CONCRETE LIBRARY OF JSCE NO. 27, JUNE 1996
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The shear resisting model for concrete beams reinforced with FRP rod proposed by the authors in a
previous study is expanded to predict the shear strength of prestressed concrete beams with FRP tendon.
The shear resisting model consists of four shear resisting forces which are defined as function of
prestressing force, concrete strength, shear span to effective depth ratio, stiffness of tendon, and shear
reinforcement. The applicability of the model is confirmed by comparing with experimental results.
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1. INTRODUCTION

Tt is desirable to promote the use of fiber reinforced plastic (FRP) rod as tendon for prestressed concrete
(PC) members because of its favorable properties such as high strength and excellent anticorrosion
resistance.

The main target of previous studies was to estimate the flexural behavior of prestressed concrete
members using FRP tendon. As a result, it has been confirmed that flexural capacity can be predicted
by the ordinary beam theory [1]. There is, however, no precise method for calculating shear capacity,
although studies on shear behavior have been conducted. The reason is considered to be that the
influence of mechanical characteristics of reinforcement as well as the effect of prestressing force have
not been clarified.

An analytical investigation was conducted by the authors to show how shear resisting behavior of
concrete beams differs in different mechanical properties of steel and/or FRP rod as reinforcement [2].
Based on the results, the shear strength equation for reinforced concrete beams with FRP rod as tension
and/or shear reinforcement was developed [3]. This paper aims to quantitatively explain how
prestressing force affects each shear resisting force component which appears in the shear strength
equation for RC beams. Shear failure caused by fracture of FRP rod is, however, not considered in this
study.

2. OUTLINE OF ANALYSIS

2.1 Finite Element Program

The non-linear finite element program used in this study was developed for shear problems of reinforced
concrete beams [4] . A smeared crack model which adopts average stress and strain relationships is
used in this program.
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Fig.1 Finite Element Mesh

2.2  Analytical Method

Figure 1 shows the finite element mesh in this study. It is a simply supported rectangular cross section
beam subjected to two-point monotonic loading. Because of symmetry, half of the beam was analyzed.
Enforced displacements were given at the loading points and prestressing forces were applied as a load
at a node of steel element attached to the specimen.

2.3 Analvtical Parameters

It is generally known that there are many parameters which affect the shear strength of concrete beams.
In this study, the following parameters, which are the prestressing force as the main parameter and
others to develop the shear strength equation for concrete beams reinforced with FRP rod [4], are
chosen (chosen values of the parameters in parentheses).

®prestressing force (P,,=78~470kN)
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@concrete strength (f,’ =29,44 and 59MPa)
@ratio of shear span to effective depth (a/d=2.4 and 3.2)
@stiffness of tendon (p E;=2472 and 4944MPa)
®stiffness of shear reinforcement (p £, =137,412 and 824MPa)
where:

p, : tendon ratio

E. : Young's modulus of tendon

P, . shear reinforcement ratio

E,, : Young's modulus of shear reinforcement
The average prestresses in concrete were selected to be 4.5%, 9%, and 13.5% of concrete strength,
while the maximum prestresses in a section ranged between about 10% and 35%. Beam width and height
were fixed at 200 mm and 300 mm, respectively. The target in this study was to develop a shear
strength equation for PC beams using FRP rod as tendon and/or shear reinforcement. Influences of
tendon and shear reinforcement on the shear strength are estimated from stiffness [3]. Analytical
specimens contain only tendon as tension reinforcement.

Generally, shear strength differs for different positions of prestressing force [5]. In this study, the
position of prestressing force was fixed in such a way that extreme tension fiber strains were
compression. Experimental and analytical results show that the size of loading plates affects shear
strength of beams whose shear span to effective depth ratio is rather small [6]. However, this effect is
not taken into account in this study. Neither is the effect of compressive reinforcement considered.

2.4 Failure Mode in Analysis

In the analyses, softening of concrete around the loading point was observed at peak load. It can be said
that the failure mode is shear compression failure. Therefore, the shear strength equation developed in
this study by numerical experiment can be applied to concrete beams in which shear compression failure
occurs.

