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ANALYTICAL STUDY FOR SHEAR RESISTING MECHANISM
USING LATTICE MODEL

(Translation from Journal of Materials, Concrete Structures and Pavements of JSCE, No. 508/V-26,
February 1995)

Junichiro NIWA Ik-Chang CHOI Tada-aki TANABE

The authors have developed a lattice model, which can be considered a simplified analytical model, to
clarify the changes in the shear resisting mechanism of reinforced concrete beams during, for
example, the initiation of diagonal cracking, yielding of the shear reinforcement, and crushing of the
web concrete. This is a practical and macroscopic analytical model to explain the shear resisting
mechanism. The applicability of this lattice model is examined by shear strength equations proposed
in the past and available experimental data. After verification of the lattice model, the validity of the
modified truss analogy, which forms the basis of current Japanese shear design specifications, is
examined thoroughly using the lattice model.
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1. INTRODUCTION

In the current JSCE (Japan Society of Civil Engineers) Standard Specifications for Design and
Construction of Concrete Structures, the stipulated method of calculating shear carrying capacity of
reinforced concrete beams subjected to shear is based on the modified truss analogy. This means that
the shear carrying capacity, V), should be the sum of the contribution made by the concrete, V.., and
the resistance of the truss mechanism resulting from web reinforcement, V.

If only the resistance of a truss mechanism with diagonal struts at 45 degrees is taken into account,
experiments have shown that the actual shear carrying capacity will be underestimated. Based on this
experimental evidence, the contribution made by the concrete, V., was added to that of the truss
mechanism. In the ACI Building Code Requirements for Reinforced Concrete (ACI 318-89), the
same fundamental design procedure is stipulated. On the other hand, the CEB-FIP Model Code 90
[1] gives a different method, in which the inclination angle of the diagonal struts is not fixed at 45
degrees. With this method, a design engineer can choose an arbitrary inclination angle for the
diagonal struts within the limitations and calculate the resistance of each mechanical component
forming the truss mechanism. By comparing the resistance of each component with the applied force,
the safety of reinforced concrete beams subjected to shear is examined. This method is clearly nota
direct way to calculate the actual shear carrying capacity.

Design procedures based on the modified truss analogy have been widely accepted in Japan because
of abundant existing practice. However, it is also true that the modified truss analogy still includes
several problems. For example, although V; is called the shear carrying capacity, it actually
represents a shear resistance corresponding to yielding of the web reinforcement. It is known
experimentally that concrete beams may exhibit an increase in shear carrying capacity once the web
reinforcement yields depending on the web reinforcement ratio. In estimating V), this increase in
shear carrying capacity is completely neglected. Moreover, since yielding of the web reinforcement is
assumed in this method, V, cannot be calculated for FRP rods, because they do not exhibit yielding
behavior.

The contribution due to the concrete, V,, is assumed to be equal to the shear carrying capacity of
concrete beams without web reinforcement. After the initiation of diagonal cracking, it is quite natural
to assume that the contribution made by the concrete will fall as the diagonal crack extends, the crack
width increases, and the concrete beam deforms. In design, however, V. is assumed to remain
constant from the initiation of diagonal cracking to the ultimate state.

Fixing these various problems with the modified truss analogy and presenting a unified analytical
method applicable to concrete beams reinforced with any kind of reinforcement have become a matter
of urgency in shear design.

Sato, Ueda, and Kakuta have reported some numerical research work in detail [2]. In their report, the
variations in the contribution to shear carrying capacity made by concrete and web reinforcement and
the effect of the reinforcement stiffness are investigated based on nonlinear finite element analysis. It
is really an elaborate form of numerical study; however, objectivity might be lost during the discrete
rearrangement of internal forces within a concrete beam modeled as a continuum in FEM. Aside from
such a possible loss of objectivity, it is very difficult to perform the discrete rearrangement itself.

