep,” . This is the same relation as that used in

the previous microplane model by Bazant and Kim [1] involving normal and shear components (in
which the shear vectors were characterized by three components in the Cartesian coordinates x;;
i=1,2,3). Therefore the expressions derived in that study apply

0o E
~(1-2v) (162)
o (1-4v°)E°
r (1-2v°)(1+v°) (16b)

in which E° and v° are Young’s modulus and Poisson’s ratio.

¢) Rheologic Model for Rate Effect in Microconstitutive Law

The present model is a rate-dependent constitutive law as a consequence of adopting a series coupling
of a linear viscous element and an elastoplastic-fracturing element for the microconstitutive law on
each microplane according to Hypothesis V (Fig.11(f)). For the sake of brevity of notation, let £ and
o now represent any of the microplane strains €y, £, and €, and microplane stresses Oy, O,
and oy, respectively. The generalized Maxwell rtheologic model is described by the differential
equation
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40 _nde_o a7

dt dat p
where C’ is the current tangent stiffness of the elastoplastic-fracturing element, which takes the value
of either C” or C* depending on the loading-unloading-reloading criteria described later; C' = C”
for virgin loading and C' = C* for unloading and reloading; ¢ = time; and p = relaxation time of the
viscous element. If (17) is solved by using a central difference approximation, numerical difficulties
or instabilities may be encountered in the case of strain softening, and even if the solution is numerically
stable, a large error is usually accumulated and the stress is not reduced exactly to zero at very large
strains. .

To overcome these difficulties in the Microplane Concrete Model [6], a numerical method of solv_ing
this equation was conceived based on the exponential algorithm [14] initially developed for aging
creep of concrete. This method is used again here. Considering the initial condition for the numerical

time duration (from the previous time step ¢, to the present time step f,,,) in the general solution of
(17), and taking the values Cyy;, .y, and G,,y, for the middle of the duration, denoted with
subscript r+1/2, the incremental solution of (17) is obtained in the form of the microconstitutive
relations (10)

Ao = CAg - Ac™" (18a)
1 e
C=—/(1-¢ - (18b)
Az ( ) +1/2
Ac"= (1 —e™® )0', (18c)
Az=At/B,., (19)
1 1 ur Age
Bron = ; + ( vz = Craip )O'r+1/2 m | (20)

in which ¢, = microplane stress at the previous time step ¢,.

3.4 Microconstitutive Law for Normal Components

Aside from the hydrostatic compression response, the lateral-deviatoric strain g,,,, which is the
difference between normal €, and lateral g, strains of a microplane, increases with loading until it
finally reaches infinity due to the macroscopic Poisson effect. In the Microplane Concrete Model the
lateral strain effect on the normal compression response of a microplane is modeled so that the normal
compression response becomes softening when the lateral-deviatoric strain &, ;, approaches infinity.
However, since the normal compression response of microplane is softening due to a monotonic increase
in lateral-deviatoric strain even in the case of triaxial compression analysis under high confinement
pressure, perfect plastic behavior and transition from brittle to ductile fracture are not obtained on the
macroscopic level. In the present model this problem is circumvented by Hypothesis III. The purpose
of taking account the lateral strain and stress effects on normal compression response of a microplane
according to Hypothesis III is to achieve the following (Fig.11(d)):

1) The normal compression response would not be the same as the hydrostatic response except when
the lateral strains &; are the same as the normal strain €,,, which is the case of hydrostatic loading.
2) The normal compression response would have a plastic plateau when the difference between the
normal strain €y and the lateral strain &, is large and the resolved lateral stress S; of the microplane
is a large, compressive value, i.e., it would exhibit ductile plasticity.

3) The normal compression response would be more brittle when the difference between the normal
strain €y and the lateral strain €; is large and the resolved lateral stress S; of the microplane is a
small, compressive value or a tensile value, i.e., it would exhibit more strain softening.

a) Hardening-Softening Function for Microplane

To formulate the lateral stress effect, we resolve the stress tensor o into the lateral normal stresses
Sk » Sy and Sp in the directions of the in-plane unit coordinate vectors k, m, and p (Fig.11(b))

Sk = kik;0; (212)
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Fig.12 Hardening-softening function for normal compression

Sy =mm ;o (21b)
Sp = DiPj0;; (21c)
Considering Mohr’s circle for the lateral normal stresses of the microplane, we can obtain the maximum
and minimum principal values S, S;™" of the lateral stress of each microplane
2 2
s = Sc Sy (SK—SM) +(SK+SM_SP) (222)
2 2 2 '
2 2
et (B (i

We define a lateral confinement stress S, that combines S; and S;" into one stress invariant for

the microplane . .
Sic=S" +8™ :when S <0 and S/ <0

=0 : when S/ 20
=0 : when Sy 20 on any other microplane
= Sfc . Whﬁn SLC S SII,)C (23)

in which SJ- < ;- <0; and S/ = S, value corresponding to the case of plastic response.

The lateral-deviatoric strain &, 5, which is the difference between the normal ¢, and lateral ¢; strains
of a microplane, is defined using the maximum and minimum principal values £/, e"" of the lateral

strain on the microplane

Ep = leN - 82““|+|8N - (24)
In the present model, the following hardening-softening function ¢(g LD) based on the lateral-deviatoric
strain &;,, and the lateral confinement stress S; is introduced (Fig.12):

#(ewp)= —“—“’1‘“{7
1+(8LD/8LD) : when S, <0
=¢” :when &,, =€})
=0 :when S;-20 (25)

in which &}, = &;;, value when ¢(e,p)=0.5; €}, = &;;, value corresponding to the case of normal
plastic response; m = a constant that specifies the shape of the curve ¢(g,,); and ¢” = ¢(g;,,) value
corresponding to the case of normal plastic response.

b) Lateral Strain and Stress Effects

Weight functions are defined in terms of ¢(8LD) and S; ., and utilized to obtain a gradual transition
from hydrostatic response to plastic response and softening response for the virgin loading curve of
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the normal component of the microplane (Fig.11(d)).
When 12 ¢(g,,) 2 ¢” and any S,:

—_ P 1-—
GN(sN’eLDﬁsLC) = (%JM(EN) +( 1 ¢(;§D)]f Np( v) (262)
when ¢” > ¢(€,,)20 and S, < SV
O'N(SN:ELDaSLc) = pr(SN) (26b)
when ¢” > ¢(€;,) 20 and S/ < S, <0: ;
P
O.N(gN’eLD’SLC) = [;Tc)pr(gN) + (E%&_C)fm(siv) (26¢)
LC Lc

when ¢ > ¢(g,,)20 and 0< S,

on(en-€10,51c) = fus(en) (26d)
in which fy,(ey) = hydrostatic loading curve (when ¢(g,,)=1); fy,(€y) = plastic loading curve
(when ¢(e,,) = ¢); and fy,(€y) = compression softening loading curve (when ¢” > #(€,p) 20 and
0<5,0).

To obtain the loading tangent stiffness for normal compression response, we need to differentiate (26).
Thus,

when 12 ¢(e;p) 2 ¢” and any S,

9o y(en€10551c) _ #(ewp) = 9" \dfwn(en) + 1= 9(e1p) \ Hfwn(En) (272)
oy 1-¢? dey 1-¢? dey
when ¢” > ¢(g;,) 20 and S, < S7c:
3O'N(8N,8LD,SLC) — dip(SN) (27b)
o€y dey
when ¢” > ¢(€,,) 20 and S7; < S, <O:
9o y(x>€1p5S1c) _[See dfyp(En) + Ste = Suc | dfs(en) (27¢)
oey Ste ) dey She dey
when ¢” > ¢(g,,) =0 and 0< S,
90y (Ens€psSic) _ dfs(en) (27d)

Jey dey

Similarly, the transition for the linear unload-reload stiffnesses C"’O(O'N,s NE LD,SLC) may be written
as follows.