3. SHEAR RESISTING MODEL OF CONCRETE BEAMS REINFORCED WITH FRP RODS

3.1 Shear Resisting Model

The shear resisting model developed by the authors is defined by the following equation as the
summation of shear forces sustained by various resisting components (see Fig.2).

V=V otV st Ver Vo 1)

where
V. © shear force carried by concrete in compression zone above a neutral axis
.« - shear force carried by other than shear reinforcement in shear cracking zone
Vier - shear force carried by shear reinforcement in shear cracking zone
.m . Shear force transferred by concrete in horizontal zone
In Eq.(1), the horizontal zone is defined to connect the failure section in compression zone near the
loading point with the shear cracking path where shear force carried is the largest.

‘ chz

f Veom

Voer + Ve

Fig.2 Shear Resisting Model
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Fig.4 Distribution of Shear Resisting Stresses

Figure 3 shows neutral axis lines in reinforced concrete beam specimens in which the shear span to
effective depth ratio is 2.4. It is clearly observed that the depths to the neutral axis increase along with
prestressing forces. If a point where the neutral axis line intersects with a straight line connecting the
loading and supporting points is defined as an intersecting point, depth to the neutral axis is constant
between loading point and intersecting point in the case of concrete beams without prestressing force
[3]. InFig.3, when P_,is 353 kN, there is a part in which the depth is not constant. It can be said,
however, that the deptﬁf is generally constant between loading and intersecting points. It is observed
that the shear force at a shear cracking path through the intersecting point is the largest. Therefore the
shear resisting model described in Eq.(1) is also used for prestressed concrete beams.

The shear force carried by each component is calculated by multiplying the stresses at gauss points
(points of numerical integration for computation of stress and load vectors) along the cut plane shown
in Fig.2 by the area which the respective gauss point covers. The shear force carried by compression
zone is caiculated using shear stress of concrete at the gauss point in the nearest section from the loading
point (a distance of 11.3 mm from loading point). The shear force transferred at horizontal zone is
calculated using concrete compressive stress. The shear force by shear reinforcement at shear cracking
zone is calculated using tensile stress, which is a summation of average stress of the shear reinforcement
and average stresses of concrete. The shear force carried by other than shear reinforcement at shear
cracking zone is calculated using shear stress transferred by aggregate interlocking [2][3]. These shear
forces are calculated by an integration of resisting stresses over the resisting zone. Equation (1) can be
rewritten using average stresses at each resisting zone as follows.

b5 T 0 L g b Bl Q

com ~ com

where

T . average shear stress at compr ession zone
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average tensile stress of shear reinforcement at shear cracking zone

o
web
T average shear stress at shear cracking zone
str
o average compressive stress at horizontal zone
com
L. horizontal projected length of shear cracking zone
L, vertical projected length of shear cracking zone
L., length of horizontal zone
b beam width

depth of compression zone
The length of horizontal zone is assumed as follows [3].

L =2y  (a>h) ©))

com hl

The angle of a line connecting a start point (A in Fig.4) with an end point (B in Fig.4) of shear crack in
RC beams was assumed to be at 45° to the member axis [3]. This assumption means the angle of shear
crack is almost identical for different stiffnesses of tension and shear reinforcement, etc.
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Figure 5 shows crack patterns of analytical specimens subjected to different prestressing forces. The
angle of shear cracks gradually decreases as prestressing force increases. Therefore the angle 6 , is
calculated by the following equation.

0,=45[1-(D"]  (deg) @)

I3

where o ,'is the prestressing force divided by the cross sectional area of the beam.

In the analytical specimens shown in Fig.5, the assumed angles of shear crack are 42° , 37" , and
34° and angles predicted by Eq.(4) are 40" , 37" , and 34" , respectively.

The horizontal projected length of shear cracking zone is defined as follows.

L

L, =— %)
*® tan 0,
where ,
L,=h-x, ©)

The proposed model can be applied to a case in which the following geometric condition is satisfied.

L, +L .<a @)

com

When the size of compression zone of failure section, x, and the angle of shear crack, 0 , are given,
the corresponding distribution area of each average stress can be calculated. The numerical experiment
in this study investigates how analytical parameters shown in 2.3 affect the resisting area and stresses.