Schlaich has proposed a strut-and-tie model [3]. This is a simple and ingenious way to design
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concrete structures, especially in the discontinuous region. Since reinforced concrete structures are
modeled into strut and tie components in this model, the paths for internal resisting forces are
restricted and the post processing of calculated results becomes easier.

Considering objectivity in the post processing of calculated results and the simple representation of
the shear resisting mechanism, this research work takes up the issue of the lattice model [4], in which
concrete beams are modeled into an assembly of truss components. Although a lattice model
incorporating the compatibility condition, the equilibrium condition, and the constitutive model for
concrete beam materials is a more simplified method than FEM, it is able to represent the shear
behavior of concrete beams reasonably throughout the changes in the shear resisting mechanism.

In this research, analytical results obtained from the lattice model are used to clarify the variations in
contribution to shear strength made by concrete and web reinforcement as deformation of a concrete
beam increases after the initiation of diagonal cracking. The validity of the modified truss analogy is
also examined.

2. LATTICE MODEL

2.1 Outline of the Lattice Model

Figure 1 shows the schematic diagram of a concrete beam after diagonal cracking initiates. If the
shear stress along the crack surface is neglected, biaxial compression-tension stresses exist in an
infinitely small element parallel to the diagonal crack direction (Fig. 2).

Considering the existence of this biaxial stress state in the web concrete (Fig. 2), we assume the
lattice model shown in Fig. 3. In this lattice model, a reinforced concrete beam that is essentially a
continuum is assumed to be an assembly of truss components.

The concrete is modeled into a flexural compression member, a flexural tension member, a diagonal
compression member, a diagonal tension member, and an arch member. The reinforcement is
modeled into horizontal and vertical members. The modeling of the diagonal tension member of the
web concrete is one of the major peculiarities of the lattice model. Once the diagonal tension member
of the web concrete is suitably chosen, the shear behavior of concrete beams before and after the
initiation of diagonal cracking can be captured properly.
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Fig.3 Schematic Diagram of the Lattice Model

The thick solid line in Fig. 3 represents the arch member of the web concrete. Although the
inclination angle of this diagonal strut is fixed at 45 degrees in the lattice model, the stress
redistribution in the concrete beam after yielding of the web reinforcement can be adequately
represented using this arch member. The arch member is assumed to be flat and slender and be
connected with the nodes at each end.

2.2 Modeling of Each Member

Figure 4 shows a schematic diagram of a cross section through a concrete beam as represented in the
lattice model. The web concrete is divided into a truss member and an arch member (the hatched area
in Fig. 4). The ratio of the width of the arch member to the beam width is assumed to be “t . The
value of ¢ is determined as follows.

Assuming that a unit shear force is acting on a Potential energy for

concrete beam with a specified ¢ value (O<r<1), unit shear force (N-mm)

the potential energy can be calculated based on 320

elastic analysis; it is obtained from the strain 310 @ ,
energy in each element and the external work i /
due to a unit shear force. A value of ¢ is found 300

which minimizes the total potential energy for 290 /

the whole of the structure. Although the /(
calculated potential energy changes with 280

increasing nonlinearity of the concrete beam, this 270

method of determining the £ value is adopted as a 0 02 04 p 0.6 08 1
first approximation. Figure 5 shows an example Fig.5 Change in Potential Energy
of the change in this potential energy with ¢ with £ value

value. In this case, the chosen f value is 0.6.

The displacements of the arch member are coincident with those of the truss member at each end.
However, except at the ends, the compatibility of the displacements is not considered, and the
displacements of the arch member are completely independent of those of the truss member. This



means that in the lattice model the plane stress condition is not assumed because of the concentration
of stirrup arrangement in the direction of beam thickness. This is an assumption; however, with
wider beams, we can expect that application of the plane stress condition would be impossible.

