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In the present paper we propose a simple analytical model for the fracture analysis of short-fiber
reinforced cementitious composites designed to undergo distributed multiple cracking prior to
formation of a localized crack under tensile and shear loading. The composite in the multiple
cracking state is idealized as a homogenous and continuous material, with cracks being represented
by cracking strain. A discrete crack model is used for localized cracks. The model is implemented in
FEM code and experimental results are reproduced, proving the validity of the proposed model.
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1. INTRODUCTION

In recent years, great attention has been paid to the development of high-performance structural
materials for civil engineering applications. One group of such materials, called engineered
cementitious composites (ECCs), has recently been developed by Li and co-workers [1], [2], [3].
Engineered cementitious composites are cement-based materials reinforced with short, randomly
oriented and randomly distributed fibers. In contrast to other, usually quasi-brittle, short-fiber
cementitious composites, the structure of ECCs is designed such that, under tensile and shear
loading, they undergo multiple cracking accompanied by overall pseudo strain-hardening prior to
the formation of a localized crack. Consequently, the fracture process zone in ECCs is not
concentrated in a single plane or narrow band around the localized crack, but spreads over a large
volume of the material. As a result of the extensive cracking away from the main crack plane, ECCs
exhibit high fracture energy and critical tensile strain: up to two orders of magnitude higher than
conventional cementitious composites with short fibers.

In the present paper, we propose an analytical model for the fracture analysis of structures made
using ECCs. The motivation for developing such an analytical model for ECCs can be summarized
as follows:

e Feedback to experimental studies: results of numerical analysis can be used to estimate the
optimal setup for actual experiments, to verify experimental results, or to reveal the existence of
phenomena which require further experimental investigation.

¢ Numerical experiments: physical experiments which are too expensive or difficult to carry out
can be replaced by numerical experiments (this concerns, for example, investigations of the size
effect, which would involve large specimens).

e Structural analysis: the analytical model can be used to conduct pilot studies on the applicability
and feasibility of using ECCs in structural members.

In order to be able to accomplish these tasks, the model must adequately represent the presence of

both multiple and localized cracking in ECCs. Furthermore, the model must be suitable for

implementation into an FEM code so that structures of general geometries can be analyzed.

The earlier theoretical studies related to ECCs, e.g., by Li [4] and Li and Leung [5], mostly focus on
the mechanics of a single crack with fiber bridging. These studies clarify the conditions for the
development of multiple cracking. They also. provide the link between composite micromechanical
parameters (such as, fiber aspect ratio, fiber and matrix elastic moduli, matrix fracture toughness,
fiber-matrix interfacial bond strength, etc.) and the bridging-stress to crack-opening-displacement
(COD) relationship. Nevertheless, none of these studies provides an analytical model that could be
directly implemented in an FEM code. Other well-established fracture models for cementitious
materials, such as the fictitious crack model (FCM) proposed by Hillerborg et al. [6], do not
consider the presence of an off-main-crack-plane multiple cracking zone and cannot be used alone
for the analysis of ECCs.

In the present study, we idealize the composite undergoing multiple cracking as a homogenous and
continuous material, with cracks being represented by additional (cracking) strain. With the help of
the incremental theory of plasticity, we derive an incremental constitutive law for the composite in
the multiple cracking state, and this is then directly used in an FEM program.
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Fig. 1 Experimental [8] uniaxial stress-displacement curve for ECC with 2% by volume of
polyethylene fibers

Localized cracks with bridging are modeled as discrete discontinuities in the displacement field.
The discrete crack model is implemented into the FEM program with help of a cracked element
developed by Nanakorn and Horii [7].

