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A STUDY OF DESIGN EQUATION FOR THE SHEAR STRENGTH
OF RC BEAMS SUBJECTED TO AXIAL TENSION

(Translation from Proceedings of JSCE, No.520/V-28, August 1995)

A
Takahiro TAMURA Tsunemi SHIGEMATSU Takashi HARA Kyuichi MARUYAMA

This paper looks into the influence of reinforcing ratio on shear strength of the reinforced
concrete beams subjected to axial tension and bending. Using both experimental results and
numerical analysis, it is clearly shown that the reinforcing ratio influences the shear capacity
of a beam. To take account of this dependence on reinforcing ratio, suitable regressive equa-
tions are defined based on the experimental and numerical results. Earlier experimental results
obtained by the authors for rectangular beams and T-shaped beams, as well as the results of
Mattock et al., verify the accuracy of the proposed equations.
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1. INTRODUCTION

Few studies have been published on the shear strength of reinforced concrete (RC) beams
subjected to an initial axial tension because it is quite difficult to examine this problem. How-
ever, engineers frequently encounter stress conditions including axial tensile stress due to re-
straints imposed by shrinkage; such stress conditions are an inevitable issue in the statically
indeterminate structures such as rigid frames. In the current JSCE design equation, the shear
strength of a RC beam without shear reinforcement is determined from a combination of con-
crete compressive strength, effective depth of cross section, reinforcement ratio, and applied

axial force(Eq.(1))[1].
Viyd = Vea + Vaa + Vped (1)
Vea = fvcd'bw’d/7b (2)
foed = 0.984- By B - {/ Fialkg fem?) (3)
Where:

Bq = {/100/d (d:cm) [qis 1.5 when fq>1.5

Bp = /100Dy, Bp is 1.5 when 3, > 1.5

B,: the term related to the axial force, 2My/M, = My/My, as defined in Eq.(4)
My: designed bending moment

~y: shape factor, which is generally 1.3

b,: web width

d: effective depth (m)

Pw : As/(bw ° d)

f!,: compressive strength of concrete(kgf/cm?)

V.q: term on shear reinforcement

Vpea: term on prestressed reinforcement

All parameters in this equation are reliable and suitable for actual design practice since they are
derived from the results of many experimental studies. Regarding the parameter for axial force,
the JSCE code adopts the ideas of decompression moment as shown in Fig.1, as also adopted
in the CEB/FIP model code and examined experimentally by Haddadin et al.(!Q]. However, if
the structural member is subjected to an axial tension, structural safety considerations, mean
that the coefficient of decompression moment, 3, should be twice as large as when under the
axial compression, as shown Eq.(4), because there are few studies on the shear strength of RC
members under an initial axial tensile force[3].

M,
Bn = 1+2ﬁ° (N} > 0) <
M,y °f

N'd<0 N'dZ0

where N is the design axial load, which is
taken as positive in compression and negative
in tension. M, is the ultimate moment and M,
is the decompression moment. If M, has the
same sign as M,, it is taken as positive.

The authors have studied the shear strength of L

— JSCE equation”
........ empirical equation"’

il
0.5 1.0

RC beams subjected to axial tension and also 05

the effects of axial force in the recommended Mo/Mu
equation both experimentally and numerically.

The results of experimental studies on rectan- Fig.1 Influence of Axial Tension on Shear
gular beams (reinforcement ratio p, = 0.011; Strength of RC Member

shear span to effective depth ratio a/d =1.75
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~4.0) confirm that the specified equation is safe for certain applications in which the shear
span to effective depth ratio is greater than 3.0. However, when the axial tensile stress exceeds
the 30kgf/cm? the safety of design values calculated by this equation deteriorate if the shear
span to effective depth ratio is less than 3.0(a/d=1.75~3.0)[4].

