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A new method of determining the most suitable conditions of mix proportion and
mixing energy for a particular quality of concrete is described. It is based on the use
of a neural network to predict concrete quality for any mix proportion and mixing
energy. By understanding the sensitivity of the relation between these conditions,
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1. INTRODUCTION

In concrete production, the mix proportion is conventionally designed for each
batch mixed so as to obtain the required concrete quality. However, the quality of
the concrete produced is not always consistent and, moreover, the concrete may
sometimes be out of standard since quality is not checked for each batch. There
might be a number of reasons for this problem; for instance, it is difficult to
continuously monitor changes in water content, which are mainly caused by
varying surface moisture ratio of the aggregate, and it is also difficult to predict
how quality changes with variations in mix proportion and other conditions. There
is a need to vary the mix proportion and mixing time so as to obtain concrete of
consistent quality despite changes in the conditions of concrete production.

Neural networks can be used for problems that can not be approached in the
normal way and for finding important governing factors by a simple process of
learning. Once learning is complete, a neural network simulates the input-output
relations of the given data, and changes in output against changes in input can be
predicted.

In Sekiguchi’s work[1], it was clarified that a neural network is applicable to the
field of concrete mixing. In this new study, the authors attempt to construct a
quality control system for concrete production using a neural network, applying an
optimization method based on sensitivity.

2, NEURAL NETWORK][2]~[4]

2.1 The principles of neural networks

The neural network model, which is inspired by the neuronal architecture and
operation of the human brain, consists of a large number of highly interconnected
processing units. In contrast with conventional computation methods that follow a
logical process with step-by-step serial processing, a neural network computation
is processed in parallel. As a result, it has advantages in computation speed, ability
to analyze fuzzy data, and ability to supplement incomplete or partially incorrect
information. Further, there is no need to design a complicated program. The only
requirement in applying the neural network concept is to prepare learning data
and force the learning process using these data. That is, the interior relationship
must be changed so as to generate the expected answer in an iterative process. As a
consequence, neural networks are a promising path for solving the pattern
recognition problems, problems which are hard to represent in equation form, and
optimization problems in which there are complex combinations.

There are two types of neural network architecture, the mutual-connected type and
the layer-type. The layer model is adopted in this study. (Fig. 1)

2.2 Neural network units

Each unit of the network is a multiple-input and one-output device as shown in Fig.
2. The operation of unit u, is represented by Eq. 2. The response function is

represented by a series function which takes the values from 0 to 1. Input signals
are transported to the output layers by following Eqgs. 1 to 8 in each unit.

u; = ij, ‘Y, -0, @
Y = f(uj) 2
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Y On
Fig.1 Layer-type neural network Fig.2 Neural network unit
Jw= I+e™ ®
where @; : connection weight between i and j
y, ¢ input from unit i

0, : threshold value

2.3 Learning algorithm

Learning in a neural network consists of modifying the connection weights and
threshold values in an iterative process such that an error function is minimized.
In alayer-type network, the connection weights and threshold values are gradually
changed such that the error between the actual output of the network and the
expected output for a certain pattern of input values is reduced.

= %Z(.yj.c —.)A}j.c )2 (4)
J.c

where Y. : output value of neural network

Vic : expected output value

To find the minimum of E derived for any input pattern, it is necessary to change
each weight using the following equation:

&
Ao, = -¢

Jt
ow,

®)

This is the gradient descent method, and entails differentiation with respect to a
design parameter and adjusts the design parameter down to the gradient direction.
According to the input-output relationship defined in Eqs. (1) to (3), Eq. (5) can be
expanded as follows.

—— —— — ——— 6
v, =3, A, oo, ®
In addition, the following equations are derived from Egs. (1) to (3):
¥,
Ef— =/f'(u,) )

e
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j.c
= yji,c (8)
So. ow,,
E
Aa)jl = —‘92_ 'f,(uj,c) Ve )]
¢ je

As for learning in hidden layers, it is decided to take the value of —— from the —
. . @, P,.
value in the following layer.

Then, g,—) of unit / in layer !/ is derived from % of unit / inlayer (+D,
ﬁ =Z &v .@),-(“]) ~dlgl+l)
@}jl) - @}ilﬂ) éhgul) @}1) 10)
From Eq. (1), 1
' o®
g0 ~ Y an
J
Therefore,
12 FE . s
Ea AR (12)

E &
Consequently, 3" can be derived from the already calculated 30 - This means
J

that the error is transfered backward from the following 1ayer’to the preceding
layer, in a process called “back propagation.”