The depth of the flexural compression member is made equal to the depth of the flexural compression

zone at the flexural ultimate state; that is, x = (As- f,) / (0.68 £."-b) . The depth of the flexural tension
member is assumed to be the twice the distance between the centroid of the bars as flexural tensile
reinforcement and the bottom of the beam. A trial calculation confirms that assumptions regarding the
depth of these horizontal members have less effect on the estimation of shear carrying capacity.

The height of the lattice model is assumed to be coincident with the effective depth of the beam.
Thus, diagonal members and the arch member are placed so as to connect the top surface of the beam
and the centroid of the bars as flexural tensile reinforcement. The horizontal distance of vertical
members is assumed to be half the effective depth. Therefore, the thickness of the truss member and

the arch member as seen from the side of the beam are equal to (d/2) sin45° and d sin 8, respectively,
where @ is the inclination angle of the arch member.

2.3 Stress-Strain Relationship for Each Member

a) Diagonal tension member of concrete Tensile stress
The concrete's diagonal tension member resists (of
the principal tensile stress resulting from shear 7

J1

forces. It is elastic before cracking. However,
once a crack occurs, the concrete can be
assumed to exhibit tension softening behavior.
Therefore, after cracking, the tension softening
curve for concrete is applied. The curve
employed is the one-fourth model shown in Fig.
6. The crack width, w, in Fig. 6 is divided by
the length of the diagonal tension member and

INEN

Crack width

converted into a strain. The fracture energy of 0 ==
concrete, Gy is assumed to be 100 N/m. Thus, w1 va

for the concrete of tensile strength 3.0 MPa, w; Fig.6  One-Fourth Model of

and w, are equal to 0.025 mm and 0.167 mm, Tension Softening Curve
respectively.

b) Diagonal compression member of concrete and arch member

The concrete's diagonal compression member and arch member resist the diagonal compression
caused by shear. The model of compression softening behavior proposed by Collins et al.[5] is
adopted. Equation (1) shows the compressive stress-strain relationship of the concrete used in this
research work.
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¢) Vertical and horizontal members

The stress-strain relationship for the reinforcing bars is assumed to be elasto-plastic. As for the
horizontal member in the flexural tension zone, Okamura’s tension stiffening model is added to take
into account the bond behavior. For the horizontal member in flexural compression, the effects of the
concrete are considered; however, compression softening is not taken into account.

For the vertical member, the effect of the concrete is not considered because the resistance of concrete
to tension is already incorporated into the diagonal tension member. Using the lattice model,
nonlinear incremental analysis is performed by displacement control. The convergence technique
employed is the Newton-Raphson Method.

3. EXAMINATION OF THE APPLICABILITY OF THE LATTICE MODEL

3.1 For Beams without Web Reinforcement

As the shear strength equation for concrete beams without web reinforcement, Eq.(2) has been
proposed [6].

. v el3 s g-1/4 .
ve (MPa) = 0.20 £ p,153 d { 0.75 + %ﬁ 2
where, f."is the compressive strength of the concrete (MPa), py, is the reinforcement ratio (= 100 As/
(by d) ), d is the effective depth of the concrete beam (m), and a/d is the shear span-effective depth
ratio. The validity of Eq.(2) has already been confirmed by numerous experimental data and Eq.(2) is
accepted as the basis of the design equation in the JSCE Standard Specifications. To examine the
applicability of the lattice model to concrete beams without web reinforcement, the analytical results
given by the lattice model are compared with Eq.(2).

Figure 7 shows a comparison of the shear Prediction by the lattice model
carrying capacity predicted by the lattice model (kN)
and Eq.(2). For this comparison, a total of 81 250 : !
concrete beams were calculated. Three levels of DATA = 81 ® /
concrete strength (f.'=20, 28, and 35 MPa), 2001+ AVC'{:O‘%?’ 4
reinforcement ratio (py, =1.36, 2.0, and 3.0 %), CV(#)=93 0¢% '
effective depth (d=0.3, 0.4, and 0.5 m), and 150 JA%e
shear span-effective depth ratio (a/d= 2.0, 3.5, K
and 5.0) were selected and combined. The width 100
of the beams was fixed to b,, = 0.3 m. For the

