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The shear strength of concrete beams reinforced with FRP was studied through experiment and
analysis. The effect of longitudinal tensile reinforcement stiffness on the diagonal tension failure
strength was calculated using the extended modified compression fields theory, and an evaluation
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1. INTRODUCTION

In recent years, the use of FRP(Fiber Reinforced Plastic) rods in place of steel bars or prestressing
bars as reinforcement for concrete structures has been actively studied. As a result, many useful
reports were presented[1], and both deformation and strength were evaluated for the flexure
behavior of the concrete beams reinforced with FRP[2]. However, the shear behavior of concrete
beams using FRP has not ever been established.

Many reports have made clean that the shear strength of concrete beams without shear
reinforcement .reinforced with FRP as the longitudinal tensile reinforcement is less than those with
steel bars[3][4]. Tsuji et al.[3] proposed a method to evaluate the shear strength for such beams by
considering a ratio of Young’s modulus of FRP to that of steel bar in a term of the reinforcement
ratio of shear strength equation of JSCE. Since the method was, however, obtained on the basis of
a small number of experimental results, its applicability is not always clear. One report[5] show
that the shear strength can be calculated closely or safely in comparison with the experimental
results using the method proposed by Tsuji et al. On the contrary, another report[6] shows that the
correction considering a ratio of Young’s modulus does not necessarily evaluate the actual
strength.

At the same time, it is reported that the shear strength of concrete beams using FRP for shear
reinforcement is small, as compared with the calculated value by a modified truss theory
- (Vet+Vs)[2]. Although several evaluation methods of the strength of such beams are proposed, it
seems that, ‘at present, no method gives satisfactory solutions. The main reason why the shear
strength of such beams has never actually been evaluated appears to be that the rupture of FRP
stirrups corresponding to yielding of the steel bars occurs at a crack intersection or bent corner of
a beam due to local stress intensity before the uniaxial strength is reached[7]-[12]. Therefore, it is
important to consider such phenomena when evaluating the shear strength.

The purpose of this paper is to evaluate the shear strength of concrete beams reinforced with FRP
rods as the tensile and shear reinforcement. First, the shear resistance behavior of the concrete
beams reinforced with FRP rod is confirmed by experimental observation. Second, the bent corner
strength and the diagonal tension strength of FRP rods, which are typical mechanical properties of
FRP in concrete beams, are investigated theoretically, and the effect of Young’s modulus of the
reinforcements on shear behavior is analyzed using an extended modified compression fields
theory. Finally, the shear strength of the beams is evaluated-using the results of the above
investigations . ‘

2. OUTLINE OF EXPERIMENTS
(1)Materials

FRP used consists of continuous glass fibers impregnated with resin (GFRP). GFRP was used so
that the effect of Young’s modulus of the reinforcement on the shear strength could be
investigated, since the Young’s modulus of GFRP is very small compared with the steel bars.
Main reinforcements (G16) was formed into grids with spacing of 10cm and the area of cross
section of 2.01cm * . Stirrups(G6) with a cross section of 0.35cm ? were used, and the radius of
the bent corner was 5mm or 10mm. The material properties of GFRP and steel bars are shown in
Table-1. The tensile strength and Young’s modulus of GFRP were obtained by the test proposed
by Idemitsu[14]. The compressive strength of the concrete(f'c) is shown in Table-2.

(2) Specimens and Experimental Method

An outline of the beam specimens tested in this study is shown in Table-2. The cross section,
without stirrups, was 30cm wide, 20cm high and with an effective beam depth of 15cm. The
beams were tested on a two-point loading system with monotonically increasing loads.
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The cross section with stirrups was a width of 20cm, height of 30cm, and an effective beam depth
of 25cm. Parameters of the experiment are (1) material of longitudinal reinforcement(GFRP, steel
bar), (2) material of stirrup(GFRP, steel bar), (3) spacing of the stirrups and (4) the radius of the
bent corner of GFRP stirrups. The beams were tested on a one-point loading system with
monotonically increasing loads. Fig.-1 gives details and its loading condition of specimens of
GGO05-20 and GG10-20. This experiments are characterized by the radius of the bent corner of
GFRP stirrups and allow investigation of the effect of the bent bar strength on beam shear
strength.