3. PREPARATION OF LEARNING DATA

In the application of a neural network, it is essential to prepare much accurate data
distributed over a wide range. For this purpose, site experiments were conducted
using a 3m3 forced mixer.

After mixing, the concrete was transported to a nearby yard in a concrete mixer
truck. The characteristics of the concrete, such as slump, air content, and unit
volume of concrete, were then measured. Specimens for compressive strength tests
were also taken. Some aggregate was also collected to measure the amount of
surface moisture for each batch. The time taken to charge all the materials was
measured by observing monitors that display the mixer interior. Slump values
were measured in units of 0.1 cm, although the usual standard is 0.5 cm.

Thirty one batches for each of three mix proportions were mixed as shown in Table
1, and one each of 13 further mix proportions as shown in Table 2. The latter set
were performed so as to determine the universality of the network. The
measurement items and number of measurements are shown in Table 3. The
characteristics of the concrete were determined from the average of multiple
measurements on each batch, and stuff and equipment limitations meant we had to
repeat the sampling and measurement cycle. As a result, the experiment was
devised such that sampling and measurement be limited to 3 cycles thus
preventing variations in time-dependent characteristics such as slump loss.
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Table 1 Mix proportions

Unit content_(kg/m?) Table 2 Mix proportions and mixing times
Fine aggr. | Coarse aggr. -
No. W/ Fly agg! {2 Admixt No. wic &% o (mim) Unit eonte;:‘of water ixng time (sec)
(©+F) | ofe |Water|Coment| Ri"‘;’ L’": Ri"‘"l [Crushed ) 40 [ 55 [ 60 | 25 | 40 | 150 | 165 [ 180 | 60 | 120 | 300
san san _yave stone 1 o) O o o
1501 |321)167 | 268 | 66 | — | 558 | 1235 | — 0.835 5 5 5 5 S
2] 462 |37.7) 162 | 281 | 70 |465] 199 | 1149 [ — 0.878 3 51 o ° °
3| 476 |415) 169 | 284 | 71 {506 ) 217| 745 | 317 | o888 4+ | O [$) [$) [§)
5 o o o] Q
. 6 | O [6) [$) [
Table 3 Measurement items and 7 | O o o [
8 o) [} o [$)
number of measurements s S S S
The number of measurement for each batch 10 ) o) [e) [e)
Mix  [Number[Surface | Mixing | Charged Air | Comp. [ Unit 11 o o (o) Q
N of moist. « 1| Slump " Ly
proportion |y ey oo ratio | emeTEY content weight 12 o) o] o (o]
Table 1 3 1 1 1 20 30 %0 30 13 ol o o (¢]
Table 2 90 1 1 1 Goré 6 3 6
Table 3 13 1 1 1 15 15 Sor 15 15

The range of obtained data was 8.4~19.4 cm in slump, 4.3~6.0% in air content, and
21.2~33.2 MPa in compressive strength. The final number of data points available
was 106 batches.

4. PREDICTION OF CONCRETE QUALITY
4.1 Model

First we try to predict concrete qualities such as slump, air content, and
compressive strength from the charged content of materials and mixing energy by
using the layer-type neural network. The model comprises the two steps shown in
Fig. 3. In the first step, the “true’mix proportion, in which water content and
aggregate content are corrected by estimating the surface moisture content of the
aggregate, is determined. In the second step, concrete characteristics are predicted
from the “true” mix proportion and mixing energy. These two networks are trained
independently. In the prediction process with trained networks, the output of the
first network is adopted as the input of the second. As a consequence, the quality of
concrete can be predicted from the weight of charged materials and the mixing
energy (which is assumed to be the cumulative power consumption of the mixer).