. . . 50 4
&1 cases, the average and coefficient of variation
of the ratio of shear carrying capacities predicted
by the lattice model and Eq.(2) are 0.953 and 0 50 100 150 200 250
9.3%, respectively. Although the shear carrying Eq.(2) (kN)
capacity predicted by the lattice model is slightly Fig.7 Comparison of the Lattice
smaller than Eq.(2), the variation is admissible. Model and Eq.(2)
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Figure 8 shows the change in the ratio of predicted shear carrying capacity by the lattice model and
Eq.(2) as each parameter is varied. Predictions by the lattice model are not exactly same as Eq.(2).
However, the ratio of the two is mostly from 0.9 to 1.1. As for the size effect, the predictions of the
lattice model are similar to Eq.(2). The shear failure mode predicted by the lattice model is failure of
the diagonal tension member. This corresponds to the diagonal tension failure observed in experi-
ments. These results mean that predictions of shear carrying capacity by the lattice model are just
about adequate.

3.2 For Beams with Web Reinforcement

In the case of beams with web reinforcement, the validity of the lattice model has been examined
based on existing experimental data. An outline of the data used to validate the lattice model is given
in Table I. The lattice model can easily predict changes in the stress state of each member in addition
to predicting the applied shear force-displacement relationship.

Lattice Model/Eq.(2) Lllg%mce Model/Eq.(2)
1.3 3
12
1.1
1.0
091" B )
08 .
). .
0715 20 25 30 35 40 071 15 2 25 3 35
S (MPa) By (%)
1L%"uticc Model/Eq.(2) lf'%uice Model/Eq.(2)
1.2 1.2
1.1 1.1
O =T 1.0 N 3
0.9 N 0.9 et
0.8 0.8
07 0.7
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Fig. 8 Change in Shear Carrying Capacity with Variation of Each Parameter

Table 1 Outline of Experimental Data

Cross b h d fe' As | fy Aw! fwyl s | Shear Carrying Capacity Vu (kN)
NoResearcher . a/d 2 :

Section em | c¢cm | c¢m MPa| cm®| MPa| ¢m?| MPa cm Viest Veall** | Veal2#*
1| Ramirez| R 203|508 | 42.5]2.15|31.0 | 23.1] 530 | 1.42| 530| 13.3] 1386 397(1.03)| 341(0.88)
2 Clark R 2031457 138.9(2.00]|24.6 | 24.5] 320 | 1.42| 320] 18.3] 222 214(0.96)| 207(0.93)
3| Leonhardt] R 30.0135.0 300 3500237 112.2] 419 1056] 314 11.0 130 132(1.02){ 131(1.01)
4| Leonhardty T 130(15}35.0 | 30.03.50(23.7 | 12.2] 419 | 0.56| 314|11.0] 127 117(0.92) 98(0.77)
5| Ohuchi R 45.01 60.0 | 52.5|2.86(43.9 | 95.7| 383 | 1.43| 355|25.0] 519 556(1.07)| 480(0.92)
6] Ohuchi | R ]45.0/60.0525/286/66.2 1957|383 | 1.43] 355/ 15.0, 637 | 669(1.05)] 599(0.94)

*) R: Rectangular section, T: T-shaped section. No.4: flange width=30cm, flange depth=7.5cm, web width=15¢m,
#*) Veall: Calculated value by the lattice model, Veat2: Calculated value by the modified truss analogy,
( ) means the ratio of calculated value/ experimental value.
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Thus, the changes in the shear resisting mechanism within a concrete beam, i.c., the changes in
contribution by each member, can be estimated without adding any subjective operation. This is a
strong incentive to develop the lattice model.

a) Shear force-displacement relationship
To examine the applicability of the lattice model Applied shear force (kN)
to the shear resisting mechanism of concrete 250
beams with web reinforcement, several 200
experimental data for the applied shear force-

displacement relationship are selected. The 150
predicted applied shear force-displacement 100