3. EXPERIMENT RESULTS

The experimental results are summarized in Table-3. All test specimens failed in shear mode and
the longitudinal reinforcements did not yield or break at failure in any specimen.

(1) Beams without Stirrups

For beams without stirrups, the flexural crack propagated to the upper part of the cross section as
soon as the crack initiated. The ultimate failure was determined by the diagonal tension crack
which occurred from the flexural crack at a distance of about 1.5d from the loading point. The
failure mode of the specimens was diagonal tension failure.

(2) Beams with Stirrups

Crack formation in the specimens with stirrups was, before failure, almost the same as in the
specimens without stirrups. The diagonal crack occurred from the flexural crack at a distance of
1.5d ~2.0d from the loading point. The crack formation of a specimen of GGO05-20 at the
ultimate is shown in Fig.-2. The load camying capacity increased by the effect of the stirrups
after the diagonal tension crack occurred. The specimens reinforced with steel bars as stirrups
failed after the stirrups yielded, while the failure of specimens reinforced with GFRP stirrups, was
caused by the breaking of the stirrups. GFRP breaking occurred at the upper or lower bent comer
near the diagonal tension crack. One purpose of this experiments is investigation of the effect of
the bent bar strength on shear strength. It is understood from the experimental results that the
shear strength of the specimens with a bent corner radius of Smm is obviously lower than that of
10mm,; the strength of the bent corner is an important factor for evaluating the shear strength of
the beam reinforced with FRP.

Table-2 Outline of Specimens

Specimen | Longitudinal  |spacing r Pt la/d fc
Table-1 Material Properties reinforcement | of stirrup

cm nn % KPa

Area of Tensile ung’ i - R —
cross s;ection strength zgdﬁlgu: gg:zlknirg gg; i_gi: [ R i 3; Zg ;?;
prva 7';“: ” 2;”5204 2"%55 6605-10 | 4-Gl6 66 (0 | 5 |16l [3.0] 35.4
s 0,95 5280 15140107 | 2 64 GG10-10 4-G16 G6 (10) 10 J1.61 43.0) 33.4
Pl 5 87 7.6 1150x10° GG05-20 4-G16 G6 (200 5 |1.61 [3.0 1 352
D10 o 2246 11900107 GG10-20 4-G16 G6 (20) 10 f1.61 f3.0] 352
D6 0.3 3701 11.80010° DG05-15 3-D19 G6_(15) 5 J1.72 |3.0) 34.7
DG10-15 3-D19§ G§ (15) 10 [1.72 3.0 34.4
DG05-25 3-D19§ G8 (25) 5 J1.72 {30 356
DG10-25 3-D19 G6 (25) 10 11.72 |3.0] 358
GD-15 4-G16 D6 (15) |~ j1.61 |3.0| 386
GD-25 4-G18 DG (260 | /1.6 f3.0( 37.1
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Table-3 Experimental Results

Specimen Diagonal cracking load Shear strength
Veexp Ve,1 Ve,2 Veeal Vexp VeztVsi VertVs2 VcaI/
(9 ) ) e (9 /) () Vep
GO0l 6.75 | 9.9116.13 0.91 | T |
G02 7.41 | 11.67 [ 7.22 0. 97 | | — |
GG05-10 10.00 ] 13.21 | 8.18 0.82 17. 00 33.38 16. 08 0.95
GG10-10 9.50 { 13.04 | 8.07 0.85 20. 40 33.27 17. 48 0.91
GG05-20 7.50 [ 13.20 | 8.17 1.09 11. 46 20. 77 12.01 1. 05
GG10-20 8.50 | 13.20 | 8.17 0.96 13.50 20.77 12.88 0.95
DG05-15 16.50 | 13.61 | — 0.82 19. 66 30.41 18. 87 0. 96
DG10-15 14.90 [ 13.57 | —— 0.91 21. 68 30. 37 19.84 0.92
DG05-25 13.90 | 18.73 | — 0.99 16. 27 23.81 16.72 1. 03
DG10-25 14.00 [ 13.76 | — 0. 98 16.27 23. 84 17.52 1.08
GD-15 10.00 | 14.04 | 8.69 0. 87 15. 73 14.71 — 0. 94
GD-25 8.50 | 13.86 | 8.58 101 11. 16 12.19 — 1.09