INPUTS INPUTS

(WATER) T (WATER)
mx prop, | (CEMENT) MX prop, | (CEMENT)
| LY AsHy Sﬁmcm (FLY ASH)
(CHARGED) | (ADMIXT.) SURFACE (CORRECTED)| (ADMIXT.)
(AGGR.) (FINE AGGR) (AGGR.)
MIXING (MIXING MIXING (MIXING
CONDITION |  ENERGY) CONDITION |  ENERGY)

Fig.3 Model for prediction of concrete quality

Table 4 Inputs and outputs 1200 Max value
Inputs Outputs 2 100.0
13 Units) (2 Units) 2 %00
Mixing CC:mulativ: valtlee g 60.0
nverged va »
enersy Maximum value g 40.0 Mngngemrgy
Water Surface moist. wt of; 2.0 7 A 7 —(Illmngdryrun
Cement fine aggr. 0 1 L . s S el —F
Charged ! Fly ash ) 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
materials Fine aggr. (2 types) [Surface moist. wt of] Mixing time (sec)
Total aggr. (3 types) total aggr.
Water red. agent Fig.4 Mixing energy of mixer
Superplast.
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In predicting concrete quality, the prediction could be made more accurate by
adding input items, such as maximum mixing energy and converged level of mixing
energy . However, we are attempting to optimize the mix proportion and mixing
energy for a particular quality of concrete. Since factors that can be controlled
independently should be selected as input items, aforementioned factors are not
suitable for they cannot be controlled.

On the other hand, we are attempting to predict concrete quality in one step from
the weight of charged materials (uncorrected by the surface moisture ratio of the
aggregates) and the mixing energy only. Hence, the prediction accuracy of this one
step model is considerably low compared with the two step network used in this
study. For this reason, the model shown in Fig. 3 is adopted.

It is true that there are many factors which affect the quality of concrete, such as
the temperature of the mixed concrete and the aggregate and cement quality.

However, we did not treat these factors as inputs since they would have been
almost constant over the short term of the experiment (July to August 1993).

4.2 Prediction of surface moisture weight of aggregates
a) Model

The network used to predict the surface moisture content of the aggregates has
three layers and 18 units in the hidden layer. The input and output items are
shown in Table 4. Although we used several types of fine aggregate and coarse
aggregate, we attempted to predict the sum of the surface moisture content on the
fine aggregates and that on all aggregates because of the impossibility of predicting
each aggregate individually.

We failed to measure mixing energy or the surface moisture ratio for some samples,
so the remaining 97 data were adopted for learning. As shown in Fig. 4, it was
possible to define the three specific values of mixing energy as the difference in
mixing energy between an actual run and a dry run. The weight of materials
charged into the mixer was automatically measured for each batch. The surface
moisture content of the aggregates were calculated from the surface moisture ratio
measured for samples in each batch. All data were normalized before the learning
process.

As learning progresses, the error between the network’s output and the instruction
value gradually diminishes. However, the prediction error for untrained data
reaches a local minimum while that for learning data is still falling. This is called
“overtraining,” and should be avoided to achieve universality. Therefore, we
randomly chose six of the learning data, and carried out the learning process by
sequentially checking the error between the output and the instruction value for
the six data. Learning was terminated when the error reached the local minimum.

75.0 100.0
. . @ o
Table 5 Estimation results § 5 5.0
Mean square error . : 3 E ]
Items (eg/m®) Correlation coefficient B 50.0 3
Learning | Untrained { Learning { Untrained 2 wo
data data data data g
i 0. C.0974 C.C.0981
s“?;ﬂgi?:m{. w241 418 0.990 0974 5.0 c.eom 2.0
Surface moist. wt 25.0 50.0 7.0 25.0 50.0 7150 1000
of total aggr. 6.10 3.41 0.983 0.981 Instructionvalue (gin?) Instruction valve (g/m®
oggrogate) tal to)
{Note) Mean square error . Average of squared error between predicted (Fino . L (Total aggroge
value and instruction value Flg . 5 Prediction results

(surface moist. of aggr.)
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b)Results and Discussion

Since the initial values could not be determined theoretically, learning was tried
several times with different initial values for the connection weights and threshold
values, and the convergence level of the error was checked. The connection weights
and threshold value giving the most reliable result were chosen. The result for
untrained data after 100,000 learning events is shown in Fig 5. This indicates that
the trained network can make predictions with good accuracy. The surface
moisture content of the aggregates is expressed in the unit weight per 1 m8 of
concrete.

Table 5 summarizes these results. The mean error of prediction for fine aggregate
was 2 kg/m3, and that for all aggregates was 1.9 kg/m3. With an actual water
content of 160~170 kg/m?, assuming that material measurements are perfect, the
results mean that the network can predict the overall water content of a batch to an
accuracy of *1.2%. Further, this error corresponds to +0.2~0.8% in the fine
aggregate surface moisture ratio when the fine aggregate content is 558~723 kg/m83.
According to these results, this network model has better accuracy than a moisture
meter, which gives a £0.5% error. In particular, this network model is relatively
precise even when the aggregates have a surface moisture ratio of over 10%.