Lattice model

relationship by the lattice model is compared Eéfaignem _____
with these experimental results. 50 /
Figure 9 compares the results calculated by the 0 0.2 04 0.6 0.8

Displacement (cm)

lattice model with Clark’s experiment [8] (No. 2 Fig.9 Comparison with Experiment (No.2)

in Table 1). This comparison goes only up to

the peak resistance, because post-peak behavior X
P CAUSe post-p be Applied shear force (kN)

was not reported by Clark. Figure 9 confirms 150

that the lattice model reproduces the displace-

ment behavior adequately. As for shear carrying 120 ,r"""'\n
capacity, the predicted value is very close to the 90 /’(

experimental data.

60 Lattice model
Figures 10 and 11 give the comparisons with

Leonhardt’s data [9] (No. 4 in Table 1) and

® Experiment

30 (Leonhardt et al.)

Ohuchi’s data [10] (No. 5 in Table 1), respec- 0y 04 08 12 16 20
tively. Compared with these experimental data, Displacement (cm)
the lattice model has a tendency to slightly Fig.10 Comparison with Experiment (No.4)
overestimate the stiffness. However, the
predicted displacement at the peak is almost Applied shear force (kN)
identical to the experimental values. No. 4 in 600 I"'f—'\‘\
Fig. 10 is the case of the T-shaped beam. Here, 500 /' .o’ e
the sum of the width of the arch and concrete f
diagonal members is assumed to be equal to the 400 ( ®
web width of the beam. 300 / b Lattice model
200 e ® Experiment
The gradient in the predicted displacement curve 100 / _ (Ohuchi et al.) J~
changes at around V= 60 kN. This can be treated
as the point where diagonal cracking occurred. 0 05 10 15 20 25
On the other hand, no corresponding change in Displacement (cm)
the experimental data is visible. As for the peak Fig.11 Comparison with Experiment (No.5)

resistance and displacement at the peak, the
predicted values are similar to the experimental
ones.

In Ohuchi’s experiment (Fig. 11), high strength concrete was used. In this case, the gradient change
in the experimental displacement curve at around V=300 ¥ is captured by the lattice model. As for
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the peak resistance, the lattice model gives a slightly high prediction. Although this newly developed
lattice model is a fairly simple analytical method as compared with nonlinear finite element analysis,
these results confirm that it can predict the shear behavior of concrete beams almost exactly.

b) Change in stress state in each member

Clark’s experiment (No. 2) was chosen as the
subject of an investigation of stress state changes
in each member. The change in average stress
on diagonal members of the concrete and

v
Lattice model for No.2 beam (Clark) J

TR
H
'
h
1
'
:
B
H
s
v
H
H
L
i
T
O
'
AN

<
.

stirrups and the stress on the arch member is ‘ v
examined. Figure 12 shows the lattice model for

the No. 2 beam. The average stress on members ~— j€-------¥%- R GLIRItEt CITEILED o]
located in the center of the shear span, as stT:;—m s stirrup, t1~t4 : diagonal tension member
represented by solid lines in Fig. 12, is sl~s4: diagonél compression member, a: arch
calculated with increasing in displaccmem of the Fig.12 Members in the Shear Span Center
loading point. The result is shown in Fig. 13. used to Calculate the Average Stress

As shown in Fig. 13(a), the average tensile stress on diagonal tension members of the concrete
decreases rapidly after the initiation of diagonal cracking. On the other hand, the average compressive
stress on diagonal compression members of the concrete and the average tensile stress on stirrups
increases significantly (Fig. 13(b).(c)).