2. FRACTURE BEHAVIOR OF ECCS UNDER TENSILE AND SHEAR LOADING

The mechanism of tensile cracking in ECCs can be clarified by analyzing the results of uniaxial
tension tests conducted by Li [1] and Maalej et al. [8]. Figure 1 shows a typical uniaxial stress-
displacement curve for an ECC specimen. The ECC in this case consisted of cement paste
reinforced with 2% by volume of Spectra polyethylene fibers. The fiber length and diameter were
12.7 mm and 38 um, respectively. The experiments revealed that, after formation of the first crack
at a load magnitude equal to the first crack strength of the composite o, , the material continued to
sustain increasing loading. The increase in load was accompanied by the formation of additional
subparallel cracks — a process called multiple cracking. Photographs taken during the experiment
show that the cracks were more or less normal to the direction of the applied load. The pictures also
suggest that during this process of multiple cracking, both crack openings and crack density
increased with increasing load. As soon as the load reached a value hereafter referred to as the
maximum bridging stress o,,, the specimen started to exhibit overall softening behavior. This
transition into softening was associated with localization of the fracture into a single crack —
apparently the one that had previously registered the largest COD. In the other words, after the peak,
only one of the existing cracks continued to open while the others underwent unloading. The
magnitude of the load during the post-peak part of the uniaxial test was controlled by the bridging
stress transmitted across the localized crack. This stress decreased gradually with increasing COD of
the localized crack, following a tension softening relationship.

Li [4] has shown that, if a random fiber distribution is assumed, the bridging stress should diminish
when the value of COD reaches one half of the fiber length. It is seen from Fig. 1 that if we subtract
this value (in this case Ly/2 =6.35 mm) from the total displacement of the specimen when the stress
just reaches zero, we obtain the approximate displacement at peak load. This means that the portion
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of total displacement associated with multiple cracking is not recoverable when the specimen is
unloaded to zero stress.

It must be noted that, even though the total deformation of the specimen due to multiple cracking is
relatively large, the high density of multiple cracks (several cracks per centimeter) ensures that their
widths are very small, usually around 0.1 mm.

As Li and Leung [5] explain, multiple cracking results from properly designed fiber reinforcement;
it occurs if, after a crack is formed, the bridging fibers undergo frictional debonding while
transmitting increasing stress across the crack plane. The transition to softening mode is attributed
to complete debonding of the bridging fibers and their slippage from the matrix.

Li et al. [9] also experimentally examined the structural response of shear beams made with ECCs.
The specimens were reinforced by steel bars along the top and bottom surfaces in order to avoid
flexural failure, but no conventional shear reinforcement was used. The ECC beams exhibited high
ductility due to diagonal multiple cracking, which took place over a large volume of the material.
The experiments confirmed that the behavior of ECCs under biaxial tension-compression stress is
governed by the same phenomena that control the uniaxial behavior; that is, multiple cracking in a
direction normal to the maximum principal stress and consequent localization into the crack with
the largest COD. The experimental results also hinted that the compressive stress acting parallel to
the cracks might positively influence the material strength. However, the experimental evidence so
far is not sufficient to establish any relationship between the stress parallel to the crack direction and
the first crack strength, the stress transfer capabilities of the bridging fibers, or the ultimate strength
of the bridging. For this reason we will neglect this effect throughout the present study.

3. ANALYTICAL MODEL FOR ECCS

Due to the randomness of fiber orientation and distribution, and the short fiber lengths, ECCs are
macroscopically homogenous and isotropic. The mechanical behavior of ECCs is dominated by the
cracking they undergo in the process of loading. Therefore we treat ECCs in the proposed model as
homogenous materials with cracks. Due to the different nature of the two types of cracking that
occur in ECCs, we use different modeling approaches for distributed multiple cracking and for
localized cracking.

3.1 Multiple cracking

Multiple cracking is characterized by the formation of a large number of relatively uniformly
distributed subparallel cracks. The crack density is high while the crack widths are relatively small.
In such a situation, it would not be practical to treat each crack separately. Instead, we idealize the
composite undergoing multiple cracking as a continuous material with additional strain, called
cracking strain, to represent the crack openings and density.