3.2 Size of Compression Zone

Figure 6 shows relationships between the size of compression zone and prestress. The size of
compression zone at ultimate increases as prestress increases. It is observed also that the size of
compression zone is greater when a/d is larger as in the case of RC beams [3] .

The size of compression zone in RC beams can be predicted by considering the depth calculated with
the elastic theory in which tension in concrete is neglected [3]. This means that compression zone in
pure-flexure region is almost the same as the value calculated by the elastic theory, and that compression
zone in flexure-shear region is less than the value calculated by the elastic theory.

Figure 7 shows relationships between prestress and the ratio of the depth of compression zone in
flexural-shear region, x, to that in pure-flexure region. The ratio is approximately the same for different
prestressing forces. It 1s therefore considered that, based on the depth in pure-flexure region, the depth
at failure section in flexural-shear region can also be defined for prestressed concrete beams. However,
the depth to neutral axis predicted by the elastic theory in prestressed concrete beams is expressed by
the function of compressive strain at extreme fiber in compression zone. For simplicity, therefore, the
size of compression zone in PC beams is investigated by comparing with the value calculated by the
elastic theory for RC beams as given in the following equation.

x=kd ®)

9
k=-np +/(np )’ +2np ©)
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Figure 8 shows relationships between the size of the compression zone, x, normalized by the depth
predicted by Eq.(8), x and prestress normalized by concrete strength (hereafter called prestress level).
From Fig.8(a) influence of concrete strength can be considered as prestress level. Therefore it is
proposed that the size of compression zone in PC beams can be calculated by the following equation
which is the equation for RC beams [3], modified by adding a new term for prestressing force.

/
= [ f—') [1+(2))
X X OII,-O »fc

@ /
— 1D
1+3.27000E g

(10)

¢

Solid lines indicate the results predicted by Eq.(10). Itis clearly seen that Eq.(10) can predict the results
of the numerical experiment with reasonable accuracy. ’
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Fig.8 Relationship between Normalized Size of Compression Zone and Prestress Level

3.3 Average Shear Stress at Compression Zone

To develop the failure criteria and equation for prediction of the average shear stress in compression

zone, the principal stresses (see Fig.9) in compression zone are investigated.

Figure 10 shows relationships between prestress level and averages of maximum ( ;7 ) and minimum

lave

(g ;w ) principal stresses. There is no influence of concrete strength, a/d and prestress level for
e

average stresses, as in the case of RC beams [3]. It can be said that minimum and maximum principal
stresses are 80% and 15% of uniaxial compressive strength, respectively. Furthermore, it is observed

that these stresses are not influenced by stiffnesses of tendon nor shear reinforcement.

In this study, therefore, the same failure criteria as in the case of RC beams are assumed for the case of

PC beams.
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/
o

~=0.15 (12)
I

where 7 and [/ are, respectively, the average of minimum and maximum principal stress at failure.
2u lu

On the other hand, Fig.11 shows relationships between angle of principal stress and prestress level. The
angle in compression zone is approximately the same for different prestress levels and only the influence
of a/d ratio is observed. Solid lines in Fig.11 show the value calculated by Eq.(13) which is the equation
for angle of principal stress in RC beams. It is clearly seen that the equation is applicable to the case of
PC beams.

(13)

a. -1
tan ¢ =(—
(d)

Finally, the average shear stress at compression zone 7 can be predicted by the following equation
y 2 p T p y 2 eq

which is derived from Eqs.(11) and (12).

T
—":’=0.65sinacosa (14)

J

Figure 12 shows relationships between average shear stress and prestress level. The prediction by

Eq.(14) agrees well with the analytical results. In this equation, 7T decreases as a/d increases in the

pz

range less than a/d of 1.0. Since this range does not satisfy the condition of Eq.(7), investigation for
this range is not conducted in this study. ‘
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3.4 Average Compressive Stress at Horizontal Zone

Figure 13 shows principal stress state of concrete at horizontal zone. In all the specimens average of
maximum principal stress (/) is less than 10% that of minimum principal stress (4 ) so that
lave

the stress state can be assumed as an uniaxial stress state in which the minimum principal stress acts only
as in the case of RC beams [3].