An empirical formula for evaluating the effects of axial force within the experimental region
has been given in previous reports by the authers:

0.0143

Bn= Mo/M, — 0.18

+1.08(V} < 0) (5)

This equation is a hyperbolic function (as shown by the broken line in Fig.1) based on the
concept of the decompression moment. However, recent experimental studies indicate that for
beams with comparatively poor longitudinal reinforcement and small shear span to effective
depth ratio, this proposed equation requires further investigation. Furthermore, the results of a
finite element approach to this problem, using isoparametric degenerated shell elements [5][6],
show that the axial tensile force governs the fracture process of in such beams and their shear
capacity [7]. On the other hand, in a recent paper, Collins et al. report that the shear capac-
ity of RC member subjected to axial tension is affected by the total amount of longitudinal
reinforcement[8]. Against this background, the purpose of this paper is to improve the accu-
racy of the design equation by introducing a modified formula for the effects of axial tension in
the design equation using experimental and numerical techniques. Our previous experimental
results for rectangular beams[2] and T-shaped beams[4] as well as the results of Mattock et
al.[9] are used to verify the accuracy of the new equation considering the relation of shear span
to effective depth and the axial tensile force, simultaneously.

2. EXPERIMENTAL PROGRAM

In the previous experimental study, rectangular beams shown in Fig.3 and the T-shaped beams
shown in Fig.4, were tested. The test apparatus comprised the longitudinal and lateral actu-
ators shown in Fig.2. On the basis of the results, we discussed the relation between applied
axial force and shear span to effective depth ratio, as well as parameters influencing the shear
strength of the beam. The reinforcement ratio p,, of the beam was held constant in every test.
In this new study, on the other hand, the applied axial force and shear span to effective depth
ratio are fixed, and the reinforcement ratio is changed in parametrically (as shown in Fig.3,
Type C). The dimensions of the beam tested by Mattock et al., verifying the new equation, are
shown Type-B in Fig.3 and Type D in Fig.4, respectively. The experimental procedure of this
paper, Type C in Fig.3, is outlined as follows.

: Transverse actuator
: Longitudinal actuator
: Loading beam

: Hinged bearing

: Specimen

: Effective span

rmoow>»

77

Fig.2 Test Apparatus
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Table 1 Details of Specimens used in Tests

Beam No Pw N f'c Pb Mb Mu |MbMui Vb | VydO|Vb/VydORemarks
1 0.0075| 2.0 398 | 4.50 | 121500[ 104551 1.16 2.25| 2.27 | 0.99 M
0.0100} 2.0 429 | 4.90 | 132300} 134262 0.99 2451 253 | 0.97
0.0125| 2.0 | 424 | 5.75)|155250[ 165222 0.94 | 2.88| 2.77 | 1.04
0.0150| 2.0 | 373 5.75)155250{ 183125 0.85 | 2.88| 2.72 | 1.06
0.0175]| 20| 378 | 6.25)168750(241570] 0.70 | 3.13] 3.01 | 1.04
0.0200f 2.0 377 | 6.00 | 162000] 267333] 0.61 3.00| 3.03 | 0.99
0.0075| 4.0 414 | 3.75|101250/ 101615 1.00 1.88| 2.19 | 0.86
0.0100| 4.0 | 465| 3.25| 87750(134873] 0.65 | 1.63| 2.51 | 0.65
9 0.0125| 4.0 | 339 | 4.10]| 110700 162216 0.68 | 2.05| 2.44 | 0.84
10 0.0150| 4.0 | 443 | 4.88|131760[206708] 0.63 | 2.44| 2.87 | 0.85
11 0.0175| 4.0 | 390 | 5.38|145260| 237946 0.61 | 269 3.06 | 0.88
12 0.0200] 4.0 | 377 | 4.88]131760/252040| 0.52 | 2.44| 2.93 | 0.83

N : Axial tension (tf) f'c : compressive strength of concrete (kgf/cén )

Mb : Ultimate moment [experiment] (kgfcm)  Mu : Ultimate moment [calculation] (kgfcm)

Vb : Shear at ultimate load [experiment] (tf) Pb : Ultimate load [experimental result] (tf)

M : Bending failure S : Shear failure VydO : Shear at ultimate load [calculated result by eq.(5)] (tf)

XN || |wWN

DOO|viv|IZIn|nin{v|n

2.1 Experimental Procedure

In this experimental study, twelve specimens were tested under several parameters. The shear
span to effective depth ratio was a/d=3.0 since the decrease in shear capacity was large. The
applied axial force was 2tf or 4tf, and reinforcement ratio ranged within the range from 0.0075
to 0.02. The loading capacity and the behavior of the specimens was examined.