Ve 1:Niwa’s equation, V¢,2:Eq.(8)
Veeal:Ve,1 for steel bars, Vo2 for GFRP

Vs,1: Truss Theory(fds(d/1.15)/s), Vs2:Eq.(11)
Veal:Vs,1 for steel bar, V5,2 for stirrup
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Figure-1 Detail and Loading Condition of Specimen(GG03-20,GG10-20)
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Figure-2 Crack Formation at Ultimate State(GG03-20)
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4. EVALUATION OF MECHANICAL PROPERTIES OF FRP IN CONCRETE BEAMS

(1) Bent Bar Strength

As shown in experimental observations, bent bar strength is a major factor for shear strength.
Therefore, we must first clarify the bent bar strength in order to evaluate the shear strength of the
concrete beams reinforced with FRP. The evaluation equation of the bent bar strength is
theoretically. derived as follows.

We assume an bent corner FRP cast in concrete as shown in Fig.-3. We consider the deformation
at the cross section varied from straight part to bend, since it is experimentally observed that
breaking at the bent comer always occur at that location[8]. When a tensile force 1s applied to the
bar as shown in Fig.-3, and there is no bond between concrete and FRP, the FRP stretch &x
uniformly at the cross section in the straight part subjected to uniform axial force. It is assumed
that the cross section deform rotation angle of ¢(rad) maintaining a radius of the bent corner of r.
Then, if Bernoulli assumption is used, the strain distribution in the cross section is represented by
a following hyperbolic curve at any point y in the cross section since FRP should deform &x at
the bent part.
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Stress distribution is obtained by multiplying Young’s modulus E to strain, when FRP behavior is
strictly elastic. Then, the stress distribution at breaking is represented by the following equation.
Here it is assumed that the breaking of FRP occur when a stress in cross section reach the
breaking stress of oy.

o=0y,r/(r+y) @)

Therefore, the evaluation equation of bent bar strength can be derived by integrating the stress
distribution of Eq.(2) in the cross section.

T=JA0y~r/(r+y)dA ©)

The equation is rewritten to Eq.(4) as the function of the radius of the bent .comner, r, and the
height of the cross section, h, when the cross section is rectangular with the height of h.

T=T,-r/hin(1+h/7) )

in which Tu is the uniaxial strength, r is the radius of the bent comer, and h is the height of the
cross section.

Fig.-4 shows the comparison between the evaluated values using the proposed equation and the
experimental results obtained by Miyata et al.[9]. In the figure, the lateral axis shows a ratio of r
to h and the vertical axis shows the reduction ratio of the strength of the bent comer from the
uniaxial strength. A solid line shows the Eq.(4) and a @ indicates an experimentally obtained
value. It is understood that the proposed equation can satisfactorily evaluate the bent bar strength.

(2) Diagonal Tensile Strength

The effect of the diagonal tensile force due to a diagonal crack, as shown in Fig.-5, is considered
a factor of shear strength. Next, we investigate the evaluation method for diagonal tensile strength
of FRP as anisotropic material.

Consider that FRP with a length L is applied to diagonal tensile force T with angle 8. Then, the
stress resultant acted in the cross section 1is the axial force is T-cos8 and the bending moment is T+
L-sin®. A strain in the cross section reach breaking strain from a smaller tensile force than with
uniaxial state because of the effect of the strain gradient. Therefore, the diagonal tensile strength is
less than the uniaxial tensile strength since the cross section of FRP without plastic region, breaks
as soon as one part of the cross section is broken. Then, the-diagonal tensile strength of FRP is
represented by the following equations for a rectangular cross section with height h.
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Figure-5 Diagonal Tension due to Diagonal Crack Figure-6 Comparison with Experiment
T=1T,/(cos®+6L-sinb/h) )

in which Tu is uniaxial tensile strength, 8 is the direction of the tensile force, and h is the cross
section height.