When 12 ¢(g;,) = ¢” and any S,

ur u ¢ Eur - ¢p ur U 1 B ¢ eur ur u
CN O(O-N’ 8N’ 8LD7 ZE’) [——(T[f.)ép—-JcNho( N) + [—1‘:—(&'%)}(?]\;1)0 (O'X,,EN) (283)
when ¢7 > ¢(e;,) 20 and S, < S
Cir° (o181 ) = Cird (o ) (28b)
when ¢ > ¢(€;,) 20 and SP- < S, <0:
ur u N ur u Sp - Sur ur u
Ci (ot El-Elp. Stk ) = [S;C]c,v;(a;‘v,e,v) + [%IJAJCNSO(G;‘V,%) (28¢)
LC
when ¢” > ¢(e,5)20 and 0< S, :
C°(ch- €. 815,817 ) = Cird (o € 28d)
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Fig.13 Softening loading curve . ] _ .
for microplane Fig.14 Hydrostatic loading curve for microplane

and comparison with experiments
in which C%? (0‘7\,,8”,\,) = the linear unload-reload stiffness for the hydrostatic loading curve (when
(P(EZ)) =1); C,”f,;o (o‘l’(,,ej’v) = the linear unload-reload stiffness for the plastic loading curve (when
¢(€,‘f{,) =), Cu0 (0',’(,,85'\,) = the linear unload-reload stiffness for the compression softening loading
curve (when ¢ > (P(SZ)) 20 and 0< 8;;); oy and gy = the normal stress and strain at the start of
unloading; €77, = the lateral-deviatoric strain for unloading and reloading (€;,, value corresponding to

the start of unloading); and S;, = the lateral confinement stress for unloading and reloading (S,
value corresponding to the start of unloading).

This model incorporates interactions between microplanes by taking into account the lateral strain and
stress effects in the normal compression response of a microplane using (26), (27), and (28).

¢) Loading Curves for Normal Component

In the previous microplane models of Prat [3], Gambarova [2], and Oh [15], virgin loading curves for
strain softening on each microplane are formulated using a single exponential function. With this kind
of equation, however, one cannot adjust the peak stress, peak strain, and the post-peak ductility
individually. To do so in this study we use two separate virgin loading curves for pre-peak and post-
peak regions, as in the Microplane Concrete Model.

The virgin loading curves for the pre-peak and post-peak tensile regions of the normal component are
(Fig.13)

for 0 < g, < &% (pre-peak):

e Crene /i
Oy =0pr|1 —[ - "E)N_] (292)
Enr
for €%, < &y (post-peak):
— 0 En —Exr o
Oy =Onrexp| — e (29b)
NT

0 0

. . 0 _ Onr _ 0 _ YniOnr .

in which &vr =5 0; and Enr = Yarénr =5 —9-. In (29), Gng is the peak stress of the curve,
gNTCN ngN
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{yr is a parameter that controls the peak strain €3, and ¥ yy is a parameter that controls €y;. At the
strain €y = £uy + E4y, the stress o decreases to o /e in the softening region. py;, is a parameter
that changes the shape of the softening loading curve. Thus we can control the shape of the stress-
strain curve with these four parameters quite easily, which is important for the proper adjustment of
the macroscopic response with the microplane model.

For the compression range of the normal component, we must specify the equations for the hydrostatic,
plastic, and compression softening loading curves, as mentioned before. For the hydrostatic loading
curve of the normal component, we use (30) (Fig.14).

c? cf
fw(ey)=oy = 0 Np,, + P N—qy En
(ENCN) 41 [eNCN] 41

o 20,

a

(30)

in which o, = Cye,; 0, = Cle, /2; C}; = the asymptotic final modulus for normal compression; o,
and 0, = the normal stresses corresponding to €, and €,; €, and &, = normal strain values that
characterize the shape of the curve; and py and g, = exponents which also change the shape ( pu <1,

qy >—1).

For the plastic loading curve of the normal component, (31) is adopted.
For 0z¢y, = egp (pre-peak):

Cren, (O
e
fu(en) =0y =03, 1—(1—8%] (31a)
Np
for eg,p > gy (post-peak):
fuw(en) =0y =00, (31b)

0
O-Np

in which 82,1, =—=5. In(31) o‘?vp and s?vp are the peak stress and the peak strain, and { Np 18 @

Np™~N 0
parameter that controls &y,

The same types of equation as for tension are assumed as for compression softening of the normal
component (Fig.13)

for 0> &y > €5 (pre-peak):

e Crene/ohe
fus(en) =0y = 03| 1- (1 - ST”J (322)
NC
for sf\),c > €y (post-peak):
_ g0 Pnc
fus(en) =0y =0Rcexp —(MJ (32b)
Enc
0 0
. . o YncC
in which é"1(ifc =N and &) = YNCSRIC = THCHC
CncCr gzvccz(\)/

Fig.15 gives the calculated results of normal compression response with this model, showing the
lateral strain and stress effects. As the figure shows, there is a transition from brittle to ductile fracture,
in which the residual strength after the peak stress increases with confinement between the compression
softening and plastic loading curves. In Fig.14 calculated hydrostatic compression behavior using
(30) is compared with the experimental data of Green and Swanson [16] as well as of Yamaguchi et al.
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—a— Ble)=08, any S,c/Sfec
(£20) =06, any Sic/Sfc
memmmmn $Ep)=0.5=9, a0y S;c/Sle : fuplen)
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Fig.15 Lateral strain and stress effects on normal compression response of a microplane

[17]. The material parameters identified are CJ, = Cy, 6, = —965 kgf [em? , 0, =—63060 kgf [em?
and py =g, =1.0 for Green and Swanson, and CN = C°, o, =-700 kgf/cm , O) = ——19000
kgf/cm?, and Py =gy = 1.0 for Yamaguchi et al. From the comparison, we can conclude that (30)
can predict the hydrostatic compression behavior of concrete with accuracy.

d) Linear Unload-Reload Stiffness
The hysteresis rule for unloading and reloading of a microplane is based on the linear unload-reload
stiffness C*" as described later.

As the linear unload-reload stiffnesses Cir° (0’ NE N) C”’o (O'N,e N) of the normal component for the

hydrostatic loading curve and for the plastic loading curve the initial modulus CN for the normal
component is used without taking into consideration stiffness degradation due to damage.

C"”O(o}‘v,s}‘v) =Cy (33)
C’”O(c N,eN) (o (34)

In the pre-peak region of the tensile or compressive softening response for the normal component, C,?,
is used as the linear unload-reload stiffnesses C“’O(Gx,,e“,v) C"’O(O',‘t,,ex,). On the other hand, after

the peak stress of the tensile or compressive softening response, the following damage evolution is
assumed for linear unload-reload stiffnesses C,‘(,’T()(Gj‘v,e N) cuo (0'1'(,,8?\,):
For 0 < £}, < €9 (pre-peak tension):

Cir? (o-e) = Cx (352)
for €4, > £%; (post-peak tension):
Chp (o) = or Cy + (1 aNT)——‘ﬁv—Té— (35b)
~Snr

for 0> g% > eq. (pre-peak compression):
c"’°(c;'v,s,"v) =CY (35¢)
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for £ < €5 (post-peak compression):

O.u
Cri(o7€8 ) = e Ch + (1= e )——2E— (35d)
exc —Ene
o oy
in which &, = eo, ——&%T—; Eve = €3¢ ~~E’%Q; oy and Oy = the normal stresses at the start of
N N

unloading for tension and compression softenings; £y, and €y, = the normal strains at the start of

unloading for tension and compression softenings; oy, and o, = weight constants which describe
the proportions of progressive damage in tension and compression softenings; and &y, and &, =
plastic residual strains after complete unloading with C,?, from the peak stress to zero stress. Thus,

using the linear unload-reload stiffnesses Cip (0';‘\,,8}{,), CK,’SO(O'“N,E,”(,), which are formulated with

o yr and oy, representing damage of microplane and with &y and &, taking account of microplane
plasticity, we can control the elastoplastic-fracturing behavior for the case of softening in the normal
microplane component.