2.1.1 Test beams

The dimensions of the beams and the reinforcement arrangements are shown in Fig.3. These
are rectangular beams. All specimens are 180cm long and the effective span is L=150cm. The
width and height are B=10cm and H=20cm, respectively. At the ends the specimens have
holes (¢ = 24mm) for the tag through which axial force is introduced. The general structural
steel rods (¢8mm) are placed as necessary to achieve tensile reinforcement and the half of
them are placed for the compressive reinforcement. The cover depth is 1.5cm. In the previous
study, deformed bars were used; however, in this analysis slim round bars were used because
the reinforcement ratio must be changed parametrically. Consequently, some differences arise
in the results of maximum strength for each member. However, the influence of axial force on
the shear strength takes the same form. No stirrups are placed to give shearing reinforcement

E:: HEE | Tyee| @d | Pw | (|
I — v b A 175 10011 [100]18.0
o [o) g 2.74 | 0.010
_AE B | ~5.14| ~0.031 | 152|305
| L | 1B 0.005
- ! c |00 |20 |100]18.0

Fig.3 Specimens (rectangular beams)
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Fig.4 Specimens (T-beams)

so as to clarify the shear behaviour of the model. The concrete was from 6 to 8 weeks of age
at the time of the bending tests. Also, the mechanical properties of the concrete are shown in
Table 1.

2.1.2 Test apparatus and procedure

The test apparatus was the same as that used in the previous experiment. Axial tension
was introduced into the beams through the hinged bearing at the beam ends via a longitudinal
actuator to avoid eccentricity. Once the axial tension reached the desired tensile force, it was
held constant. Then the transverse load was applied by a transverse actuator. The load was
distributed onto two points by the loading beam, and was increased under in a load controled
way. The transverse load increased under a displacement controll system. The transverse load
was increased until the beam failed. The load and bending strain of the reinforcement were
measured and new cracks were marked on the beam faces at every displacement stage.

2.2 Experimental Results and Considerations

The ultimate load P, and ultimate moment M, of all specimens are shown in Table 1 along
with the theoretical values. Failures are classified into two types corresponding to the failure
state of the beam. Shear failures occurred due to the growth of shear cracks before the flexural
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Fig.5 Failure Modes of Beams
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reinforcement yielded, while flexural failures occured due to yielding of the flexural reinforce-
ment. These failure types are denoted by (S) and (M) in Table 1, respectively.

2.2.1 Modes of failure

Figure 5 illustrates the cracking patterns on beams at the final loading stage. It is evident
from this figure that when the reinforcement ratio of the beam is 0.0075, flexural failure
occurs in the beam at both levels of axial force. This confirms that the flexural reinforce-
ment yields before the beam fails. When the reinforcement ratio of the beam is greater than
0.01, the shear cracks appeared. However, the

failure of the beam is then caused not by shear

failure but by bending-shear failure, and the ——— — T—
beam does not fail unexpectedly; the smaller
the reinforcement ratio, the greater the num-
ber of flexural cracks. In other words, the
greater the reinforcement ratio, there are the
more unexpected occurrence of shear failure.
The higher axial tension, the more flexural
cracks appear and the narrower their spacing.