4.3 Prediction of Concrete Quality

a) Model

As the next step, we attempt to predict concrete quality from the mix proportion
corrected by surface moisture ratio of aggregates. The inputs to the network are
eight as shown in Table 6. The effect of a change in fine aggregate content, under
the condition that the total aggregate content is constant, can be simulated when
inputs are selected as shown in the table; that is, the effect of a change in s/a can be
determined on condition that the total aggregate content does not change. The
output items consist of slump, air content, and compressive strength. The number
of units in the hidden layer is 18.

Before learning, six samples were selected from the learning data to check for
overtraining as before. Though the concrete characteristics were determined
through multiple measurements during the experiment shown in Table 8, averages
were adopted as learning data.

Table 6 Inputs and outputs 1o o %0
€
Inputs Out puts E 1.0 ‘g 6.0 g 0.0 o4 o
(8 Units) (3 Units) | % 1.0 3 %
Mixing energy (cumulative) 250 50
Water -8 12.0 g 47
Cement Slump °  ccosw w“ C.C0817 o €.00073
i 0.0 . .
(f:::;}:) ﬁiley:::r Air content 10.0 120 140 16.0 18.0 40 50 60 1.0 20 250 0.0 3.0
Total aggr‘. Instruction value (cm) Tnstruction valuo &) Tnstruction value (MPa)
Water red. agent Comp. strength Stump) (Air contont) (Compressive strength)
Superplest. Fig. 6 Prediction results (concrete quality)
b) Results and Discussion Table 7 Estimation results
Le arnlng‘ was t?r.mlnated When Mean square error Correlation coefficient
convergence was verified and the error ltems | Tearning [Untrained| Tesming | Untrained
for the chosen data began to increase data data data data
(at around 20,000 learning events). The | Slmp | 120cm | 114 0.027 0.830
result for untrained data is shown in Arcontent | 0042% | 0072 | 0933 0817
Comp. streng. | 17.0 MPa 9.36 0.939 0.973

Fig 6, and Table 7 shows a summary of
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the results.

The mean error is about 1 cm in slump, 0.25% in air content, and 0.92 MPa in
compressive strength. This implies that if we cast concrete in the mix proportion
determined by the network, the quality of the mixed concrete will be distributed in
this range. This accuracy would be acceptable in practice for it is better than the
JIS standard, which is *2.5 cm in slump and *1% in air content. On the other
hand, it is anomalous in that the accuracy of prediction for untrained data is
greater than that for learned data. This results from the insufficiency of data. Thus,
it is necessary to prepare more data for learning and to check for overtraining in
practical use.

5. SENSITIVITY ANALYSIS

5.1 Sensitivity Analysis Using Neural Network

Sensitivity analysis is used to estimate the response to a change in one parameter.
A great deal of research has been conducted for applications such as optimization
and reanalysis. Sensitivity can be effectively used to estimate perturbing factors,
optimization methods, and reanalysis.

In this section, we proposed a method of calculating the input-output sensitivity of
the neural network from the connection weights and threshold values of the trained
network, with the purpose of optimization of mix proportion and mixing energy.

Suppose the following values and functions are true for unit j:

Input
u,i = Za)ji ‘yi —9}, (13)
Output '
Y = fluy) a4
1
J@=1"7= 15)
+e

@(M

percd

P
J

output of unit / against the input of unit J, is calculated as the following equation:

And the sensitivity of the input-output of an N-layer neural network, the

@(N) @)(N) (N-1) IE?NQ

i [ k-1 -

@/(0) = ZZ Z (;\’—l) A @)(0) (16)
i KB ok2  KN-DDYn k-2 j

From Egs. (13)~(15),
1+1) (1+1) (1+1)
@/ﬁ — é’; . d"i
‘%‘1) - 0'}45“1) @,}(1)
- LE)-0f an

In the three-layered neural network model,
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Ultimately, the sensitivity at any input value can be calculated from the connection
weights, threshold values, and output at each unit in the network.