3.5 Microconstitutive Law for Shear Components

Since the difference between K-shear and M-shear is only its direction on the microplane, the
microconstitutive laws for those shears must be identical. Therefore, we do not differentiate K-shear
from M-shear, but consider a unique microconstitutive law for shear with subscript T which refers to
K-shear (TK) and M-shear (TM).

a) Transition from Brittle to Ductile Fracture with Confinement

In the present model, shear loading curves are defined individually for softening (subscript 77) under
resolved normal tension stress, softening (subscript 7C) under resolved normal compression stress,
and plasticity (subscript Tp) under resolved normal compression stress. A shear friction law is applied
to evaluate shear peak stress for pre-peak and post-peak curves under resolved normal tension stress
and for pre-peak curves under resolved normal compression stress. On the other hand, post-peak
shear response under resolved normal compression stress is calculated by weighting the softening and
plasticity loading curves with resolved normal stress. This results in a transition model from brittle to
ductile fracture for shear response on the microplane (Fig.11(e) ).

The resolved normal component Sy of the stress tensor 0;; on a microplane whose direction cosines
are n; is

The loading curve o,(&;,S N) under resolved normal stress Sy is calculated by weighting each loading
curve fr,(€r), frc(€r), and fir(€7) with resolved normal stress Sy as follows.

When Sy <S%:

or(er.Sy)= pr(er) (37a)
when S§ < Sy <0 and in pre-peak:

or(erSy)= frc(er) = fro(&r) (37b)
when S§ < Sy <0 and in post-peak:

Sy Sk =Sy
or(er.Sy)= a fro(€r)+ = frc(€r) (37¢)
N N

when 0 < Sy:

GT(ST’SN)=fTT(8T) (374d)

in which f7,(&;) = plastic loading curve (when Sy < S§); frc(€r) and fir(€;) = softening loading
curves under resolved normal compression and tension stresses; and S§ = S value when the shear
response corresponds to the plastic loading curve.
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The loading tangent stiffness for shear response is obtained by differentiating (37).
When Sy < 8§ :

dor(er,Sy) _ dfiy(er) (38a)

oer de;
when S§ < Sy <0 and in pre-peak:

dor(er:Sy) _ dfrcler) _ dfr, (1) (38b)

o€r dey dey
when S§ < Sy <0 and in post-peak:
9o (er,Sy) Sy dfyp(er) + Sk = Su | drc(er) (38¢)
ogr N SE dey
when 0 < Sy:
dor(er,Sy) _ dfrr(er) | (38d)
Oer der

Similarly, the linear unload-reload stiffness C;’O(o#,ssi,S}‘V’) is calculated
when S, <S§: ;
Cy0(o4.65. 51 ) = Cin¥(o4 €4 ) (39a)
when S§ < S, <0 and in pre-peak:
CurO (O.u et s = vt et = O (gt gt (39b)
7 \OT:€7:9N 7c \OT>€T 7p \OT>€r
when S§ < S, <0 and in post-peak:

Cy(oh. €55 ) = S—f; Cyo(ot.ep) + Sk ‘psfuvr Cied (ot &4) (39¢)
Sk Sk

when 0 < Sy:
G (o4 5.5y ) = G (o4 €5) (39d)

in which C;;O(O';,a';) = the linear unload-reload stiffness for the plastic loading curve (when Sy < S%);
cuad (o‘#, 8;) = the linear unload-reload stiffness for the softening loading curve under resolved normal
compression stress; Car’ (0#,6;) = the linear unload-reload stiffness for the softening loading curve
under resolved normal tension stress; o7 and €7 = the shear stress and strain at the start of unloading;

and Sy = the resolved normal stress for unloading and reloading (S value corresponding to the start
of unloading).

b) Loading Curves for Shear Components

The softening loading curve fi (sT) under resolved normal tension stress is
for 0< |8T| < |8(T)T| (pre-peak):

e Crepy[t°
fro(er)=op =7°|1- (1— ;soi] (40a)
T
for ‘8?-,‘ <lez| (post-peak):
0 \Pmr
frr(er) =0, =17° exp{_[ﬁ___gﬂ] } (40b)
TT\*T T s
€77
0 -
in which &% = Z———C—b-; Er = YrpEoy = TT—CO; and 7° = shear peak stress, which depends on the
rCr rlr
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resolved normal stress Sy .

The softening loading curve fTT(eT) under resolved normal compression stress is
for 0 < e |< |£3C| (pre-peak):

e Clefe/7°
fre(er) =0, =1° 1—(1-%) (41a)
€rc
for |8ch < |£T| (post-peak):
£ — 80 Prc
fTC(gT) == GT = TO eXp —(LS_T—C"] (41b)
€rc
0 Yrc®

in which £ = -—-——~, and £} = YrcEpc =

gTC T

The plastic loading curve pr(sT) under resolved normal compression stress is
for 0< |8T| < leTCI (pre-peak):

Clede/t
fpler)=op =1 1- (1 - 8—] (42a)
erc
for |82C‘ < ISTI (post-peak):
fro(&r)=07=1° (42b)

Unlike the normal component, (40), (41), and (42) are applied to both tension and compression. The
only difference between tension and compression is the sign of the peak stress 7°, i.e., 7° >0 in
tension (&7 > 0) and 7° <0 in compression ng < 0). The concept of shear frictional coefficient fi;7,
Uy 18 utilized to model the dependence of shear peak stress 7° on resolved normal stress S N-

For tension of shear (&, > 0):

when Sy <0: 7° =+0% — tyeSy (432)

when Sy 20: 17° =+0% — trpSy 2 +1% 0% (43b)
for compression of shear (&, < 0):

when Sy <0: %= —O'gc + UreSy (43c)

when Sy 20: 1% =—0% + Sy <12 0% (43d)

in which 6¥(>0) and o5.(> 0) = shear peak stresses at Sy = 0 under resolved normal tension and
compression stresses; (> 0) and Uy-(>0) = shear frictional coefficients under resolved normal
tension and compression stresses; and r, = a constant specifying a lower limit on shear peak stress

under resolved normal tension stress (0 <. < 1)

Fig.16 shows calculated shear responses under resolved normal tension and compression stresses with
this model, where there is a transition from brittle to ductile fracture.

¢} Linear Unload-Reload Stiffness

As the linear unload-reload stiffness C‘”O (O'T,sT) of the shear component for the plastic loading curve,
the initial modulus CT for the shear component is used without considering stiffness degradation due
to damage.

Cir¥(ot.e4)=CF 44
In the pre-peak region of the softening response for the shear component, C}) is used as the linear
unload-reload stiffnesses Cpp (G;,E;) (oA (G;,E?«) under resolved normal tension and compression
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Fig.16 Transition from brittle to ductile fracture for shear response of a microplane

stresses. On the other hand, after the peak stress of the softening response, the following damage
evolution is assumed for linear unload-reload stiffnesses Ci4. (o‘;,eﬁ), curo (0?,8%) under resolved
normal tension and compression stresses:
For 0<|ef|<|ef,| and S}y =0 (pre-peak):

iy (o%.84) =3 , (45a)

for ]8(7)7| <ler| and Sy =0 (post-peak):
(0%, e8) = 0y €0+ (1~ gy ) =L (45b)
er =Sy
for 0 < |ef|<|ed| and Sy <O (pre-peak):
Cied(o%.85)=CF (45c¢)
for legcl < 18;{- and Sy <O (post-peak):
ced (o?,s%) = 0y CP +(1—- ozTC)uL (45d)
€r —Src
7° 7°
in which & = &0y ——5; and &¢ = €00 ——5-.
Cr Cr

3.6 Loading, Unloading and Reloading in Microconstitutive Relations

With the most of phenomenologic constitutive models, loading, unloading, or reloading has to be
judged in general stress and strain tensor conditions. In the case of theories of plasticity and damage
mechanics, loading functions, plastic potential functions, or damage potential functions are formulated
using invariants calculated with stress and strain tensors. Loading, unloading, or reloading is judged
using these functions. However, it is not easy to establish appropriate loading criteria for cases when
the principal directions rotate or neutral loading occurs, for which the invariants are not adequate. On
the other hand, the Enhanced Microplane Concrete Model does not require loading criteria for stress
and strain tensors, but needs loading criteria in the microconstitutive relations between microplane
stress and microplane strain. These are scalar variables since cross effects among microplane
components are not taken into account. Therefore, the criteria for loading, unloading, and reloading
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are very simple in the present model, which gives an advantage over phenomenologic constitutive
models.