MM,

E——o
a<—e

n
|l
m<-0

2.2.2 Shear capacity 0.5¢ 4

Figure 6 shows the load-carrying capacity of o N=2tf
the beams. The ordinate is the ratio of break- I . N: 4if
ing moment M; to ultimate moment M,, as 3 =
calculated by ultimate theory. The abscissa
represents the reinforcement ratio. (The data o
for bending failure is not shown.) This fig- 0001 0.015 0.02
ure indicates that the larger the reinforcement w=As/bd
ratio is, the smaller the shear capacity. How-

ever, the smaller .the reinforcemgznt ratio is, the Fig.6 Relationships between M,/M, and
greater the loss in shear capacity under axial  Reinforcement Ratio (Experimental Results)
tensile loading.

3. INFLUENCE OF REINFORCEMENT RATIO ON THE SHEAR
CAPACITY OF RC MEMBERS SUBJECTED TO AXIAL TENSION

3.1 The Effects of Reinforcement Ratio

The design equation for shear failure of RC beam under axial tension the JSCE’s Specifi-
cations for Concrete is based on Zsutty’s curve[10] for the reinforcement ratio term from the
typical study[9]-[12Las shown in Fig.7. The bold line in Fig.7 shows the result of finite element
analysis by the authors. Figure 8 shows numerical results by the finite element method which
clarify the effects of axial tension on shear failure. It is clear that the axial tension affects the
relationship between reinforcement ratio and shear capacity. Furthermore, when the reinforce-
ment ratio is less than 0.015, the value of shear capacity rapidly falls for every axial tension.
The relationship between the function 3, expressing the influence of axial tension, as calculated
by finite element analysis, and My/M, are shown in Fig.9 with various reinforcement ratios.
From these lines, the influence of axial tension on the shear capacity of the member for any
reinforcement ratio is approximately expressed by following function:

M,
Bpon =1+ V”(zs — 100py) (6)

When the reinforcement ratio p, > 0.015, My/M, does not exceed 0.1, even if the member
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Fig.7 Influence of Reinforcement Ratio on Fig.8 Relationships between Shear Capacity
Shear Capacity of RC Member and Reinforcement Ratio

is subjected to a large axial tension. (Though in particular cases, some cracking occurs as
a result of the axial tensile force.) The tangents of the lines in Fig.9 are approximately the
same. From this viewpoint, it can be concluded that the influence of reinforcement ratio is
negligible in this region and the function §,,—. can be written as Eq.(7).

My
ﬂpw—n =1+ M

u

(pw > 0.015) (7)

3.2 Verification of the Proposed Equation

The results of our own experiments and those of Mattock are used to confirm the proposed
equation. Figure 10 shows the relation between My/M, and the shear capacity V;/Vya. The
shear capacity V;/Vq4 is obtained from the experimental data divided by the shear capacity

105 T T T T
< PN
\\\
N \\\
N ..
X \\ J
A\ R
0.5  ap,=0.025 1 Bp=1+My/M,
4 pw=0.020 p .
* py=0.015 \ ]
o p,=0.010 B =1+My/M,(2.5-100
- pu0.007 \\ ] n o/My( Pw)
o pw=0.005 \\ )
. 1 . 1 N 1 . 1 L B =1+2My/M
0 0.2 0.4 n=1+2Vo/M,
Mo/My

Fig.9 Influence of Axial Tension for Shear Capacity of RC Member at each Reinforcement Ratio
(by FEM)
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Authors' experiments,
¢ a/d= v a/d=2.75
s 2/d=2.0 e a/d=3.0
o a/d=2.25 + a/d=3.5
w a/d=2.5 = a/d=4.0

Mattock’s experiments
74

. v =
o ¢ o a/d=5.14

Vb/VydO
L

B n=1 .0

B n=1+2My/M,

* 0I2 * Bn=1+4M°/Mu

Mo/M,
Fig.10 Relationships between V;/V,q4o and Mo/M, (for Experimental Results an Rectangular
Beams)

o
ol
oL
—

proposed by Niwa et al.[13] for each shear span to effective depth ratio. (Where a/d is de-
fined as 5.6 in calculating Eq.(8).)