Figure 14 shows relationships between average minimum principal stress and prestress level. The stress
increases proportionally to concrete strength. It can be said that the average stress is constant for
different a/d ratios but there is no influence of stiffnesses of tendon and shear reinforcement. A solid
line shows the stress predicted by Eq.(15) which is the equation for RC beams [3]. It can be said that
the equation can evaluate the average stress for PC beams.

/

oZava_o 64(_)-1 (15)
1

On the other hand, Fig.15 shows relationships between the angle of principal stress and prestress level.
The angle decreases as prestress level increases, and does not depend on other analytical parameters.
In this study, therefore, the angle of principal stress at horizontal zone is given as a function of prestress
level by the following equation.

0/
B = (B),ml1-(—)"]
i)

<

/
=[G (deg) (16)
The solid line in Fig. 16 show the values calculated by Eq.(16) which differs from the case of RC beams

where the angle can be assumed to be a constant 32° [3]. Equation (16) indicates the angle decrease
with increasing prestress level.
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Fig.13 Principal Stress State
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Finally, the average normal stress ( normal component of 7
2ave

be calculated by the average principal stress given by Eq.(15) considering its angle predicted by Eq.(16).

), which is compressive stress, can

/
o 1 17
= = 0.64(%) sinp an
A d
where 7 is the average compressive stress at horizontal zone.
com

Figure 16 shows relationships between the average compressive stress and prestress level. Solid lines
show the values predicted by Eq.(17). It can be said that Eq.(17) can predict the tendency that the
average compressive stress decrease as prestress level increases.
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3.5 Average Shear Stress at Shear Cracking Zone

In the authors' previous study on shear resisting behavior of PC beams, shear resisting force carried by
other than shear reinforcement at shear cracking zone decreases when prestressing force is applied. This
is because stresses transferred by aggregate interlocking are lessened due to reduced shear deformation
at shear cracks whose angles are reduced by prestressing [7].

Figure 17 shows relationships between average shear stress and prestress level. The shear stress decreases
as prestress increases. The stress becomes greater when a/d is smaller as in the case of RC beams [3] .

The effect of prestress is investigated based on the average shear stress in RC beams. Figure 18 shows
relationships between average shear stress divided by shear stress in the case of no prestress and prestress
level. From Fig.18(a), the shear stress decreases with increasing prestress level in a similar fashion for
“different concrete strengths, which is also found in the case of RC beams [3]. It can be said that for the
same prestress level the average shear stress is approximately the same for different stiffnesses of main
and shear reinforcement.

In this study, therefore, it is assumed that the average shear stress predicted by the equation for RC
beams decreases with an increase in prestress level as follows.
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It is indicated in Fig.18 that the solid lines obtained from Eq.(18) agree well with the results of the
numerical experiment.
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3.6 Average Tensile Strain on Shear Reinforcement at Shear Cracking Zone

The equation for prediction of the shear force by shear reinforcement is developed by using average tensile
strain of shear reinforcement as in the equation for RC beam [3].

Figure 19 shows relationships between average strain of shear reinforcement and prestress level. The
strain at ultimate slightly increases as prestress level increases. Generally, the strain for the same applied
shear force decreases as prestressing force increases [8]. In this numerical experiment the same
phenomena is observed. However, the strain at ultimate becomes larger as prestressing force increases
because shear strength of beam grows larger as prestressing force increases.

The average strain of shear reinforcement in the case of PC beams is investigated by comparing the average
strain in the case of RC beams.

Figure 20 shows the relationships between tensile strain divided by tensile strain in RC beams and prestress
level. For different concrete strengths, the average strain increases at the same rate as prestress level
increases. In Figs. 20(b) and (c) , the rate of increase is the same for different stiffnesses of tendon and
shear reinforcement.

In this study, therefore, the tensile strain is defined by the following equation derived from the equation
for RC beams.