As discussed in the previous section, deformation resulting from multiple cracking is not
recoverable upon unloading, which means that the cracking strain is inelastic. Considering further
that a material in a multiple cracking state exhibits pseudo strain-hardening behavior, the strain-
hardening theory of plasticity appears to be a suitable tool for modeling the multiple cracking that
takes place in ECCs. The task is then to find a proper yield function and hardening rule.
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a) Yield function and hardening rule

It was mentioned earlier that multiple cracking is initiated on planes normal to the maximum
principal stress when the stress magnitude reaches the first crack strength. Keeping in mind that,
when using the associated flow rule, the yield function not only determines the conditions for
initiation of plastic yielding (or in our case multiple cracking) but also the direction of the plastic (or
cracking) strain increment, we define the yield surface in the 2-D stress state using the Rankine
yield function:
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where o, is the first crack strength and o

hardening rule as follows:
Gi* =0, -0 (2)

Hereafter, i is used to represent the suffixes xx, yy, xy, and yx. Thus o, is a vector consisting of the
in-plane components of the stress tensor. The vector ¢ is defined by:

da, = hde* ' 3)

in which de is the cracking strain increment vector and £ is a function of the total cracking strain,
which reflects material hardening behavior.

It is seen from Eq. (2) that before any multiple cracking occurs (i.e., o, =0), o, is equal to the vector
of in-plane components of the stress tensor. Therefore the first two terms of the yield function
(Eq. (1)) initially correspond to the magnitude of the maximum principal stress in the x-y plane.
Equation (1) thus satisfies the condition that multiple cracking is initiated when the maximum
principal stress is equal to the first crack strength. It should be noted that we use Eq. (1) for both
plane stress and plane strain; in the latter case we assume that the out-of-plane stress component o
induces no cracking on planes parallel to x-y.

The associated flow rule, which we employ in the present model, implies that the cracking strain
increment is proportional to the normal vector of the yield surface in stress space:

def = dlgg— “)

i

where dA is a non-negative scalar factor of proportionality. The normal vector Jd F/do, can be
evaluated when substituting Eq. (1) as follows:
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It is easy to show that if Eqs. (4) and (5) hold, then the maximum and minimum principal values of
the cracking strain increment are:

() =ar
(6)
(ae°) =0
respectively, with the angle of the principal cracking strain increment 8% being defined by:
o, +0,
tan(20" ) = —2—~ 7
0,—0C

K5 »

Figure 2 shows that the incremental cracking strain (zls") in fact represents the incremental normal
1

crack opening displacements of a set of cracks oriented at perpendicular to the direction 8 “. Note
that, consistently with this interpretation, the zero value of (dg‘ ) ensures that the cracks do not
contribute to the deformation in a direction
normal to 8%,

y 4 du, : increm. deformation
As angle % may change throughout loading, an m (elastic + cracking)
infinite number of sets of multiple cracks, each

oriented at a different angle, may occur at any dd =;d6i
point in the material. It should be understood that © 5
this is a certain simplification of real material (dsc)] =X

behavior; in reality, a small change in the
principal stress direction would cause sliding of
the existing cracks. But if the change in principal
stress direction exceeds a certain limit, the
formation of a new set of cracks would occur.
However, to implement such mechanisms into the
analytical model would require more
experimental knowledge on the sliding behavior Fig.2 Cracking strain increment to COD
of cracks than is currently available. increment relationship

Xy

—110—



Fig. 3 Example of two-directional loading: (a) loading in x-direction; (b) unloading and reloading
in y-direction

de

It was noted earlier that before multiple cracking occurs, o, is equal to o,. Thus, angle 6 is
initially equal to the angle of maximum principal stress 67, which is defined by the following
equation:

O-.\i\' + Gv\i\'

tan(ZGc) = ®)

Gx\' - O-A\',\'

The proposed model therefore correctly represents the experimental observation that the first set of
multiple cracks is initiated on planes which are normal to the maximum principal stress.