Let each microplane strain €y, €, £p, and microplane stress o'y, Oy, Oy be defined as € and o
for the sake of simplicity. The following loading-unloading-reloading criteria are used for all the
components:

Loading:
when o, >0 (tension), Ag, . >0, &, 2 €, (46a)
when o, <0 (compression), A4e,,; <0, &.,; <€ (46b)
Unloading:
when o, >0 (tension), Ag, 1 <0, €. <€ (46¢)
when 0, <0 (compression), Ag,.; >0, &, >Eu, (464)
Reloading:
when o, > 0 (tension), Ae, >0, &, <€ (46e)
when o, <0 (compression), A4g,,; <0, &, >&. (46f)

in which o, = microplane stress of each component at the end of the previous load step; €,,; =
microplane strain of each component at the present load step; Aeg,,; = microplane strain increment of
each component (A8,+1 =¢,,, — £,); & =microplane strain of each component at the end of the previous
load step; and €, and €., = the maximum and minimum values of microplane strain in the history.
In (46) €, and €, are considered as scalar potentials for loading.

3.7 Hysteresis Rule for Microconstitutive Relations

The linear unload-reload stiffnesses C4° (a;',,ej'v,ez;),szg) in (28) and C',f,’TO(O'X,,e}‘V) in (35a), (35b)
for the normal component as well as the linear unload-reload stiffness C%’O(O#,s;,SK,r) in (39) for the
shear component can be used with the loading-unloading-reloading criteria in (46), to describe the
cyclic behavior of each component. However, numerical simulations with c;‘,”(c;(,,ex,,ezg, ,’f’c),

il (G}‘\,,E}‘\d,, and C¥° (0';,8;,5,’(,’) reveal that the hysteresis loops are too narrow in the macroscopic
responses. Wider hysteresis loops on the microplane are necessary to obtain proper hysteresis on the
macroscopic level. The reason for this is that hysteresis loops govern the energy dissipation, and the
basic hypothesis of the microplane model is energy equivalence between the macroscopic and
microscopic levels.

To obtain macroscopic hysteresis in the Microplane Concrete Model [6], a hysteresis rule with
microplane back-stress and objective-stress was developed. The microplane back-stress and objective-
stress were conceived on the basis of a concept analogous to the kinematic hardening rule in plasticity
theory to describe inelastic behavior in unloading and reloading. Although in the kinematic hardening
rule the back-stress is defined as the center of the loading surface, the microplane back-stress and
objective-stress in this hysteresis rule are the microplane stresses at the start and end of inelastic
behavior in unloading and reloading. A single value of the microplane back-stress is used for both
unloading and reloading; it is updated to the microplane stress at the end of the previous load step
whenever the sign of the microplane strain increment is reversed during calculations. When a monotonic
unloading or reloading occurs on a microplane, the hysteresis rule works well. However, when unloading
and reloading occur in turn on a microplane, the microplane back-stress is always set equal to the
microplane stress at the end of the previous load step, and the tangent stiffness becomes its maximum
value. Then the hysteresis loop becomes narrow or does not occur.

In this study the microplane back-stress is redefined separately for unloading and reloading to prevent
the hysteresis loops from becoming narrow as described above. Furthermore, lateral strain and stress
effects are taken into account in the microplane hysteresis response during unloading and reloading in
normal compression, and a resolved normal stress dependence of the microplane hysteresis response
for the shear component is formulated. In the following, the microplane strains €y, &g, €p and
microplane stresses Oy, O, Opy, are defined as € and o for the sake of simplicity.
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a) Back-Stress, Objective-Stress and Unloading-Reloading Function

The microplane back-stresses O'll,{,, P G,ir 1 for unloading and reloading are defined as follows.

When A, - A¢,, <0, |ef,|<le.al 0,0 =0, (47a)
when Ag, ~A£,+1 <0, |ef|>leml:  ohm=0" (47b)
when Ag, - Ag,,, 20, |£,f, <l 0h =04, (47¢c)
when Ag, - Ag,,; 20, Ie,f,, >le i O =0" 474d)
when Ae, - Ae,, <0, |ef,|2le.|  of =0, (47e)
when e, - Ae,,, <0, [ef,|<|gn| O =0 (47f)
when Ag, - Ag,,; >0, le,ﬁ’ Azl of =0k, (47g)
when As Ag,+1 >0, <lepu  OF=0 (47h)

in Wthh O'b il O'b L= mlcroplane back-stresses for unloading at the present and previous load steps
o‘b r+1» Op,, = microplane back-stresses for reloading at the present and previous load steps; sb ,
microplane strain corresponding to the microplane back-stress for unloading at the previous load step,
s,fr = microplane strain corresponding to the microplane back-stress for reloading at the previous
load step; o, = microplane stress at the previous load step; 6 = microplane stress at the start of
unloading; €,,, = microplane strain at the present load step; and Aeg,., and Ag, = microplane strain
increments at the present and previous load steps.

The microplane objective-stress &, is defined as
when unloading: 0, =0 ‘ (48a)
when reloading: 0, = 0" (48b)

The microplane back-stresses O'f,f, > O'[fr +1 and the microplane objective-stress o, are set according
to (47) and (48) when the unloading or reloading criteria are satisfied. The unloading-reloading function
F* (o), which is nondimensional, is defined for the microplane stress ¢ during unloading or reloading.

oy ., ~C
When unloading: F*(g) = | —2r! - (49a)
Oop ~Opr+1
R
when reloading: F“ (o) = Trst RG (49b)
O —Op,rt1

in which 0< F (o)< 1.

b) Hysteresis Rule for Normal Component

To take into account lateral strain and stress effects on the microplane hysteresis response during
unloading and reloading in normal compression, nondimensional coefficients U, ., U, i,» Ryay- and
R, are defined separately for unloading from, and for reloading to, the hydrostatic, plastic, and
compression softening loading curyes. Weighting these coefficients, the coeff1c1ents corresponding to
the hardening-softening function ¢*" and the lateral confinement stress ;- for unloading and reloading
are calculated using a method similar to the virgin loading curve descnbed in34b).

When 12 ¢ > ¢” and any S;¢:

ur ¢ur__¢p 1_'¢

Unan (9" -S1c) = (1_ 57 [P+ (1 7 ]U”" (502)
ur our ¢ur_¢p 1 ¢ur

Upin(# ,SLC)=( [Zgr [Vt (1 p )U”” (50b)
ur qur Y —gP 1-¢"

Roes 6 ,SLc)=(¢1_ p Rﬁé’w(l = ]Rm” (500)
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Rmin(¢"r’522)=(¢w_¢pjl?ﬁ’£ [ ¢WJRT’X” (50d)

el (500)

1-¢f 1-¢?
when ¢f > ¢ 20 and S/ < S/¢:
Umax (q)ur’SIlfrC) = UNp (506)
Unpin( 0. S1%) = U (50f)
Roa (9. S1%) = RAZ, (50g)
Ry (9,815 ) = RY, (50h)
when ¢” > ¢ 20 and SV < S <0:
S S? Sic )
ur S vrc UN.D LC Ug;x 50i
052 = 2 o (—“‘sw ] (00
Um(cb”’,SZ’c)= JUn’!f; [S L ]Umm (507)
S” S”’ s
Rmax(¢”’,522)— j RYY +[ — 57 “j o (50K)
LC

R (6,512 = (SLC)

when ¢f > ¢* =0 and 0< S/

U (0 "’)—Uﬁg (50m)
Upin( -557) = U;an (50n)
R (9.88) = ax (500)
Roin(0.517) = R, (50p)

inwhich UM UM UM =nondimensional coefficients determining the maximum unloading tangent
stiffness Cpay = Upax (q’)“’ S,‘f’c) C“’O(G”N,S?V,SZB,SZ’C) for the hydrostatic, plastic, and compression
softening loading curves; UM, UM U™ = nondimensional coefficients determining the minimum
unloading tangent stiffness Cp;, = Ui, ((p”’,S,'f'c) : C,‘(,’O(o",f,,s;‘v,e,'f’D,SZ’C) for the hydrostatic, plastic,
M RY . RN =nondimensional coefficients determining

the maximum reloading tangent stiffness Cp,, Rmax(¢“’ ‘”) “rO(O'N,sN,sLD,S ’) for the

and compression softening loading curves;

hydrostatic, plastic, and compression softening loading curves; RY. , R = RN = nondimensional
coefficients determining the minimum reloading tangent stiffness ,;m Rmin((ﬁ"r,SZ’C)-

curo (G,‘(,,SZ,EZE,,SZ’C) for the hydrostatic, plastic, and compression softening loading curves; ¢*" =
the hardening-softening function for unloading and reloading (¢(,,) value corresponding to the start
of unloading in normal compression); ¢" = ¢(€LD) and S7, = the lateral confinement stress for

unloading and reloading (S value corresponding to the start of unloading in normal compression).