Stress on diagonal tension member (MPa) Stress on diagonal compression member (MPa)
2.5 T 5

2‘0 ............ é 4
R\\ Initiation of l’\<

L5 / \ diagonal cracking 3 / TN
o 5 N Initiation of |
' / stirrup yielding
0.5 / B L \ ﬂlmtiauon of diagonal cracking |
0 02 0.4 0.6 0.8 0 02 0.4 0.6 0.8
Displacement of loading point (cm) Displacement of loading point (cm)

(a) Average Stress on Diagonal Tension Member (b) Average Stress on Diagonal Compression Member

Stress on stirrup (MPa) Stress on arch member (MPa)
300 15
12 L

250 / \ \
200 / \ Initiation of K / \ \

150 Initiation of

4 stirrup yielding 6
100 : / stirrup yielding
Z Initiation of 3 \

50 / diagonal cracking | - Initiation of diagonal cracking I
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Displacement of loading point (cm) Displacement of loading point (cm)
(¢) Average Stress on Stirrup (d) Stress on Arch Member

Fig. 13 Change in Average Stress on Each Member with Increasing Displacement
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The average stress on diagonal compression members has a tendency to stay almost constant after a
certain amount of increase in average stress. The average stress on stirrups increases slightly with
increasing displacement after the initiation of yielding. The compressive stress on the arch member
shows a significant increase after the initiation of stirrup yielding; however, due to the softening in
compression, the arch member reaches the ultimate state (Fig. 13(d)). Thus, the predicted shear
failure mode for the No. 2 beam is compression failure of the arch member after the initiation of
stirrup yielding. This is coincident with the experimental results.

4. CONTRIBUTION OF EACH MEMBER TO SHEAR FORCE

Imaginary
The shear design equation for concrete beams v, cutsurtace + v
with web reinforcement prescribed in the JSCE T”_j <
Standard Specifications (Eq.(3)) is based on the 2 Vo %
modified truss analogy. In Eq.(3), the e ¢
contribution of the concrete, V., is assumed to TV 4

remain constant after the initiation of diagonal - o . .
T4 : Tension of diagonal tension member of concrete

Cmd{mg‘ Curen » Compression of arch, Vi @ Tension of stirrup
Fig.14 Free Body Taken from Lattice Model

— /.
W=Vt ¥ 3) Shear force (kN)
. . . R 150 T T
If the concrete contribution, V., results from Wmma ion of stirfu ]
only the tensile resistance of the concrete, it is 125 beam yietding §le

- Vs

quite reasonable, as mentioned before, to U S LA :
R At after die T raede ol NPT W ..!ﬁirrup o~ }___.
consider that after diagonal cracking begins the - i
concrete contribution falls as the diagonal crack : —

. . L 1 Arcﬂ
extends, the crack width increases, and the S e
concrete beam deforms. The lattice model can Diagonal S \ Ve

provide the answer to this question, because the il Leonerete | \.\.
contribution of each member forming the shear ——
resisting mechanism can be evaluated quantita-
tively by the lattice model. Based on the
calculated result, the contribution for shear of
each member is investigated.

0 : : i ;
-50 0 50 100 150 200 250 300 350
Average stress of stirrup (MPa)

(a) Contribution to Shear of Each Member (No.3)
Shear force (kN)
120

T-shaped | inifiationiof stigrup &y
The experimental data by Leonhardt and Walther 1001+ beam yregay -¥<‘>“—
(No. 3, No. 4) were chosen as the subject for 20 B
this calculation. Considering the stress states i I Stirrup r Ve

members forming the shear resisting mechanism 40 Pl s
are the diagonal tension member of the concrete, 20 Diagonal | N
the arch member, and the stirrup. Therefore, concrete
assuming a free body taken from the lattice 0= ;00 1550 — ;00 Y50
model at‘ thg centgr of the shear‘spzm (Elg.‘ 14), Avcrage stress of S“drmp MPa)
lhf‘ cmztn}bubon of each member is quantitatively (b) Contribution to Shear of Each Member (No.4)
estimated.

represented in Fig. 13, the predominate 00 L TArch] -u;;ﬁ;--\lhw—
‘“’

Fig.15 Estimation of the Contribution to
Shear by the Lattice Model
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Figure 15(a),(b) show the change in contribution to shear of each member obtained from the lattice
model. The broken line represents the prediction by the modified truss analogy.