The kinematic hardening rule defined by Eq. (2) implies that when the hardening takes place, the
yield surface translates in the stress space in the direction of vector de; or, considering Eq. (3), in
the direction of the cracking strain increment def. If the isotropic hardening rule were used, the
yield surface would instead expand uniformly in stress space. To explain why we employ the
kinematic hardening rule as opposed to the isotropic hardening rule, let us consider an example of
two-directional loading as shown in Fig. 3. This figure shows the loading path and yield surface in
the o, —o,, plane (top right), the stress-strain curves for x and y directions (bottom right and top
left, respectively), and a schematic sketch of the cracked specimen (bottom left), at two different
stages of loading: (a) and (b). Let us assume that the material is first uniaxially loaded in the
direction of the x-axis — see Fig. 3 (a). As the load reaches the first crack strength o, multiple
cracking starts on planes normal to the x-axis, resulting in an incremental cracking strain whose only
non-zero component is de:, as required by the associated flow rule and the shape of the yield
surface. This is reflected in stress space by a translation of the original yield surface (which appears

as two lines starting from point [aﬂ,,aﬂ] and running parallel to the o,- and o -axes) by an

incremental vector de;, which is parallel to the o -axis. It is seen in Fig. 3 (b) that if the material is
unloaded to zero stress and reloaded in the perpendicular direction (i.e., along the y-axis), the yield
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surface is reached when o, =0 . Further loading results in a cracking strain increment parallel to
the o, axis, i.e., the formation of a new set of cracks perpendicular to the existing ones.

If the isotropic hardening rule were used, initial loading in the x-direction would cause a uniform
expansion of the yield surface. Then, upon reloading in the y-direction, no multiple cracking would
take place until the yield surface is reached at a load level equal to the maximum load attained
previously in the x-direction, which is higherthan o .

As a result we can conclude that the present model based on the kinematic hardening rule reflects
the assumption that, for a given direction, neither the first crack strength nor the hardening response
of the cracked material are affected by the stress or cracking strain perpendicular to this direction.

Once the yield function and hardening rule are in place, the elasto-plastic incremental stress-strain
relationship can be derived using the standard procedure adopted in the incremental theory of
plasticity, as shown, for example, by Chen and Han[10]. It is noted that the elasto-plastic
constitutive law is used only when the material undergoes plastic loading, i.e., when the following
condition is satisfied:

F 45 >0 )
Jo,

i

where we apply the summation rule over index [ = xx, yy, xy, and yx. If inequality (9) is not
satisfied, the elastic stress-strain relation is used.

b) Treatment of the yield surface singularity

The only case which requires special attention while deriving the incremental elasto-plastic stress-
strain relation is when:

#

o,=0,=0,ando, =0, =0 v (10)
The equalities in Eq. (10) define the singular point of the yield surface. It is obvious that if we
substitute Eq. (10) into Eqs. (5) we obtain the indefinite expressions 0/0, which means that the
normal vector to the yield surface cannot be uniquely determined.

Various methods of handling yield surface singularities have been proposed in the literature [10],
[11]. If the singularity is formed by the intersection of several smooth surfaces, then the plastic
strain vector can be determined as a linear combination of the normal vectors of the adjacent
surfaces. This approach, however, involves certain difficulties in the case of the Rankine yield
function [11]. Another method is to replace the original yield function in a certain range around the
singular point by another, smooth, function. Nevertheless, this approach requires introduction of an
additional parameter (the size of the range to be replaced) and a smoothing function, and these are
related rather to mathematical modeling than to the material’s mechanical behavior.

In order to overcome these shortcomings we adopt yet another approach, which we now describe.
The consistency condition requires that:

dF=8—FdG,+ﬂ:—doc,.=0 (11)
Jo. Ja

i i
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It is obvious from Eq. (2) that:

or o

=7 12
do,  Jo, (12)
Then substituting Eq. (3) and Eq. (12) into Eq.(11) we get:
oF
dF = do,-hde )=0 13
- )= (13)

i

It can be shown that if the singular point defined by Eq. (10) is approached along the yield surface
F=0 from any given direction, then the normal vector dF/do, can be determined uniquely
depending on this direction. In order to satisfy Eq. (13) at the singular point for any dF/do, , i.e., if
we approach the singular point from any direction, we must put:

(do,—hdef)=0 (14)

Then the following incremental stress-strain relationship can be obtained using Eq. (14),
decomposing the strain increment into elastic and plastic (cracking) parts, and employing the elastic
relationship between the stress increment and elastic strain increment.