5.2 Neural Network Model for Sensitivity Analysis

Although sensitivity analysis is not the main purpose of this study (it was only
used to calculate the optimization process in this study), one numerical result is
illustrated below. The network used for sensitivity analysis had three layers and 18
units in the hidden layer. Input and output items are shown in Table 8. The
prediction accuracy achieved by this network is nearly the same as that of the one
described in the previous section. One input is different from the former model: the
mixing time is treated as an input in this network model, since all inputs should be
independent in an evaluation of sensitivity. With the aim of evaluating the effect on
concrete quality of changes in s/a, given that the fine aggregate content is constant
and the total aggregate content is constant, the fine aggregate content and total
aggregate content are adopted as inputs.

Sensitivity is calculated at the point shown in Table 9. At which mix proportion and
mixing time, many data are used for learning. The results are expressed as the
variation in output against a 1% increase in input by Eq. (18).

5.3 Results and Discussion[5]

Figure 7 shows the sensitivity for each input item, and Table 10 shows the three
factors which have the most effect. The ‘+" mark in the table represents an output
that increases with a rise in input, while ‘-’ means the opposite. The result shown is
for the degree of change in quality resulting from a change in one factor while
keeping the other factors constant. The present model does not consider a relative
adjustment in mix proportion with respect to a change in one factor. (So, it brings a
change in total volume of concrete) That is, the result shows the effect of a batching
error.

a) Effect on Slump

The result shows that water content has the most effect on slump as it is known.
However, the degree of it is a little smaller, though it is usually considered that a
1.2% increase in water content results 1% slump increase. An increase in cement or
fly ash content causes a decrease in water-binder ratio, or the equivalent of a
relative decrease in water content in this calculation; that is , a decrease in slump.
The same fact was indicated by the result. The reliability of the result for
superplasticizer could not be verified because the range of learning data was quite
narrow.

b) Effect on Air Content

A decrease in cement content and an increase in fine aggregate ratio (equivalent to
an increase in fine aggregate and a decrease in total aggregate) results an higher
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Table 9 Default values for sensitivity analysis

Table 8 Inputs and outputs N Mix proportion (kg/m?) Mixing
1tivi i 0. time
(for sensitivity analysis) W o o S . e R
IT{!J)“FS Cs)‘gp‘}tts 1| 1757 | 2617 | 621 | 697.5 | 18696 | 3.38 | 201 | 394
M(is‘ m:? ) @ Units) 2 | 1644 [ 266.7 | 657 | 6756 | 18426 | 363 | 150 | 392
g "‘:’et 3 | 1756 2803 | 689 | 7251 | 17921 | 376 | 150 | 392
ater B
Cement Slump Table 10 Affecting factors
Mix prop. Fly ash ‘ for each quality measure
(corrected) Fine aggr. Air content order Slump Air content Comp. stren;
Total aggr. Prop. 1| Prop. 2| Prop.3 | Prop. 1| Prop. 2| Prop.3 | Prop. 1]{Prop. 2| Prop.3
Wat d ¢ Comp. streng. 1 +W | +W | +W -a -a -a -SP | +FA | +FA
ater red. agen 2 | -SP | -FA | -FA | +s | +SP | +SP [+FA | -W | =
Superplast. 3 +38 -C -C | +SP | -C -C | +WR 8 -W

(NOTE) W : Water content ; C : Cement content ; FA: Fly ash content ; s : sand content
WR : Water reducing agent content ; a: Total aggregate content ;
SP : Superplasticizer content

+ means positive correlation, - means negative correlation

Change of slump(cm)
Change of Air Content
Change of Comp,

Strength (MPa)

b) Air content ¢) Compressive strength
Fig. 7 Results of sensitivity analysis

air content. The calculation gives the same result. A 1% change in fine aggregate or
total aggregate content caused 0.3~0.4% change in fine aggregate ratio in this mix
proportion. Since it is thought that a 0.5~1.0% increase in fine aggregate ratio
brought a 1% increase in air content, the calculation result shows 1/10 of this
knowledge. This is because the fine aggregate content was increased without
increasing the water content in the calculation.