The unloading tangent stiffness CK,(O’N) and the reloading tangent stiffness CI’\,(O'N) for normal
compression are (Fig.17)

Ci(0) ={ [Unin(9 1) ~ Uras (9 S12) | F* (')
+ U (0582 bCir® (o, .21, 5% (51a)
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Fig.17 Hysteresis rule for a microplane

Chfon)= {[Run(9".512) = Ruas(9 52| (1)

+Rmax(¢ur Sur )} urO(O-NaeN’gLDos r) (51b)

On the other hand, in the case of the unloading tangent stiffness Cy(oy) and the reloading tangent
stiffness Cy, (0' N) for normal tension, the lateral strain and stress effects are not taken into account:

Cu(ow)={[Unn - USL]F (o) + UL, bcinp (o, 23) (52)
Cr(ow)={ [Rim ~ R JF* (o) + R, JCl (o4 (52b)

in which U NT = nondimensional coefficient determining the maximum unloading tangent stiffness
Ctox=UN . C”’O(O'j‘\,,eﬁ‘\,) for the softening loading curve for normal tension; UX\! = nondimensional
coefficient determining the minimum unloading tangent stiffness C*, = UM . C“’O(Gﬁ‘\,,s}‘\,) for the
softening loading curve for normal tension; RmNz; = nondimensional coefficient determining the
maximum reloading tangent stiffness Cl,, = RN - Cur® (o‘X,,e”N) for the softening loading curve for
normal tension; and = nond1men51onal coefflcwnt determining the minimum reloading tangent
stiffness C7, = RN . C,‘(,’TO (O'N,e N) for the softening loading curve for normal tension.

It has been confirmed experimentally (for example [18]) that hysteresis loops of concrete during
unloading and reloading are very narrow when the concrete is perfectly plastic or under hydrostatic
compression. To simulate the macroscopic hysteresis characteristics, linear behavior is assumed during
unloading and reloading for the hydrostatic and plastic loading curves of the normal component ignoring
hysteresis. On the other hand, hysteresis is assumed during unloading and reloading for the compression
softening loading curve after the peak stress, i.e., Exc < €2 ~c- Also for post-peak tensile region of the
normal component, i.e., 4, > €5 nr» hysteresis is considered.

Fig.18 shows unloading and reloading responses for normal compression, as calculated with the model
described above. These represent the lateral strain and stress effects on the hysteresis response for
normal compression. There is no hysteresis in unloading and reloading for the hydrostatic and plastic
loading curves. On the other hand, between the plastic loading curve and the compression softening
loading curve, hysteresis loops become wider when the virgin loading response, from which unloading
starts, approaches the compression softening loading curve, i.e., when S}z / SFc decreases.

c¢) Hysteresis Rule for Shear Components

The transition model from brittle to ductile fracture (resolved normal stress dependence) is adopted to
calculate hysteresis for microplane shear components. To this end, as with the microplane normal
component, nondimensional coefficients U,,, U, R, and R, are defined separately for
unloading from, and for reloading to, the plastic and softening loading curves of the microplane shear
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Fig.18 Unloading and reloading responses for normal compression

component. Weighting those coefficients, the coefficients corresponding to the resolved normal stress

Sy for unloadlng and reloading are calculated usmg a method similar to the virgin loading curve
described in 3.5 a) .

When Sy < S§:

Umax (Sllflr\) = Urﬁix (53&)

Unin( S )= UL, (53b)
R (Si) = Rmax (53c)
Ron(Si )= R, (53d)

~ when S§ < Sy <0:

ur Sur Sp _ Sur
Urnax (S )=( ’;]U,T{;x +[ 7 Unan (53¢)
N N
ur Sur Sp - Sur
Um(SN)=[ < JUQ{“ +( et )Uni?n (539)
N N
ur Sur Sp _ Sur
Rmax(SN)=( S’;] T';x+[ ot ]RSSX (53g)
N N
ur Sur Sp _ Qur
Ruia(SH) ={ <7 | R +( o ] nin (53h)
N N
when 0< Sy
Upnew (S ) = Uy (53)
Unin( S ) = Unin (53)
R (SH) = REL (53k)
Ryn(S )= R, (530

inwhich U | U ,ﬁﬁ; , ULL. =nondimensional coefficients determining the maximum unloading tangent
stiffness Cp, = U (S N ) o (o#, £7, S,‘(,’) for the plastic loading curve and softening loading curves
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Fig.19 Unloading and reloading responses for tension of shear

under resolved normal compression and tension stresses; UL, | U, U™ = nondimensional

coefficients determining the minimum unloading tangent stiffness Cpy, = Upnin (S,‘{,’)~ co (G?,Syz,S,‘\‘f)
for the plastic loading curve and softening loading curves under resolved normal compression and
tension stresses; R, R™ | R = nondimensional coefficients determining the maximum reloading

ax?
tangent stiffness Cy,, = Rmax(S ,'(,’) Yoo (O’;,E;, S,‘:,r) for the plastic loading curve and softening loading
curves under resolved normal compression and tension stresses; and R, RIC | RI' = nondimensional
coefficients determining the minimum reloading tangent stiffness C,,, = R (S,‘(,’)- C;‘fo(o#, e?,S}{,’)
for the plastic loading curve and softening loading curves under resolved normal compression and

tension stresses.

The unloading tangent stiffness Cy(07) and the reloading tangent stiffness Cr(o;) for the shear
component are

Ci(07) ={[Urnin (S8 )~ Uras (S ) [P (07) + Vs (') J (0¥ 85K (54a)
Ci07) ={ [ Ruin(S) = Ress (S5 )JF*" (07)+ Resa (W) fero(os.ep.%) (54b)

Hysteresis is assumed during unloading and reloading for the softening loading curves under resolved
normal compression and tension stresses after the peak stress, i.e., iegctl < |e;‘ and |ng| < ]8?' On the
other hand, linear behavior is assumed during unloading and reloading for the plastic loading curve of
the shear component ignoring hysteresis.

Fig.19 shows unloading and reloading responses for tension of shear, as calculated using this model,
representing the transition mode] from brittle to ductile fracture (resolved normal stress dependence)
for microplane shear hysteresis. There is no hysteresis in unloading and reloading for the plastic
loading curve. On the other hand, between the plastic loading curve and the softening loading curve,
hysteresis loops become wider when the virgin loading response, from which unloading starts,
approaches the softening loading curve, i.e., when Sy / |S,{’,I increases.

3.8 Alternating Cyclic Loading Rule for Microconstitutive Relations
The foregoing rules apply separately to the tension and compression regions of each microplane

component. The borderline between the tension and compression regions is defined by zero microplane
stress. To establish a complete cyclic loading model for the microplane, the foregoing rule must be
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extended to cover the entire range of tensile and compressive microplane stresses. To identify the
alternating cyclic loading rule for each microplane component, many possible cases of the cyclic rule
were tried numerically and compared to uniaxial compressive and tensile tests in the literature.

The alternating cyclic loading rule for the normal component is characterized as follows.