In the above equation, L is the unknown value. Now, we assume that L is the length of
intersection between FRP and the diagonal crack with angle of 6. Then, L=htanf and the
diagonal tensile strength is derived as,

T=7T,/(cosB+6tanB-sin0) (6)
For circular sections,
T=1,/(cosO+8tanB-sinBO) @)

Figure-6 compares the experimental results from Maruyama et al.[10] and the proposed equations.
The experimental results were obtained for carbon(CFRP), aramid(AFRP), and -glass(GFRP) with
the direction of diagonal tensile force varied from O to 30 degree. In this figure, a solid or broken
line correspond respectively to Eq.(6) and Eq.(7), while the symbols @ , A and I show the
experimental results for carbon, aramid, and glass fibers. It is understood that strength reduction
due to diagonal tensile force is reasonably evaluated by the proposed equations. However, the
equations can not consider the effect of fiber type, even though the strength reduction is different
for different fibers in experiment.

5. EVALUATION OF SHEAR STRENGTH OF CONCRETE BEAMS REINFORCED WITH
FRP

(1) Shear Strength of Beams without Stirrups

It is known from many experimental observations that the shear strength of a beam reinforced
with FRP, which has a lower Young’s modulus than steel bar, is smaller than those reinforced
with the steel bar[3][4]. This fact is confirmed by this experiment( GOl and GO2 specimens in
Table-3) and the strength is about 30 ~ 40% smaller than the value predicted by the equation
proposed by Niwa et al.[15]. It is reported that the reason is mainly the difference in Young’s
modulus of reinforcement. Therefore, we will analytically investigate the effect of Young’s
modulus of the main reinforcement on the shear strength.

Analysis is a method based on the extended modified compression fields theory which can
accurately evaluate the shear strength of the concrete beams[13]. The model used in the analysis
has a cross section of 20 X 20cm, a beam depth of 16cm, and a longitudinal reinforcement ratio
of 2.68%, as shown in Fig.-7. The material properties are that the compressive strength of the
concrete is 28MPa and the tensile strength is 2.8MPa. Analysis is performed in which Young’s
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modulus of the reinforcement is varied from
025 % 10 ° to 2.0 X 10 ° MPa. The
relationships between the shear force and the
moment in failure state obtained from the
analysis are illustrated in Fig.-8. The results
for Young’s modulus values of 2.0 X 10 °,
1.0x 107, 0.5 % 10 ®and 025 x 10 ° MPa
are respectively marked with ¥, [J, A and

The range in which the shear force
gradually decreases as the moment increases,
corresponds to diagonal tension failure in the :
analysis. On the other hand, the range in
which the moment is constant and the shear
force decrease rapidly corresponds to the
flexural failure region. The load carrying
capacity for two-point loading and simply supported beams can be evaluated for both shear and
flexural failure from this figure using the relation of a/d=M/(V-d). However, this analysis can not
be applied to shear compression failure, since the analysis does not consider the effect of
transverse local compressive stress.

funy

o
o

o
=N

Owavd=2 _|
Az/d=3
Vaafd=d |
l 1 | 1 l I [ L
1.5 2 25
Ei X 10 * (MPa)
Figure-9 Relationship between Shear Span Ration and
Young’s Modulus of Main Reinforcement

<
S

o
o

V(E)/V(Es=2.0 X 10 ° MPa)

o
o
W
—

As shown in Fig.-8, the shear strength decrease along with Young’s modulus. If is understood that
the Young’s modulus of the main reinforcement is an important factor influencing shear strength
and it can be seen that the Young’s modulus curves are almost parallel. This implies that the
effect of Young’s modulus on shear strength is independent to a ratio of the shear force to the
moment and is a function of Young’s modulus only. Figure-9 shows the reduction ratio of shear
strength from strength in the case of Young’s modulus of 2.0 X 10 ° MPa. The symbols O, [,
A, and ¥ correspond to a/d=1, a/d=2, a/d=3, and a/d=4. The difference of a/d does not appear.
It was confirmed and similarly concluded the effects of longitudinal reinforcement ratio,
compressive strength of the concrete, and effective depth of the cross section in the analysis.
Therefore, the effect of Young’s modulus on the shear strength can be introduced by simply
multiplying the previously introduced shear strength equations by the effect of the Young’s
modulus of the longitudinal reinforcement.