It is natural that the air content increases with increasing superplasticizer content.
However, the degree of this effect could not be determined for the reason given in
the section a).

c) Effect on Compressive Strength

An increase in cement and fly ash content brings a decrease in water-binder ratio;
that is, higher compressive strength. This can be observed in these results.
Compressive strength is affected more by fly ash content than cement content.
Compressive strength is considerably promoted by adding fly ash. It is generally
believed that an increase in fly ash content will cause a decrease in compressive
strength, which seems contrary to these results. However, the conditions
considered here are different: fly ash did not replace cement but was added in this
calculation.

d) Summary

The trained neural network stores information about the input-output relationship
of learning data in the form of connection weights and threshold values. Sensitivity
analysis by neural network is able to indicate the learning data trends since
outputs are linked smoothly within the range of the learning data. Moreover, the
sensitivity can be calculated quantitatively. This method makes it possible not only
to clarify concrete mixing but also to help establish permissible batching errors.
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6. OPTIMIZATION OF CONCRETE MIX PROPORTION
6.1 Optimization theory[6]

Once any problems with a design or plan are solved, certain preconditions and
constraints must be adhered to. In general, the best solution needs to be selected
from among a number of solutions that meet the conditions. This is an optimization
problem which can be represented mathematically as follows.

The aim is to minimize an objective function subject to the equality and inequality
constraints,

(020 (19)
B0 =0 (20)
That is, find vector X or variables X1....Xn such that
=0 (21)

There are numerous methods of solving this type of optimization problem. In this
study, the constrained problem is converted into an unconstrained one by using the
interior penalty function method. The gradient descent method using a neural
network is then used to find the optimal solution.

a) Gradient descent method
The gradient descent method is an iteration process in which an objective function
is minimized (or maximized) by changing design variables to achieve the steepest-
possible descent. The function can be effectively taken to the minimum (extreme)
by gradually changing the design variables according to the direction of the
gradient at each iteration step.

Suppose an objective function with # variables is given as in Eq. (22), and its
sensitivity vector (gradient vector) is represented as Eq. (23).

JX0) = f(x, x5, %,) (22)
Vf(X>={g—,%,-~, Z } @3)

Where, T: transpose form of the matrix

Optimization is then performed by gradually changing the variables according to
the following equation:

X = X% — V() 24)
1 :search step
Since only the direction of the vector is needed, the gradient vector is normalized as
follows.

Vf = vflIvf! (25)

b) Interior penalty function method
The constrained optimization problem with inequality constraints is converted into
an unconstrained one by adopting a penalty function (0[ ]

F= 10+ Yol ] 26)
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Where f7(x) : extended objective function
7 : penalty coefficient
¢[gj (x)] : penalty function.

This interior penalty function is assumed to monotonously decrease within [0,2°)
and which become infinitely large at the constraint boundary (g;(x) = 0).

. 1
Swn =z @7
(where, r(l) > r(2) > r(3) > )

After this conversion, the optimization problem can be solved as an unconstrained
problem.

A problem with both equality and inequality constraints can also be solved by
adopting the following extended objective function (though we do not solve for
equality constraints in this study):

L@ = fx)+rY z 1x X 0); (28)

Jj=1 j( ) J=k+1

6.2 Calculation model

We now attempt to estimate the mix proportion and mixing energy for the required
concrete quality by using the neural network with this interior penalty function
method and the gradient descent method.

A flow chart of the prediction process is shown in Fig. 8. This is an iteration process
in which the quality predicted by the neural network closes on the required value.

The objective function is defined as follows, where S.(*) denotes the output of the
network and C: denotes the required quality, as shown in Table 11.

10 =32 50~ C¥ @9

The extended objective function with the six constraints given by Eq. (80) is derived
from Eq. 27).

145=W=185

195=C=370

45=FA=85

580=s=780 (30)
35.0= W/(C+FA)=60.0
31.0=s/a =42.0

Where, W: unit water content
C: unit cement content
FA: unit fly ash content

s: unit fine aggregate content ... (kg/m3)
W/(C+FA): water-binder ratio
s/a: fine aggregate ratio @~ ... (%)
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Table 11 Default values of quality 18.0
- Slump | Air content | Comp. strength 17.0
Mix prop. (cm) (%) (MPa) 3 160
1 13.5 5.5 24.9 § 150
2 15.0 5.0 21.0 @ "o
3 15.5 5.0 29.9
13.0 .
0 5 10 15 2 %5 0
s —
meserrts ARteropt.
€51 |- om0 Beroopt. |
E Lraiety B tniedtaiad, Mnl Bttt
; 49 d %b'gbqo'o'o:p‘o-q%006‘9"0000"00’0'.‘1‘0069"-0
41
0 5 0 15 2 B 0N
T 2 —— Dol
E 2.0 feeeenr Afteropt.
3.0 Qw0 Befreopt.
%30.0 R S P R o S
e 99 o PO%0 00%0d |
% 29.0 d‘q"oq.: o 4 o] o \
E 280 0% 5 ¢
S a0 .
0 5 w0 15 0 B 0N
Fig. 8 Flow chart of optimization No.
Fig. 9 Optimization results
Then,
T T7,vI
. F & SR
2 ( BRE
J J
=2 {5w-¢ = +2|-n & (31)
7 o T W) &

Since the sensitivity 45/ can be calculated, the objective function (the error
between the predicted quality and the required quality) is minimized in an
iterative process as the input factor ¥ is gradually changed according to Eqs.