1) The virgin stress-strain curves for both normal tension and compression are unique regardless of
the number of cycles or the strain history. '

2) The origin of the virgin stress-strain curve for normal compression is fixed. However, the one for
normal tension can shift along the strain axis when unloading in the compression region goes into the
tension region.

3) When unloading in the compression region goes further into the tension region, loading or reloading
in the tension region starts from the plastic residual strain for the compression region.

4) When unloading in the tension region goes further into the compression region, there is a horizontal
plateau with zero normal stress before loading or reloading in the compression region starts at the
plastic residual strain for the previous compression unloading.

Fig.20 is an example of a calculated cyclic response using the alternating cyclic loading rule for the
normal component with the compression softening loading curve. In this figure, the normal strain
history is marked with sequential numbers. In this example, the first cycle enters tensile softening,
and then reverts to compression. Before going into compressive stress, there is a plateau which
corresponds to closing of microcracks. The compression region begins always at the origin (zero
normal strain), but the origin of tension is shifted every time unloading from the compression region
crosses the strain axis.

The alternating cyclic loading rule for the shear component is characterized as follows.

1) The virgin stress-strain curves for both tension and compression of shear are unique regardless of
the number of cycles or the strain history.

2) The origins of virgin stress-strain curves for tension and compression of shear are fixed.

3) When unloading in one region goes further into another region, there is a horizontal plateau with
zero shear stress before loading or reloading in the latter region starts at the plastic residual strain for
the previous unloading.

Fig.21 is an example of a calculated cyclic response using the alternating cyclic loading rule for the
shear component, in which the shear strain history is marked with sequential numbers. The origins of
the stress-strain curves for both tension and compression regions are fixed. In the example shown, the
strain cycles are similar to those used in the previous example for the normal component, but the stress
responses are very different. After the unloading curves reach the strain axis, there are always plateaus
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of zero shear stress. This assumption is needed to model experimental observations showing that for
large deformations almost no stress change occurs in crack shear (aggregate interlock) tests with stress
reversals. Such behavior is due to free play between asperities or between the faces of opened cracks
which need to come into contact before the stress can reverse its sign.

4. VERIFICATION OF ENHANCED MICROPLANE CONCRETE MODEL

In this third part of the present study, the Enhanced Microplane Concrete Model is verified by comparing
calculated results using the model with experimentally obtained constitutive relations for concrete as
reported in the literature for various stress conditions. Examination of the microplane responses in
each analysis provides an explanation of the load-carrying mechanisms in concrete in terms of responses
on the microplanes.

4.1 Verification Analysis

To verify the general applicability of the Enhanced Microplane Concrete Model, constitutive relations
covering a wide range of stress conditions are simulated with a single set of input material parameters
for the model. Several series of analyses were carried out [7], from which the following two series, B1
and B2, are reported here:

1) Analysis series B1

The triaxial compressive tests along the compressive meridian carried out by Smith et al. [8] are first
simulated, and then triaxial compressive analysis along the tensile meridian, biaxial compression
analysis, biaxial compression-tension analysis, and biaxial tension analysis are done with the identical
input material parameters to simulate the tests.

2) Analysis series B2

Cyclic responses under uniaxial, biaxial, and triaxial compression are calculated and compared with
the experiments by van Mier [19]. Extracting invariants of stress and strain tensors from the obtained
analytical responses, the relations between the invariants are compared with the corresponding
experiments.

The constitutive equations (14) are solved with boundary conditions for each analysis. As with the
previous calculations, integrations in the equations are evaluated using the numerical integration formula
derived by Bazant and Oh [9].

4.2 Material Parameters

In the Enhanced Microplane Concrete Model, there are three groups of material parameters except for
Young’s modulus E® and Poisson’s ratio v°:

1) material parameters concerning virgin loading for the microplane,

2) material parameters concerning unloading and reloading for the microplane,

3) material parameters concerning rate effects for the microplane.

Table 3 shows the material parameters in groups 1) and 3) as used in analysis series B1 and B2.

For the hydrostatic loading curve of the normal component, the material parameters previously identified
for the experiment by Green and Swanson are utilized. Since the present analysis is intended for a
single static strain rate, we eliminate the strain rate effect by specifying infinite values of relaxation
time p~. The relaxation times shown in Table 3 are the assumed infinite values.

For the material parameters concerning unloading and reloading for the microplane, the following
values are assumed:

Oy = Olye = Oy = Ope = 0.2 ©5)
UM =UX =UT =U =20 (562)
UM =yl =Ull =ULS =05 (56b)
RN = RY, = RIT = RIS, =2.0 (560)
RN =RY =R =R =05 (56d)
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Table 3 Material parameters for o exp: 0./f'=0 analy.: 0,/f,'=0
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Fig.22 Triaxial compression analysis
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Fig.23 Triaxial compression analysis
along tensile meridian using
Enhanced Microplane Concrete Model

%« fixed constant

U =UN =R¥ =R =10 (56¢)
U =Unin =R =R =1.0 (56)
Ui =U% =RF =R* =10 (56)

As shown in Table 3 twenty-one parameters are fixed constant in the analysis. Some of the other
parameters have strong correlations with the uniaxial compressive strength f.' or uniaxial tensile

strength f,. Recommended values for the material parameters taking this into account are given in
Table 3.

4.3 Triaxial Compression Analysis (Analysis Series B1)

Fig.22 shows the result of triaxial compression analysis along the compressive meridian in comparison
with the experiments by Smith et al., in which ¢, = confinement pressure; and f.' = uniaxial
compressive strength. The model predicts increases in strength and ductility with confinement pressure
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Fig.24 Compressive and tensile meridians for Enhanced Microplane Concrete Model

under triaxial compression with practical accuracy, i.e., the transition from brittle to ductile fracture.
This is due to rational modeling of responses on the microplane. In Fig.23, calculated triaxial
compression responses along the tensile meridian are shown, in which o, is the hydrostatic pressure.
The compressive and tensile meridians of the failure envelope are evaluated from maximum stresses
obtained in the analyses, and shown in Fig.24 with experimental results from the literature (Balmer
[10], Richart et al. [11], Kupfer et al. [12], Smith et al. [8], and Chen [13]), where o, = 1,/3=0,/3
and 7,, = ./2J,/3 are octahedral normal and shear stresses (J, = the 2nd invariant of deviatoric
stress tensor). The model predicts the compressive meridian very well, but it slightly overestimates
the tensile meridian.

Figs.25 and 26 show the normal, K-shear, and M-shear responses of microplanes (integration points)
2,3, and 14 as well as the average volumetric responses &,, for the uniaxial (o, /f.' = 0) and triaxial

(o./f, = —0.60) compression analyses. We can see from Fig.25(b) that normal tension damage of
microplane 3, representing splitting cracks under lower macroscopic compressive stress, causes
macroscopic strength reduction in the uniaxial compression analysis. On the other hand, normal
compression stress occurring on microplane 3 when macroscopic confinement pressure is applied
delays normal tension damage as if it were a prestress, resulting in a macroscopic strength increase for
the triaxial compression analysis (Fig.26(b)). In uniaxial compression experiments [20], [21], [22]
microcracks occur at the interface region (corresponding to microplane 3) between the coarse aggregate
particles and the mortar matrix parallel to the loading direction at the earlier loading stage, and at the
final loading stage the failure is completed by fracture of the interface region (corresponding to
microplane 2) normal to the loading direction. This is consistent with the analytical results on microplane
response. In the triaxial compression experiments by Krishnaswamy [23] and Niwa et al. [24], an
increase in confinement pressure delays interfacial microcracking between the coarse aggregate particles
and the mortar matrix, and suppresses prominent mortar cracks. This is consistent with the mechanism
of the confinement effect in the analysis.