The analytical results indicate that the shear strength is proportional to the 1/4 power of a ratio of

Young’s modulus (Ei/Es). A solid line in Fig.-9 represents the curve of (Ei/Es) '”* . Finally, the
shear strength of the concrete beam reinforced with FRP can be evaluated using Eq.(8).

V =V,(E |E)" ®

in which Vc is the shear strength of the concrete beam reinforced with steel bar, Ei is the Young’s
modulus of FRP, and Es is the Young’s modulus of the steel bars.
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Tsuji et al. proposed a method of evaluating the shear strength of concrete beams reinforced with
FRP using the transformed area of reinforcement As(Ei/Es), considering a ratio of Young’s
modulus of FRP to that of the steel bar[3]. The results in our analysis are identical with the
method proposed by Tsuji et al., since the effect of the longitudinal reinforcement ratio on the
shear strength is also proportional to the 1/4 power in the analysis[13]. However, the effect of
Young’s modulus as proposed by Tsuji et al. differs from this analysis. The effect on the shear
strength is represented by a 1/3 power, since they use the JSCE equation.

Figure-10 shows the ratio of estimated and experimental values[3][4][6][7] of shear strength. The
estimated values are obtained from the equation proposed by Niwa et al.[15], which is proposed
for the concrete beams reinforced with steel bars(indicated by O), the method of Tsuji et
al.(indicated by A\ ), and the proposed method of Eq.(8)(indicated by @ ). It is assumed that Ve is
evaluated by Niwa’s equation and that the Young’s modulus of the steel bars in Eq.(8) is 2.0
10 ° MPa. The number of experimental results 18 for FRP reinforced with glass(G), while 11
specimens were hybrids of glass and carbon(G+C) as fiber (Ei=2.9 x 10 "~ 3.34 X 10 " MPa)
and 18 used carbon(C)(Ei=6.73 x 10 ‘~ 1.4 x 10 * MPa). Table-4 shows the average and a
coefficient of variation for the ratio of estimated and the experimental values for each method.
The equation for concrete beams reinforced with steel bar overestimated the experimental results
and the difference appears remarkably for lower Young’s modulus. Tsuji’s method underestimated
the test results. On the other hand, the proposed method can satisfactorily estimate test results,
regardless of the difference of Young’s modulus. The coefficient of variation is also satisfactory.

Figure-11 show the relationships between shear force and shear strain and between shear force
and curvature for M/(V-d)=3 when the Young’s modulus of the main reinforcement is varied in
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the analysis. The A, (1, A, and O symbols correspond to the analysis for Young’s modulus of
20%x10°, 10%x10°, 05x10°,and 025 x 10 °MPa, respectively. Though Eq.(8)
satisfactorily estimates the effect of Young’s modulus on shear strength, the mechanical meaning
was not clear. However, as shown in Fig-11, the shear strain which is identical with shear
deformation increases rapidly in proportion as Young’s modulus becomes small and the effect of
Young’s modulus on shear strain is great compared with that on the curvature. Therefore, it seems
that ’ch}e1 increase of the shear strain due to the lower Young’s modulus probably influences shear
strength.

(2) Shear Strength of Beams with Stirrups

The shear failure modes of the concrete beams are distinguished into failure caused by yielding or
breaking of stirrups and compressive failure of the concrete near the loading point, even if
diagonal cracks predominate. Both failure modes are basically different and the shear strength for
both modes can not be evaluated with the same estimating method. In this paper, only shear
failure caused by the breaking of FRP stirrups or the yielding of steel bar is considered.

Figure-12 shows the analytical result of M/(V-d)=3 obtained from analysis based on the extended
modified compression fields theory. The model used in the analysis had rectangular cross section
of 20 x 30cm, beam depth of 25¢m, longitudinal reinforcement ratio of 1.61%, stirrup area of 2 X
0.35cm *, and stirrup spacing of 10cm, as iltustrated in Fig.-13. Analysis was performed in which
the Young’s modulus of the longitudinal reinforcement was either 2.0 X 10 ® or 2.94 x 10

MPa, while that of stirrup was 2.5 x 10 * MPa. The vertical axis shows the applied shear force
and the lateral axis shows the shear resisting force of the stirrups. The symbol @ in the figure
represents the shear strength without stirrup as calculated by Eq.(8). The shear resisting force of
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the stirrups is calculated by the following equation.

n
VS‘ = Bwh/nEGy,- /tane, (9)

in which oyi is the stirrup stress obtained from the analysis, 6i is the direction of principal stress,
n is the number of subdivided layers in cross section, and Bw and h are the width and the height
of the cross section.