/
—_— JE—— o
eweb = (ewa'r)c;-o ’ [1 +(——;)OV2]

¢

/ _1000 o e o5 /
= 0.0053 ——‘/Z A [1+(22y02) (19)
/

W +1 .
The solid lines in each figure which show the value predicted by Eq.(19) indicate that Eq.(19) can
approximately evaluate the results of numerical experiment. As in the case of RC beams, a/d, concrete
strength, stiffness of tendon and shear reinforcement affect the tensile strain of shear reinforcement at
the shear cracking zone. The rate of increase in the shear reinforcement strain with increase in the
magnitude of prestress can be considered uniquely by Eq.(19).
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Fig.20 Relationship between Average Stirrup Strain and Prestress Level

4. EVALUATION OF PROPOSED SHEAR STRENGTH EQUATION
4.1 __Relationships between Shear Strength Equation and Influential Factors

The effects of concrete strength, shear span to effective depth ratio, stiffness of tendon and shear
reinforcement, and prestressing force to the shear strength calculated by the equation proposed in

Chapter 3 are investigated.
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(1) Effect of concrete strength

Figure 21 shows the relationship between concrete strength and shear strength. In this case, the shear
strength is normalized by the shear strength for the case where the concrete strength is 40 MPa while
the stiffness of tendon and shear reinforcement, and a/d ratio are kept constant. The shear strength in
concrete strength of 60 MPa is about 1.5 times of that of 20MPa. It can be said that concrete strength
greatly affects the shear strength.

(2) Effect of shear span to effective depth ratio

Figure 22 shows the relationship between a/d and shear strength. The shear strength is normalized by
the shear strength for the case where a/d is 3.0. The shear strength increases as a/d decreases. The ratio
of shear force at shear cracking zone (V, ,+V,) to total shear force becomies greater as a/d decreases.
(3) Effect of tendon stiffness

Figure 23 shows the relationship between tendon stiffness and shear strength. The shear strength is
normalized by the shear strength in the case that tendon stiffness is 4000 MPa. The shear strength
increases as tendon stiffness increases, but the rate of increase is slow. At shear cracking zone, it is
observed that the rate of shear force to total shear force gradually decreases as stiffness of tendon
increases.

(4) Effect of stiffness of shear reinforcement

Figure 24 shows the relationship between stiffness of shear reinforcement and shear strength. The shear
strength is normalized by the shear strength in the case where the stiffness of shear reinforcement is
400MPa. The shear strength increases as stiffness of shear reinforcement increases. The increase of
shear strength depends on the increase of the shear force carried by shear reinforcement.
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Fig.25 Relationship between Shear
Strength and Prestress

(5) Effect of prestressing force
Figure 25 shows the relationship between prestress and shear strength. The shear strength is normalized
by the shear strength in the case that prestress is 2 MPa. The shear strength increases as prestress
increases. It is observed that the rate of shear resisting force at shear cracking zone (V,,,*V,,) increases
and the rate of other shear force (V,.-V,,,) to total shear resisting force decreases as prestress
increases. The decrease in the rate of shear resisting force at shear cracking zone is caused by the
decrease of shear resisting force carried by other than shear reinforcement at shear cracking zone V,

. str
as prestress increases.

42 Evaluation of Proposed Shear Strength Equation by Previous Experimental Results

The predicted results are compared with previous experimental results to confirm the applicability of the
proposed model for prestressed concrete beams with FRP tendon.

In this study, experimental data from thirteen PC beams with rectangular cross section [9] are used. The
outline of the beams are shown in Table 1. The a/d ratio is 3.0 for all specimens. In this table, V_,

indicates the experimental shear strength, ¥, , indicates the predicted shear strength, and A, C, and G
indicate aramid, carbon, and glass fibers respectively.

Figure 26 shows the relationship between the predicted shear strength divided by experimental shear
strength and the stiffness of shear reinforcement. It is observed that the predictions underestimate the
experimental shear strengths. The average shear strength ratio is 1.18. It can be said that the scatter
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S 0% oo o
2 1f
= |
0 50 T00
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Fig.26 Relationship between Ratio of Shear Strength
and Stiffness of Shear Reinforcement
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is small since the coefficient of variation is 7.8%. Further study to compare predicted shear strength with
various experimental results should be conducted in order to explain the discrepancy.