Since the lateral strain and stress effects for the normal component as well as the transition model from
brittle to ductile fracture with confinement for the shear component are taken into account in the
Enhanced Microplane Concrete Model, the normal compression and shear responses at microplanes 2
and 14 shown in Figs.26(a) and (c) exhibit plastic flows in the triaxial compression analysis. These
microplane responses result in the macroscopic confinement effect with practical accuracy. On the
other hand, it has been shown that with the previous Microplane Concrete Model all microplanes
ultimately exhibit strain-softening responses, which resulted in insufficient confinement effect.
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Fig.26 Responses in triaxial compression analysis (o, /f,'=—0.60)
using Enhanced Microplane Concrete Model '

In Figs.25(a) - (¢) and Figs.26(a) - (c) histories of resolved normal stress S, and lateral confinement
stress S, are shown with normal strain on each microplane. The Sy and S, values in the uniaxial
compression analysis are much smaller than those in the triaxial compression analysis. Therefore, the
normal and shear responses in the uniaxial compression analysis exhibit softening with lower peak

stresses, which results in brittle uniaxial compression behavior and lower macroscopic peak stress as
compared with the triaxial compression.

As shown in Fig.25(c) unloading in the normal compression response at microplane 14 starts
approximately when the macroscopic peak stress is reached, since the normal strain increment at
microplane 14 changes from a compressive value to a tensile one due to the macroscopic volumetric
dilatancy at the peak stress (Fig.25(d)). The unloading response is considered an important microscopic
mechanism with which the present model can offer path dependence. In uniaxial compression

experiments [20], [21], [22] similar unloading responses were microscopically observed at an inclined
orientation to the loading axis, which is consistent with this analysis.

4.4 Biaxial Analysis (Analysis Series B1)

In Figs.27 and 28 the results of biaxial compression and compression-tension analyses are compared
with experiments reported by Kupfer et al. [12]. Negative values of &, in these figures represent
axial strains corresponding to the uniaxial compressive strength f.'. The stress-strain responses under
biaxial tension as well as uniaxial tension are shown in Fig.29. Relatively good agreement between
calculation and experiment is achieved for all stress conditions. Especially constitutive relations under
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Fig.29 Biaxial tension analysis using Enhanced Microplane Concrete Model

biaxial compression are well predicted by the model not only for the hardening regime but also for the
strain-softening regime. The stress-strain relations as well as peak stresses under biaxial tension are

little different from those under uniaxial tension in the analysis, which represents a characteristic of
concrete materials.

The analytical responses under biaxial tension exhibit considerable nonlinearity in the pre-peak regime,
while typical average stress-strain relations in the experiments show almost perfect elasticity under
biaxial tension. This model is thought to be capable of evaluating nonlinear behavior in a highly
localized damage region such as a fracture process zone. In the uniaxial tension analysis, the apparent
Poisson’s ratio, defined as the ratio of total lateral strain to total tensile axial strain, is always positive,
thus verifying the rationality of the present model as a tensile constitutive law. On the other hand, as
described before, the volumetric-deviatoric-shear component formulation predicts lateral expansion
with a negative Poisson’s ratio in the uniaxial tension analysis, which is unacceptable for concrete.

Fig.30 shows the analytical result for the biaxial strength envelope compared with experiments by
Kupfer et al. [12]. It confirms that the biaxial strength of concrete can be estimated with accuracy

using the present model. The obtained ratio of uniaxial tensile strength to uniaxial compressive strength
in the analysis agrees well with typical experimental values.

Fig.31 shows the normal, K-shear, and M-shear responses of microplanes (integration points) 2, 3, and

14 as well as the average volumetric response &, for the uniaxial tension analysis. Since the concept
of shear frictional coefficient is applied not only to negative values of resolved normal stress S v but
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Fig.31 Responses in uniaxial tension analysis using Enhanced Microplane Concrete Model

also to positive ones as in (43), the shear peak stresses [ tests by Kupfer ot al: f, =190 kgf/cm?
on microplane 14, where the resolved normal stress tests by Kupfer et al.: £, =315 kgf/cm?
has a large, tensile value, are small, and the shear — — -tests by Kupferetal.: f,'=590kgf/cm®
components lose their load-carrying capacity at an —e— Enhanced Microplane Concrete Model
earlier stage of the uniaxial tension analysis
(Fig.31(c)); the peak stresses of K-shear and M-shear
are —1.9 and +2.3 kgf/cm?, respectively. On the
other hand, normal tensile damage on the microplanes
is prominent compared with the shear damage. These
analytical results suggest that tensile (Mode I)
microcracks dominate the macroscopic fracture of peck [ -
concrete under tension, although shear (Mode II) o e

microcracks occur simultaneously. This is consistent  (a) Compression-tension and tension-tension
with experimental observations of the microscopic stress regions

fracture mechanism using acoustic emission
techniques [25].

0.5

0.5

4.5 Cyclic Loading Analysis (Analysis Series B2)

a) Cyclic Uniaxial Compressive Behavior

In Fig.32 calculated cyclic response under uniaxial
compression is compared with the experiment by van
Mier [19], in which the lower limit value oy, of :
variable stress amplitude was —50kgf/cm*. A £
similar analysis with ;. =0kgf/cm? is carried out, 1ok )
and the result is shown in the same figure. Fig.33 ’ \
shows the normal, K-shear, and M-shear responses
of microplanes (integration points) 2, 3, and 14 as
well as the average volumetric response €,, for the 1S4 _1' 5 _0'5 5 55
uniaxial compression analysis with oy, = ' ' o [ ‘

Okgf/cm?. 2o

(b) Entire region of biaxial stress

/%

-0.5F [

peak
1

o

Although the degradation of unloading and reloading i o
stiffnesses in the experiment are well predicted by Fig.30 Biaxial strength envelopes
the model, as shown in Fig.32, the analysis

underestimates strain-softening stiffness and lateral

strain in softening regime as compared with the experiment. The present analysis assumes a uniform
stress and strain state for the specimen, and neglects localization of strain softening and fracture, and
this is one of the causes for the underestimated lateral strain.

The change in shape and width of hysteresis loops during uniaxial compressive loading of concrete is
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Fig.32 Cyclic uniaxial compression analysis using Enhanced Microplane Concrete Model
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Fig.33 Responses in cyclic uniaxial compression analysis (O'Hm =0kgf/ sz)
using Enhanced Microplane Concrete Model

well captured by the model. Since normal compression unloading proceeds into normal tension softening

on microplane 2 in the analysis for oy, =0kgf [em?* (Fig.33(a)), curvature of the macroscopic
hysteresis loop at lower stress levels becomes prominent.

b) Cyclic Biaxial Compressive Behavior

In Fig.34 calculated cyclic and monotonic responses under biaxial compression are compared with
the experiment by van Mier [19], in which the biaxial stress ratio was 0, [0, = =-0.05/-1, and the
lower limit value oy, of variable stress amplitude was Okgf/cm?. Fig. .35 shows the normal K-

shear, and M-shear responses of microplanes (integration points) 2, 3 and 14 as well as the average
volumetric response £, for the biaxial compression analysis.

The model well describes strain-softening stiffness and the degradation of unloading and reloading

stiffnesses during strain softening under biaxial compression; however, lateral strain €, is overestimated
in the calculation as compared with the experiment.

As with the cyclic uniaxial compression analysis, the curvature of the macroscopic hysteresis loop at
lower stress levels under biaxial compression depends on the alternating cyclic loading response when
normal compression unloading proceeds into normal tension loading. As shown in Fig.33(a), (b) and
Figs.35(a), (b), macroscopic tensile strain and cyclic loading cause tensile microplane stress to be
induced on microplanes where there is no resolved tensile component of the macroscopic stress tensor.
This tensile microplane stress causes microscopic damage, which then results in macroscopic damage
and stiffness degradation. In a heterogeneous concrete material with no macroscopic tensile stress,
microscopic tensile strain and stress are induced on a microscopic level or meso-level, becoming the
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Fig.34 Cyclic biaxial compression analysis using Enhanced Microplane Concrete Model
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Fig.35 Responses in cyclic biaxial compression analysis using Enhanced Microplane Concrete Model

origin of macroscopic damage [20]-[24], [26], [27]. The model accounts for the microscopic damage

mechanism in macroscopic constitutive modeling in a simple and reasonable way without a complicated
micromechanics model.