As shown in Fig.-12, the shear resisting force of the stirrup yields before the diagonal tension
crack occurs and increases gradually after that. Also, it increases in linear proportion after the
applied force reaches the shear strength of Eq.(8). This tendency is the same, independent of the
Young’s modulus of the longitudinal reinforcement and/or the stirrup. This result implies that the
shear resisting force of the concrete beam with stirrup is approximately evaluated by the modified
truss theory. In this paper, we tried to evaluate the shear strength of such beams by using the
modified truss theory in which yielding or breaking of the stirrup at the ultimate state is assumed.

V=V, +V, (10)

in which Vc is the shear strength considering the effect of Young’s modulus of the longitudinal
reinforcement, £q.(8), and Vs is the shear force carried by the stirrups calculated by a truss theory.

Figure-14 show the estimated results of the experiment data by Eq.(10). Here, Vs is calculated by
assuming that the compressive stress declines to 45 degree and the stirrup stress is the uniaxial
yielding stress or the breaking stress. The A symbols in the figure show the results with steel bar
stirrups. The shear strength can now be accurately evaluated by the truss theory. Therefore, the
shear strength of the concrete beam with FRP as longitudinal reinforcement and steel bar as
stirrup can be calculate considering only the effect of the Young’s modulus of the longitudinal
reinforcement on Ve. On the contrary, the shear strength of that with FRP as the stirrup is
overestimated by Eq.(10). Therefore, in this case, Vs can not be evaluated using uniaxial strength
of FRP in the same way as with the steel bar stirrup. One reason is that the strength of FRP in the
concrete deteriorates from the uniaxial strength due to the local stress intensity or the combined
effect of the tension and the shear at the bent and a crack intersection part. Therefore, we
attempted to modify Vs considering the influencing factors.

a) Effect of Bent Comer

In Fig.-14, the shear strength of the specimens with differing radius of bent corner is different. It
is understood that the strength of the bent corner must be considered correctly to evaluate Vs.
Therefore, we re-evaluate Vs considering the strength of the bent comer using Eq.(4). Figure-15
compares estimated values using Eq.(4) with the experimental results. The differing shear
strengths for specimens having different radius of bent corner then disappears. By using Eq.(4) in
Vs, the effect of the bent corner on the shear strength is satisfactorily evaluated. However, since
the estimated values are larger than experiment values, we show further modification of Vs.

b) Effect of Young’s Modulus of Stirrup

The factor related to the shear strength, besides the strength of the bent corner, is the effect of the
diagonal tensile force. In this case, Eq.(6) and Eq.(7) proposed for diagonal tensile strength may
be applicable. However, the equations require the crack angle at crack intersection and the angle
is not always uniquely determined. Therefore, the evaluation of the shear strength using Eq.(6)
and Eq.(7) is not considered in this study.