—1
do, =(—/]7—5,:,+D,f;) de, (15)

where 6, is the Kronecker delta operator and D; is the elastic compliance matrix.

It should be noted that Drucker’s stability postulate implies that at the corner of the yield surface,
the plastic strain vector must lie between the adjacent normals. This is also the condition for
applicability of Eq. (15).

¢) Material parameters

Equations (1) and (3) suggest that the model of multiple cracking is characterized by two material
parameters — first crack strength o, and a function 4 which reflects the shape of the hardening part

of the stress-strain curve.

As shown in Fig. 4, both material parameters 0, and 4 can be easily determined from a uniaxial

stress-strain curve. The hardening part of the stress-strain curve can be fairly well approximated by
a linear relationship, which allows us to use a constant /.

3.2 Localized crack with bridging

In the model for multiple cracking described in the previous subsection, the cracking strain
represents the density and width of the multiple cracks. The direction of the maximum principal
cracking strain then can be interpreted as the direction normal to the most developed set of multiple
cracks. Because the experimental results suggest that the focus of localization is in the one of the
multiple cracks that has the largest opening displacement, we employ a condition for formation of
the localized crack as follows: the localized crack is initiated on the plane normal to the maximum
principal cracking strain when its magnitude reaches a certain critical value &;,. It has to be noted
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Fig. 4 Determination of material parameters from approximated uniaxial stress-displacement
curve

that this condition is not sufficient to reproduce fracture localization in the case of a perfectly
homogenous body with a uniform cracking strain field. In such a situation, the localization would
have to decided by employing the thermodynamics-based theory for localization phenomena
proposed by Horii and Okui [12].

Localized cracks are characterized by large opening displacements and by the existence of bridging.
Therefore, the cracks are modeled as discrete discontinuities in the displacement field with the
effect of bridging represented by traction applied to the crack surfaces.

Generally, both normal and tangential components of this traction are related to the relative
displacements of the crack surfaces. However, for lack of experimental data on the shear behavior
of localized cracks, we assume that once a localized crack is formed, normal bridging traction is
related only to the normal COD, while the shear traction stays constant. The latter assumption is
adopted only for simplicity and it will have to be modified if cracks undergoing relative shear
displacement are to be correctly represented. The normal traction decreases with increasing normal
COD according to the tension softening relationship, which is given in incremental form as follows:

dt, =sds, (16)

where dz, stands for the increment in normal traction; s is the slope of the tension softening curve;
and 46, is the incremental normal COD.

The expression given by Eq. (16) is valid only for cracks that are opening. There is no experimental
information available on the response of localized cracks in ECCs during crack closure. Thus we
use the widely accepted assumption that once a crack starts to close, normal traction decreases
linearly with decreasing normal COD until it reaches zero at zero COD (neglecting the crack
opening displacement gained during multiple cracking).

Note that, contrary to the model for multiple cracking, once a localized crack is formed at a certain
point, its direction is fixed and no other localized crack opens in the same location. It is possible
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Table 1 Material parameters for composites with various fiber volume fractions

Vi [%] E [GPa] n[-] o, [MPa] e, [%] c,, [MPa] 6, [mm]
0.8 10 0.2 2.0 2.27 2.85 6.27
1.0 10 0.2 2.0 2.82 3.05 6.17
2.0 22 0.2 2.2 5.78 4.32 6.62
3.0 10 0.2 2.5 6.15 4.97 5.28

however, that the material may undergo

Table 2 Dimensions of the DCB specimens

multiple  cracking in the direction -

perpendicular to the localized crack. SIZE hfem] | wlem] | a; [em] | a [cm]
small 15.3 12.7 6.5 7.4

The model for localized cracks is defined medium [ 30.0 310 11.7 14.7

by two parameters: the critical cracking large 585 49.0 13.4 21.5

strain €, and the tension softening curve.