Va0 = 0.94¢/ £, #/100p, {/100/d(0.75 + al/i;) byd

The function expressing the influence of axial tension by using the concept of decompression
moment, as adopted in Specification for Concrete of JSCE, is shown by arrows in Fig.10. This
shows that the JSCE equation overestimates the shear capacity of almost all members. How-
ever, the smaller the shear span to effective depth, the more the experimental result/calculated

(®)

o T ] 1 1 - T T T 1
£ ° g
% 3l o Mg/My:0 i % L o MoMy: 0 i
< . o Mg/My:0.016~0.049 <5 o Mg/M;:0.016~0.049
» Mg/M,;:0.051~0.083 = Mg/M;:0.051~0.083
o Mg/My:0.097~0.121 1 o Mg/My:0.097~0.121 A
. * Mg/My:0.142~0.155 * Mg/My:0.142~0.155
- a -t - -
2 "
Vo
*
o L]
) ‘m 8
1 *m : g "] ; s o) s ] % 5 g
e g n g !
Iél i re 8 g v
A 3.
1 1 1 1 1 1 1 1
0 2 ) 2 ]
a/d a/d

Fig.11 Relationships between V3/Vyq and a/d Fig.12 Relationships between V3/Vya and a/d
(for Rectangular Beams) (for Rectangular Beams)
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3 + a/d=1.75 + a/d=3.0
2 .« a/d=2.0 -+ a/d=3.5
= v a/d=25 =~ a/d=4.0

B n=1 .0

B =1+2My/M,(3.0~a/d)

4 g =1+4Mg/M,,

Fig.13 Influence of Axial Tension on Shear Capacity of RC Members for each a/d
(Experimental Results)

value (V3/V,d0) diverges from (3,, because the term of shear span to effective depth ratio
is rearranged as a/d = 5.6. Figure 11 shows the Fig.10 in another form. The abscissa is the
shear span to effective depth ratio. Each data point is plotted as a dimensionless factor My/M,
expressing the magnitude of the applied axial tension. From this figure, it is evident that the
shear capacity of a member rapidly falls in the region where the shear span to effective depth
ratio is less than 3.0. These observed values also differ considerably from the shear capacity
(Eq.(8)) at the point where the shear span to effective depth is a/d=3.0.

Before analyzing of these data using the previously proposed equation (6), the data are first
analyzed by the function on the shear span to effective depth ratio. Subsequently, the data are
analyzed for the influence of axial tension using a derivative function obtained from the results
of experiments, as follows.

Firstly, the data are analyzed for shear span to effective depth ratio. The data between
2.75 < a/d < 6.0 are analyzed using the reliable function given in Eq.(9) as proposed by
Okamura and Higai[14], and those at a/d < 2.75 are analyzed using Eq.(10) as proposed by
authors from an experimental study[4].

1.4
ﬂa/d =0.75+ m (2.75 < a/d <6.0) (9)
Bua=22-20 (175 < a/d < 275) (10)
afd = a/d . 79 < < 2.

Figure 12 compares these shear capacities V4 with the experimental results V;. It can be
seen that the influence of axial tension changes in accordance with changes in the shear span
to effective depth ratio when the ratio (a/d) is less than 3.0. Considering this, the relations
Vo/Vya1 and Mo/ M, are then examined for each shear span to effective depth ratio, as shown in
Fig.13. From this figure, the difference between V4 and V; at each shear span to depth ratio
as My/M, changes can be written as Eq.(11).
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Fig.14 Relationships between V,/Vy42 and a/d  Fig.15 Relationships between V3/Vyq43 and a/d
(Rectangular Beams) (Rectangular Beams)
My
Boja—n =1+272(3.0 — a/d) (11)
u

If a/d=1.0, the Eq.(11) becomes equal to the previous JSCE equation (4). However, when
a/d > 3.0, the influence of axial tension based on the shear span to effective depth ratio be-
comes constant. Therefore,

ﬁa/d——n =1.0 (a/d > 30). (12)

The comparison of V49, obtained for V4 in considering Eq.(11) or Eq.(12), with the experi-
mental results V; is shown as Fig.14.