The other effect on the shear strength is Young’s modulus of the stirrup. Satoh et al.[17] report
from the analytical result of FEM that the shear strength becomes small when Young’s modulus
of the stirrup is low. We therefore investigate the effect of Young’s modulus of the stirrup
analytically and evaluate the shear strength considering the effect in this section.
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The analytical results based on the extended modified compression fields theory are shown in
Fig.-16 ~ Fig.-19, for the RC cross section shown in Fig.-13. Figure-16 shows the relationship
between the curvature and the shear force, while Fig.-17 shows the relationship between the shear
strain and the shear force for M/(V-d)=3 when the Young’s modulus of the stirrup is varied for 4
cases and that of the main reinforcement is 2.94 x 10 * MPa. Fig.-18 and Fig.-19 show the results
when the Young’s modulus of the main reinforcement is 2.0 X 10 > MPa. The effect of the
Young’s modulus of the stirrup does not appear for the curvature and shear force relationships as
shown in Fig.-16 and Fig.-18. This means that the Young’s modulus of the stirrup is not a
predominant factor for flexural deformation. On the other hand, the shear strain and the shear
force relationships as shown in Fig.-17 and Fig.-19 are influenced by the Young’s modulus of the
stirrup. The shear strain increases remarkably for lower Young’s modulus of the stirrup. If the
shear strain is identical with the shear deformation, the deformation of the beam is dominated by
the shear deformation and directly depends on the Young’s modulus of the stirrups. Therefore,
assuming that the shear strength is closely related to the shear deformation, Vs may be evaluated
by considering the effect of Young’s modulus of the stirrup on the shear deformation. The method
considering the effect of the shear deformation in Vs is already proposed by Kobayashi et al.[6].
Considering the shear deformation indirectly represents the strength reduction of FRP due to the
combined effect of the tension and the shear caused by the local shear strain in beam.

Since the shear strain and the shear force relationships are almost linear for every case, the effect

of Young’s modulus of the stirrup is investigated by the shear stiffness. Figure-20 shcgw the
reduction ratios of the shear stiffness from the results of Young’s modulus of 2.0 x 10 ° MPa,
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R Table-5 Comparison with Experiment[11]}
when the Young’s modulus of the main P i [

reinforcement is 2.94 x 10 * MPa and 2.0 x 10 ° Specimen| 5 Ei Vep | Veal |Vea)
MPa, respectively. The reduction of the shear HPa WPa | tf | tf Ver
stiffness is independent of Young’s modulus of the C-42-0 |1640.0 |7.00x10" |8.65 [9.59 | 1.11
main reinforcement and depends on that of the c.c2.0 |1440.0 |1.12x10° |8.50 |9.83 | 1.16
stirrup. The effect is proportional to the 0.4 power p

of the Young’s modulus of the stirrup. Assuming C-CS2:0 |2080.0 |1.47x10° |10.0 |9.89 | 0.97

that the effect of the stirrup is related to the shear
deformation directly, Vs is modified as

Ve =Vy(E;1E;)** 11)

in which Ei iss the Young’s modulus of the stirrup and Es is the Young’s modulus of the steel
bar(2.0 X 10 ° MPa). Figure-21 show the comparison between the experimental and the estimated
values using Eq.(11). The applicability of the proposed method is found satisfactory.

Since the above investigations are obtained from concrete beams reinforced with GFRP, the
applicability of this method was then checked by comparing with test results carried out by Wakui
et al.(a/d=3, s=25cm) using other FRP[11]. The mechanical properties of these FRP stirrups are
greatly different from those of our experiment, as shown in Table-5. The estimated results are
summarized in Table-5. The accuracy of estimation by the proposed method is satisfactory.

6. CONCLUSIONS

(1) Experimental investigation shows that the radius of the bent corner is an important factor for
the shear strength of a concrete beam with FRP as the stirrup.

(2) Equations to evaluate the bent bar strength and the diagonal tensile strength of FRP are
proposed from the theoretical investigation. They are useful for evaluating the shear strength of
concrete beams reinforced with FRP.

(3) For the shear strength of concrete beams reinforced with FRP as longitudinal reinforcement,
the Young’s modulus of the longitudinal reinforcement is a factor influenced to the shear strength
and the effect can be evaluated accurately by the term of 1/4 power of the ratio of Young’s
modulus. The effect of Young’s modulus ratio on the shear strength is similarly represented to the
effect of the longitudinal reinforcement ratio.

(4) The shear strength of a concrete beam reinforced with FRP as longitudinal reinforcement and
with steel bar stirrup can be accurately evaluated by the modified truss theory.
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(5) The strength of FRP in concrete deteriorates from the uniaxial strength due to the local stress
intensity or the combined effect of the tension and the shear at a bend and a crack intersection.
The shear strength of the concrete beam reinforced with FRP stirrups, which fails by breaking of
FRP, is satisfactorily calculated by the proposed method when the bent comner strength and the
effect of shear deformation is considered in Vs.
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