The value of ¢, is determined from the results of the uniaxial tension test, as shown in Fig. 4. This
figure suggests, that the post-peak part of the stress-displacement curve is almost linear, which
allows us to make s constant. The value of s is then calculated as the negative ratio of normal
traction transmitted across the crack when it is initiated at a critical cracking strain &, to the critical

b

crack width 6,, which is determined from the uniaxial stress-displacement curve as shown in Fig. 4.

4. NUMERICAL RESULTS

The analytical model described in Section 3. has been implemented in an FEM program. The model
for multiple cracking is implemented by means of an incremental constitutive law. For the localized
crack model, we employ the cracked element developed by Nanakorn and Horii [7]. As all the
governing equations are in incremental form, an algorithm based on the Euler method is used to
integrate the incremental solutions.

In order to verify the performance of the proposed model we have used it to reproduce some
experiments conducted on ECCs by Li and Hashida [3] and Maalej et al. [8]. These studies give
experimental results for two types of test specimens: uniaxial tension (UT) specimens and double
cantilever beam (DCB) specimens of various sizes. The material used in these experiments was a
cement mortar reinforced with polyethylene fibers. The fiber volume fraction V; is fixed at 2% in
ref. [3] and varies between 0.2% and 4% in ref. [8].

4.1 Overall response and cracking behavior

Initially, we determined the material parameters from the experimental uniaxial stress-displacement
curve of the composite with Vyequal to 2% (Fig. 1). These material parameters are listed in Table 1.
Using these values, we analyzed: the medium DCB specimen described in ref. [3]. The specimen
geometry is shown in Fig. 6 and its dimensions are listed in Table 2. The notch length used in this
analysis was a;=11.7 cm.

The specimen was discretized by a finite element mesh that initially consisted of 2,530

isoparametric quadrilateral 4-node elements. Some of these elements were, during the computation,
automatically converted into cracked elements as a result of localized crack propagation. The mesh
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is shown in Fig. 5. Note that due to material hardening behavior in the multiple cracking state and
due to the transfer of bridging stress along the localized crack, the stress at the crack tip is bounded
and the stress singularity vanishes. Thus, as far as overall behavior is concerned, the effect of the
stress concentration at the crack tip is minor compared to the effect of the gradually expanding
multiple cracking zone and the effect of fiber bridging across the localized crack. Accordingly, we
employ an almost uniform mesh to reduce the influence of meshing on the development of the
multiple cracking zone. Further, a sufficient number of elements in the ligament is necessary to
ensure proper approximation of the COD along the localized crack once it propagates.

Figure 6 compares the experimental [3] and analytical load-displacement curves. This figure
suggests that the proposed model is able to reproduce the presence of significant pre-peak
nonlinearity, the displacement at the peak, and the post-peak branch of the load-displacement curve.
The model, however, predicts a higher load at the peak. Possible reasons for this discrepancy will be
discussed later.

Figure 7 shows the distribution of cracking strain and the evolution of the localized crack at
different loading stages indicated by points A and B in Fig. 6. Figure 7 (a) shows that before the
bend-over point of the load-displacement curve, cracking is concentrated near the original notch tip.
However, upon reaching the hardening portion of the curve, multiple cracking spreads rapidly
around the notch tip while the evolution of the localized crack is relatively slow. In Fig. 7 (b), the
zone of multiple cracking has an onion-like shape at the peak load and it extends almost to the
specimen boundaries; this is consistent with the experimental result. The direction of maximum
principal cracking strain can be interpreted as normal to the most developed multiple cracks in Fig.
7 (c), so the multiple cracking pattern and the extension of the localized crack are also in good
agreement with the photographs of the cracked specimen provided in ref. [3].
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4.2 Effect of fiber volume fraction

Maalej et al. [8] studied the influence of fiber
volume fraction on the fracture energy of ECCs.
They observed that the total fracture energy J. of
ECCs comprises of two components. The first,
called the bridging fracture energy Jp, is
associated with the fiber pull-out process on the
main fracture plane. The second, denoted J,,
arises from distributed multiple cracking. A J-
integral based technique was proposed for
evaluating the total fracture energy J. and
component J,. The total fracture energy was
calculated using load-displacement curves for
two DCB specimens differing only in original
notch length. The bridging fracture energy was
obtained from the post-peak portion of a
uniaxial load-displacement curve. The fracture
energy contributed by multiple cracking J,, is
then obtained as the difference between J, and
Jp.