(32)and (33).
X = % =V (%,.5) (32)
T
F & F
v, > =NA A 4
ron-\G L g @
Convergence is achieved if any of the following criteria will meet:
f<e
[rew-ra)f_ 34

|/

¢, 6 : small constants
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Table 12 Mix proportions and mixing energy Table 13 Quality before and after optimization
before and after optimization

Mix ro Slump | Air content | Comp. strength
wi Mix proportion  (kg) Mixing prop. 0,
. (cm) (%) (MPa)
Mix prop. | (C+F) energy
%) | Water|Comeont | FA | Sand | Aggr. | WR | 5P | Gewhimg) 1 Before 15.7 6.4 23.3

1 |Before| 550 | 1726] 2510 | 6215935 [18727] 3.38 | 201] 00957 After 13.51 5.47 249

After | 455 | 157.7 ] ]
 betom] 525 [t a1 [ onr ems ol sso| sool oomr| |2 |Roiorel 161 49 2.0
o [Before| 52 ) } 5.7] 6738 11833.3] 3. 50| 00972

Afer | 459 | 1550] 271.5 | 66.4] 654.1 [1833.3] 259 | 1.50] 0.0721 After 15.04 4.98 27.0
3 [Before| 506 | 176.8| 2803 | 8.9 7227 |1790.9] 576 | 1.50] 00782 3 Before 16.5 4.7 29.2
L_{ Aher| 498 | 172.2] 2733 | 725[641.5 [17909] 253 | 1.50{ 0.0762 After 15.48 4,98 29.8

(Note) FA:Fly ash; WR: Water reducing agent ; SP:  Suporplasticizer

The factors which are changed in this process comprise [Mixing energy of mixer] ,
[Water content] , [Cement content] , [Fly ash content] , [Fine aggregate content] ,
and [Water-reducing agent content] .

Experimental data (for mix proportion and mixer power consumption) are
introduced as the initial values in this optimization process.

6.3 Results and discussion

The results of optimization are shown in Fig. 9. A comparison of the mixing energy,
mix proportion, and concrete quality before and after optimization is shown in
Tables 12 and 13. The aggregate was in the saturated surface-dry state and the
water content includes the surface moisture of the aggregate. The total volume of
concrete before and after optimization was not always equivalent, since we did not
adopt total volume as a constraint.

The outputs of the network for optimized mix proportion and mixing energy
correspond well with the required quality level, while the deviation in quality in
non-optimized concrete was fairly large(Fig. 9). The deviation is effectively reduced
by use of the neural network, though some deviation remains as a result of
prediction errors in the network.

The optimization process needs only some dozens of iterations in each case.
Furthermore, this calculation cost can be reduced further by improving the
objective function and the convergence calculation method, and also by using more
suitable data as the initial input values.

7. SYSTEM PROPOSAL

We have demonstrated that the surface moisture content of aggregates and
concrete quality can be predicted to good accuracy, and further that optimized mix
proportions and mixing energies for a required quality can be calculated. On this
basis, we propose a new quality control system for concrete production by
combining these methods.

A flow chart of the proposed method is shown in Fig. 10. There are two main
processes: prediction of the surface moisture content of the aggregate and
optimization of the mix proportion and mixing energy.

The first step is to predict the surface moisture content of the aggregate (both fine
aggregate and total aggregate) from the charge of each ingredient and three specific
values of mixing energy (cumulative, maximum, and converged value) by using
Neural Network 1 (N.N1).
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Next, the mix proportion and mixing
energy are optimized so as to bring the
concrete quality predicted from the
true mix proportion (corrected by the
surface moisture content of the
aggregate) to the required quality using
Network 2 (N.N2). The sensitivity used
in the optimization process is

EDICTION of SURFACH]
WATER of AGGREGATE

calculated by the connection weights

and threshold values of Network 2. The

quality is estimated at each step of the

optimization, and iterative calculations e

are continued until the error between Exxcounmons PREDICTION of QUALITY
predicted quality and required quality ‘°°""“’]a"°" e
converges.