Finally, the results in Fig.14 are multiplied by
the previous function fpy,—n of Eq.(6) or Eq.(7)
for reinforcement ratio. The deviation of the
average of V;/Vyey from 1.0 is found to be
0.15. Considering the differences for experi- . .
mental results, Eq.(6) and Eq.(7) are replaced = a/d=2.5 - a/d=4.0
to Eq.(13) and Eq.(14) respectively, because Mattock’s Tes7ts

' Autlllor's’ Tes'tsl '
d=1.75 ~ a/d=2.55

Vo/Vydz
L
%Q
Il\IJ
Q
&

w

Eq.(6) and Eq.(7) are obtained by finite ele- or v g//d—5'12 .
ment analysis. If Eq.(13) or Eq.(14) is used to e
calculate the shear capacity of the beam, then

the deviation of the average of V;/V,43 from 1.0 tos st o
becomes 0.06 (as shown in Fig.15). 1 i B A DS R <
M,
Bpo—n =1+ 2#’(2.5 —-100p,)  (13)
U G | S B !
M, 0 0.1 0.2
Bpu—n =142 (pw 20.015)  (14) My/M,

u

If p, = 0.005, Eq.(13) is equivalent to the pre- Fig.16 Relationships between V;/Vyq43 and
vious JSCE equation (4) if the coefficient of Mo/M, (Rectangular Beams)
the axial tension factor is doubled for safety,
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Fig.17 Relationships between V3/Vyqo and a/d  Fig.18 Relationships between V3/Vy43 and a/d
(for T-Beams) (for T-Beams)

and Eq.(14) becomes equal to the previous JSCE equation for members subject to axial com-
pression. It is suggested that Eq.(13) and Eq.(14) reflect the deterioration when the influence
of axial tension appears at reinforcement ratios p, > 0.015. The accuracy of these equations
is confirmed by the relation of V;/V,43 and My/M, in Fig.16. These are in good agreement
for each shear span to effective depth ratio. Figure 17 and 18 show the results of applying the
above approach to a T-beam. (The analysis 1s omitted.) The equation is quite accurate as
regards the results for T-beams obtained in our experiments and by Mattock. The function
proposed by the authors and the JSCE function are shown in Fig.19. In the proposed equation,
if the shear span to effective depth ratio is greater than 3.0, the influence of axial tension is
equal to that of axial compression when the reinforcement ratio is greater than 0.015. If the
shear span to effective depth ratio is less than 3.0, the smaller the reinforcement ratio is, the
greater the influence of axial tension is. The functions match the present JSCE equation when
the reinforcement ratio p,, = 0.005.

4. CONCLUSION

This work confirms that the present JSCE
equation overestimates the experimental re-
sults, because the equation includes a safety
factor for the shear span to effective depth ratio
and the coeflicient for axial tension is doubled
to account for its disadvantageous influence.
However, the JSCE equation is safe in some
cases, because there are not discussed on the
disadvantageous influence of the axial tension
for the shear capacity of the member. The au-
thors confirm that the deviation appears when

=
@,

Nd<0

<— JSCE equation
<= proposed eq.(13)(g, =0.01
<= proposed eq.(14)

the shear span to effective depth ratio is less _0'; 05 10
than 3.0 and the reinforcement ratio is less ' ’ ’
than 0.015. In this paper, terms expressing the Mo/Mu
influence of axial tension as a function of rein-

forcement ratio are proposed as a modification ~ Fig.19 Influence of Axial Tension on Shear
of the JSCE equation. The proposed equation Capacity of RC Members considering

is shown to give an effective and accurate eval- Reinforcement Ratio

uation of shear capacity. The proposed equa-
tion also represents the shear capacity of a T-
beam accurately.
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