¢) Cyclic Triaxial Compressive Behavior
In Fig.36 calculated cyclic and monotonic responses under triaxial compression are compared w1th
the experiment by van Mier [19], in which a confinement pressure of o, =0, =0, =-10.2 kgf /em?
was applied first and held constant, and then compressive axial strain ey was apphed cyclically with
Opim =—12.8 kgf /em?® . Fig.37 shows the normal, K-shear, and M-shear responses of microplanes

(integration points) 2 3, and 14 as well as the average volumetric response &,, for the triaxial
compression analysis.

The strain-softening stiffness and degradation of unloading and reloading stiffnesses during strain
softening under triaxial compression are well captured by the model. However, the width of the

hysteresis loops is small and the curvature of the hysteresis loop at lower stress levels is too large in
the analysis.

d) Extraction of Invariants
Based on the cyclic uniaxial, biaxial, and triaxial compression analyses, the total strain tensor &, is
resolved into elastic €,; and plastic €,; strain tensors assuming that the residual strain after complete

unloading is the plastic strain at the start of unloading ;. The following deviatoric tensors are
calculated from the stress and strain tensors:

1
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Fig.36 Cyclic triaxial compression analysis using Enhanced Microplane Concrete Model
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Fig.37 Responses in cyclic triaxial compression analysis using Enbanced Microplane Concrete Model

1
1
eeij = Seij - ggekkaij . (59)
1
€y = Epyj — gspkkd.j (60)

in which s; = deviatoric stress tensor; ¢; = deviatoric strain tensor; e,; = elastic deviatoric strain
tensor; and e,,; = plastic deviatoric strain tensor.

Maekawa et al. [28], [29] extracted several invariants from their experiment and used them to derive
an elastoplastic and fracture constitutive model. In this study, the following invariants from their
research are chosen and calculated for the cyclic compression analysis described above:

mt=lo, (61)
3
- 1
Jpod = 7545 (62)
mi=le, 63)
3
I = > € (64)
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in which I™¢ = modified 1st invariant of stress tensor; J;"® = modified 2nd invariant of deviatoric
stress tensor; ;2! = modified 1st invariant of elastic strain tensor; J3d = modified 2nd invariant of
elastic deviatoric strain tensor; Il";,"d = modified 1st invariant of plastic strain tensor; J;“;d = modified
2nd invariant of plastic deviatoric strain tensor; K = fracture parameter; and G° = initial shear modulus,
G’ = EO/ 2(1 + vo). The superscript ‘mod’ refers to a modified value because its definition differs

slightly from the usual one.

Fig.38(a) shows the ™™ [e,,' - ™" /£.' relation calculated from the results of the present cyclic
compression analysis as compared with that calculated for the experiment by van Mier [19]; here, the
prime stands for inversion of the sign. It was found in the study of Maekawa et al. [28], [29] that the
1™ [g, o - 1™ /£, relation up to the critical point is almost linear. On the other hand, we can see
from the present results that the relation is nonlinear after the critical point, which implies a dilatancy
phenomena in which elastic strains increase after the peak stress.

In Fig.38(b), the JI*¢ /e’ - J5°% /. relation calculated for the present cyclic compression analysis
is compared with that calculated for the experiment by van Mier. The analytical result reflects the
experimental result that the peak deviatoric stress value increases and deviatoric damage decreases
when the confinement pressure increases.

Fig.38(c) compares the J;2 / £, - K relation calculated for the present analysis with the experiment
by van Mier. According to Maekawa et al. [28], the fracture parameter K, representing deviatoric
damage under an arbitrary stress condition, depends not only on J1° but also on 7™ and the modified

le
3rd invariant of elastic deviatoric strain tensor J/*

1
IRt =3 3 CetiejkCeki (68)

The analytical J; / €. - K relation well agrees with the experimental one as well as the one obtained
by Maekawa et al., which means that this model predicts degradation of unloading and reloading
stiffnesses in the strain-softening regime with accuracy.

In Fig.38(d), the J3 /e, - sz;d /800' relation calculated for the present cyclic compression analysis
is compared with that calculated for the experiment by van Mier. The analytical result follows the

trend of the experimental relation, but J;“p"d values in the cyclic uniaxial and biaxial compression
analyses are underestimated.

Fig.38(e) compares the szp"d / €0 - Il";,"d /800' relation calculated frorn the results of the present cyclic
compression analysis with that calculated for the experiment by van Mier. The present analysis and
van Mier’s experiment show that Iﬁ’,"d /600' varies from negative values at the initial stage to positive
values at the latter stage as J;’;d / €, increases. This means that a compressive (negative) volumetric
plastic strain is induced up to peak stress due to compaction, while a tensile (positive) volumetric

plastic strain is induced after the peak stress due to dilatancy resulting from microcracks and damage
under lower confinement pressure.

In the elastoplastic and fracture constitutive model of Maekawa et al. [29], the derivative of the J;“p"d / £y

- Il“l‘,°d /860' relation is defined as the dilatancy derivative D, which is utilized in formulating the
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Fig.38 Tensorial invariant relations for Enhanced Microplane Concrete Model

volumetric plasticity associated with shear plasticity.

allmod
D=t 69)
o”]ﬁ,"d
In their study, it was shown that the dilatancy derivative D depends on confinement and damage, and

could be formulated as a function of I{Z"d and K. In the present calculations, a similar tendency is

confirmed: the J;‘;’d /Sco' - If;"d / £,y relation and D depend on confinement pressure and damage.

Although this model is derived without tensorial invariant relations, it has been shown that it can
reproduce these relations and predict the cyclic responses of concrete with accuracy.
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5. CONCLUSIONS

In this study the difference between the normal-shear and volumetric-deviatoric-shear component
formulations, on which the microplane models by Hasegawa and Prat are respectively based, is examined
by numerical analysis for a wide range of stress conditions. Then the Hasegawa model (Microplane
Concrete Model) is improved to expand its applicability and reformulated as the Enhanced Microplane
Concrete Model. This serves as a more general constitutive law. In the last part of the study, the
accuracy of the Enhanced Microplane Concrete Model is verified by comparing calculated constitutive
relations with experiments reported in the literature. The following conclusions are obtained:

(1) The normal-shear component formulation (Microplane Concrete Model) cannot accurately predict
confinement effect and the transition from brittle to ductile fracture, although it has practical accuracy
in the case of biaxial and low confinement stress conditions. Since all microplanes ultimately exhibit
strain-softening responses in triaxial compression analysis, increases in macroscopic strength and
ductility with confinement pressure cannot be predicted well by the normal-shear component
formulation.

(2) The prediction accuracy of the volumetric-deviatoric-shear component formulation (Prat model)
is poor not only in biaxial and confinement stress conditions, but also in uniaxial tension softening.
The calculated total normal responses of microplanes are unacceptable in this model. This means that
the microplane, as the basic load-carrying element at a microscopic level, loses its original physical
meaning as a result of resolving the normal component into volumetric and deviatoric components.

(3) The previous Microplane Concrete Model is improved to expand its applicability and reformulated
as the Enhanced Microplane Concrete Model. One of the major improvements is to take account of
the resolved lateral stress in normal compression response on a microplane as well as the resolved
lateral strain. Another major improvement is to adopt a model for the transition from brittle to ductile
fracture in calculating the shear response on a microplane at increasing resolved normal compression
stress. These improvements endow the model with the capability to describe complicated interactions
between microplanes through the macroscopic stress tensor. Similar effects are taken into account in
the microplane hysteresis rule using the concepts of back-stress and objective-stress.

(4) Ttis verified that the Enhanced Microplane Concrete Model can accurately predict experimentally
obtained constitutive relations for concrete as reported in the literature, covering various stress conditions
including uniaxial, biaxial, and triaxial stresses. The model properly predicts confinement effect and
the transition from brittle to ductile fracture as well as biaxial failure.

(5) Cyclic behavior under uniaxial, biaxial, and triaxial compression are well described by the Enhanced
Microplane Concrete Model. Extracting the invariants of the stress and strain tensors from the analytical
responses obtained by this model, the experimental relations of the invariants can be reproduced.

(6) Examination of the microplane responses in each analysis provides an explanation of the load-
carrying mechanisms in concrete in terms of responses on the microplanes.
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