From this calculation, we obtain NO

_-:CONVERGED 7:-
suitable conditions for the required SRR
concrete quality. Prediction using the
trained neural network terminates in a
very short period and the number of
iterations required for optimization is )
only some dozens. The calculation Fig. 10 Flow chart of quality control
terminates within a few seconds even system for concrete production
when running on a personal computer,

and the result is of good use when mixing the next batch. It is true that the
optimized conditions cannot be obtained before mixing, since the cumulative
mixing energy is needed to predict the surface moisture content of the aggregates,
but if we mix in two steps combining two mixer, an estimate can be made before
mixing. That is, the surface moisture of the aggregate is predicted using
information obtained from the upper mixer (used for dry mixing) and then the
concrete is mixed in the lower mixer with the proper mixing energy and corrected
mix proportion. Accordingly, a higher quality of concrete can be obtained.

8. Conclusions

In this study, a new method of quality control in concrete production based on a
neural network is proposed. The on-site availability of the method using
experimental data obtained at the site is also examined. Issues related to the
discussion presented here can be summed up as follows.

(1) Prediction of surface water content

It is shown that factors which cause estimation difficulties, such as surface
moisture content of the aggregate, can be predicted to high accuracy. The mean
error in predicting the total water content for each batch is only 1.2%, even in tests
with low-grade fine aggregates with a surface moisture ratio of over 10%.
Consequently, changes in the dominant factor causing quality changes, i.e. the
water content in each batch, can be checked.

(2) Prediction of concrete quality
A neural network is suitable for field data, since the prediction accuracy obtained
with field data is the same as that for data obtained from indoor tests.

(3) Sensitivity analysis using neural network

It is possible to isolate affecting factors and estimate the degree of their effect by
carrying out a sensitivity analysis on the connection weights and threshold values
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of the trained neural network.

By using this method, changes in concrete quality resulting from variations in mix
proportion caused by batching errors can be estimated. The method is easily
applied by preparing learning data and teaching a network. The method involves no
subjective assumptions by the authors, and all estimates are quantitative. It is a
very promising method for quantitatively clarifing the input-output relationships
with respect to different phenomena.

(4) Optimization of concrete quality

Suitable conditions for a required quality of concrete can be obtained by the
proposed system, which is based on the above methods. The optimized conditions
cannot be obtained before mixing, since the cumulative mixing energy is required.
However, a two-step mixing offers one possible solution to this dilemma. The
system can be easily reworked to apply such a mixing method.

X’)) Summarize

t present, there is a degree of concern as regards the quality of concrete during
the mixing process. A great deal of reliance is placed on the intuition of engineers,
yet the quality of the concrete produced is still not always constant. A neural
network makes it possible to predict the quality of concrete easily and immediately
upon mixing.

The network can be updated with training sessions as new data becomes available.
The prediction accuracy depends greatly on the reliability of the data, so there is a
need to establish a management system for obtaining a large amounts of accurate
data distributed over a wide range. It is also necessary to increase prediction
accuracy by incorporating other factors (such as the temperature of the mixed
concrete or mixing water) into the system.

Acknowledgment

The authors greatly appreciate the efforts of all staff who helped with the
experiments. They also express their gratitude to Dr. T. Ura of IIS and Dr. K.
Maekawa of the University of Tokyo for their helpful advice.

References

[1] Sekiguchi T., Uomoto T., et al., “Analysis of Experimental Data Using a Neural
Network,” Concrete Library of JSCE, No. 22, pp.99~116, Dec., 1993

[2] IIS seminar text, “Application of Neural Network to Control,” IIS Foundation,
1991 (in Japanese)

[3] Nakano H., et al., "An introduction to Neurocomputing,” Corona Publishing Co.
Ltd., 1990 (in Japanese)

[4] Yagawa M., et al., Computation Dynamics and CAE Series 12 “Circumference of
Neurocomputing,” Baihukan Publishing Co. Ltd., 1991 (in Japanese)

[5] Report of committee on Concrete Techniques in JCI, “Essentials of Concrete
Technique, ‘91,” JCI, pp73~123, 1991 (in Japanese)

[6] Yamakawa H., Computation Dynamics and CAE Series 9 “Optimization
Design,” Baihukan Publishing Co. Ltd., 1991 (in Japanese)

—120—