For concrete beams reinforced with FRP rods with a low stiffness of shear reinforcement (less than 100
MPa approximately), the proposed model overestimates its shear strength [3]. In beams which have
a low stiffness of main and/or shear reinforcement, as well as beams without shear reinforcement,
diagonal tension failure is caused by single cracking. The finite element program used in this study
cannot exactly simulate the diagonal tension failure. Therefore the proposed model developed by the
numerical experiment using this program cannot be applied to the diagonal tension strength.

In the case of PC beams, however, the proposed mode can predict the shear strength of beams with
stiffness of shear reinforcement less than 100MPa.

From the experimental specimens, it was observed that the failure mode changes from diagonal tension
failure to shear compression failure as the prestressing force increases [9]. Therefore the finite element
program can evaluate the shear strength even when a beam has low shear reinforcement stiffness. It can
be said, therefore, that the proposed model for prestressed concrete beams with FRP tendon developed
by the numerical study can predict shear strength.

Table 1 Test Specimens and Shear Strengths [9]

Shear
Specimen Py f! Tendon reinforcement Ven Ve Ve
(&N) | (MPa) Type (gb.) P.E, Type | P PE, | &N) } N) | TV,
(MPa) (%) | (MPa)

C-G2-1 123 39 C 0.70 | 982 G 0.15 56 162 | 130 | 125
C-Gi-1 125 39 C 070 | 982 G 021 80 157 § 137 | 115
C-G2-2 178 51 C 070 | 982 G 0.15 56 181 | 149 | 121
C-G1-2 179 47 C 0.70 | 982 G 021 80 199 149 | 1.34
C-A2-1 125 48 C 0.70 | 982 A 0.07 50 151 126 | 1.20
C-Al-1 125 38 (o} 0.70 | 982 A 0.10 69 170 | 130 | 131

C-A2-2 176 46 (o] 0.70 | 982 A 0.07 50 185 | 136 | 136

C-A1-2 177 60 (o] 0.70 | 982 A 0.10 69 200 | 175 | 114

C-C2-1 126 45 C 0.70 | 982 [ 0.07 76 157 | 148 | 1.06

C-Cl-1 126 41 C 0.70 | 982 C 0.10 | 107 | 152 | 151 | 101

C-C2-2 178 52 C 0.70 | 982 (o] 0.07 76 182 | 159 | 115

C-Ct-2 177 51 C 0.70 | 982 C 0.10 | 107 | 194 | 168 | 116

C-CS2-2 | 175 52 C 0.70 | 982 C 0.04 59 178 152 | 1.17

S. CONCLUSION

In this study the following conclusions are obtained.

(1)Shear strength equation for prestressed concrete beams with FRP tendon is developed by numerical
experiment using non-linear finite element analysis. The proposed shear strength equation is applicable
for beams with shear compression failure. The failure criteria in the equation is defined by the principal
concrete stress in compression zone. The shear force calculated by the proposed model is defined as a
summation of shear resisting forces carried by concrete in compression zone, by shear reinforcement and
others in shear cracking zone, and by concrete in horizontal zone linking the compression zone and shear
cracking zone. These shear forces are calculated by multiplying each resisting zone by average stresses
which are the function of prestress level, shear span to effective depth ratio, concrete strength, and
stiffness of tendon and shear reinforcement.

(2) Shear strength predicted by the proposed model increases as concrete strength and/or shear span to
effective depth ratio become larger. The shear strength gradually increases as tendon and shear
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reinforcement stiffness and prestressing force increase.

(3) The applicability of the proposed model is confirmed by comparing with the experimental results.
Comparison with various kinds of experimental results should be conducted since stiffness of tendon and
shear span to effective depth ratio in beams used in this study is constant.

This study aims at the case in which eccentric prestressing force acts in the beams. Future study on the
effect of position of prestressing force and partially prestressed concrete (PRC) member should be
conducted to develop unified design equations. A study on the applicability of proposed shear strength
equation to PC beams using steel reinforcement will be reported.
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