We attempted to reproduce the effect of fiber
volume fraction on the composite fracture
energy with the proposed model. The fiber
volume fractions that we selected for our
analysis were 0.8%, 1%, 2%, and 3%. As in the
previous analysis, we first determined the
material parameters for each volume fraction
from its respective uniaxial stress-strain curve;
the parameters are listed in Table 1. Then we
computed the load-displacement curves for two
DCB specimens with different initial notch
lengths a; and a; for each volume fraction. To
this end, we used the same specimen sizes as in
the experimental study, i.e., a medium DCB with
Vs equal to 0.8% and 1% and a large DCB with
Vrequal to 2% and 3%. The exact dimensions of
each specimen are listed in Table 2. Following
the same procedure as in the experimental study
[8], we calculated the fracture energies. The
analytical results are compared with the
experimental ones in Fig. 8. The figure shows
that the proposed model reproduces the main
feature: that with increasing fiber volume
fraction, the fracture energy initially increases
but later becomes saturated. The analytical
results also confirm the experimentally
elucidated feature that multiple cracking
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contributes more than half of the total fracture energy for fiber volume fractions of 2% and 3%. The
model, however, predicts higher magnitudes of total fracture energy, a result which can be attributed
to overestimation of the peak load for the DCB specimens.

4.3 Effect of specimen size

Li and Hashida [3] and Maalej et al. [8] also observed that changing the specimen size while
keeping the fiber volume fraction constant resulted in a change in the fracture energy. Namely,
smaller specimens exhibited lower fracture energies. This phenomenon is explained by the fact that
the size of a region that must undergo multiple cracking before steady state cracking is achieved is,
in ECCs, up to several hundred square centimeters. If a specimen is very small, its boundaries limit
the development of multiple cracking, which results in lower fracture energy.

In order to examine whether the proposed model can reproduce this feature, we computed the
fracture energies for three different DCB specimen sizes: small, medium and large (see Table 2).
The fiber volume fraction used in all of these analyses was 2%. Figure 9 compares the analytical
and experimental results. Total fracture energy J. is plotted against initial ligament length (w-ay),
which was selected as representative of specimen size. It is clear that the proposed model correctly
captures the fact that a small specimen gives a value of fracture energy almost fifty percent lower
then the large one. Also consistent with the experimental result is the fracture energy for a medium
beam, which is not much different from that of the large beam.

5. CONCLUDING REMARKS

The performance of the proposed analytical model for ECCs has been examined by analyzing the
fracture behavior of DCB specimens. The results indicate that the model captures the characteristic
behavior of ECCs fairly well, including the existence, extent, and orientation of multiple and
localized cracking, trends of the load-displacement curve, and the effects of fiber volume fraction
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and specimen size on the fracture energy. The model, however, tends to overestimate the strength of

DCB specimens and consequently the fracture energy. The reasons for this may be as follows.

e The number of experimental data used to obtain the material parameters, as well as in the
comparison, was limited, so large errors may have been involved. (Only one pair of UT test data
and DCB test data was available for most of the volume fractions examined.)

e The principal stresses in most of the region undergoing multiple cracking were tensile with
minimum principal stress reaching the first crack strength. It is possible that the stress transfer
capacity of bridging fibers is reduced by lateral tension. This possibility is currently being studied
by analyzing other test specimens, such as shear beams.

The reasonable agreement between the analytical and experimental results confirms that the
understanding of cracking behavior as outlined in Section 2. of this study is basically correct.
However, more experimental work is needed to clarify the behavior of ECCs under biaxial loading,
namely the effect of lateral stress on the hardening response of multiple cracks and on the
composites’ strength. If analysis of real structural members is to be carried out, more information
about the response of localized cracks under relative shear displacement is also necessary.
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