In the modified truss analogy. the contribution of the concrete, V,, can be obtained from Eq.(2) and
the resistance of the stirrup, Vj, is calculated by assuming the 45-degree truss mechanism as follows:

Vi=Aw Opzls 4

According to Fig. 15, the contribution of the concrete predicted by the lattice model comprises the
resistance of the concrete's diagonal tension and the compression of the arch. In the vicinity of the
point where the average stirrup stress is zero, the ratio of the diagonal tension of the concrete is
relatively high. As the average stress on the stirrup increases — that is, as the concrete beam deforms
—, the resistance of the concrete's diagonal tension decreases monotonically. However, because the
increase in arch compression compensates for the decrease in the concrete's diagonal tension, the
contribution of concrete, which almost corresponds to V,, is maintained during loading. 1If it is
assumed that V, in the modified truss analogy does not result from only the tensile resistance of the
concrete, but rather is composed of the tensile resistance and arch compression, the reason for V..
being maintained after the initiation of diagonal cracking is well explained.

According to Fig. 15, the contribution of the stirrup increases monotonically based on the 45-degree
truss mechanism until the yielding. After the initiation of stirrup yielding, the resistance of the arch
member increases rapidly (@ in Fig. 15 corresponds to the initiation of stirrup yielding). The point at
which the arch compression rapidly increases corresponds to the initiation of stirrup yielding.
Because the tensile resistance of the stirrup is maintained as long as the stirrup does not fail, it is
predicted that the final shear carrying capacity is dominated by failure of the arch member. In Fig.
15(a), the softening behavior of the arch member is clearly visible. Since the softening of the arch
member occurs relatively early after yielding of the stirrup in this case (No. 3), the shear carrying
capacity predicted by the lattice model (132 kN) is very similar to the value calculated by the modified
truss analogy (131 kN) (Table 1).

Regarding No. 4 in Fig. 15(b), because of the delay in the initiation of stirrup yielding, the point of
rapid increase in arch compression is also delayed. Since the horizontal axis of Fig. 15 is the average
stirrup stress, the softening of the arch member cannot be clearly observed in Fig. 15(b). In this
case, the resistance of the arch member continues to increase after the initiation of stirrup yielding.
The shear carrying capacity predicted by the lattice model (117 kN) is considerably larger than the
value calculated by the modified truss analogy (98 kN) (Table 1).

In Fig. 15(b) (No. 4), the average stirrup stress is always tension. On the other hand, the average
stirrup stress in Fig. 15(a) (No. 3) is compression during the early stages of loading. No. 4 isa T-
shaped beam and No. 3 is a rectangular beam. Since the width of the diagonal tension member of the
concrete is reduced in the No. 4 beam compared with the No. 3 beam, the average stirrup stress is
considered to be in tension from the beginning.
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5. RELATIONSHIP BETWEEN SHEAR REINFORCEMENT RATIO AND SHEAR

CARRYING CAPACITY Shear carrying capacity (kN)

700 : T
According to the lattice model, the shear carrying | Analytical results
capacity of concrete beams with web reinforce- 600 - by lattice model ..
ment is controlled by softening of the arch /a'/
member. When such softening occurs relatively 500 frr Tuzggnr] Modified
early after the initiation of stirrup yielding, the truss ?llﬂiogy
shear carrying capacity is close to the value 400 &= ’ N 14 - Exper.imental
calculated by the modified truss analogy. On the "R result (No.5)
other hand, if softening of the arch member is 300 0 ] > 3 .
delayed, the shear carrying capacity predicted by - “A, (em?)

Fig.16 Change of Shear Carrying Capacity

the lattice model is significantly greater than that . ‘ ‘
& yE with Shear Reinforcement Ratio

given by the modified truss analogy.

In the modified truss analogy, the increase in shear carrying capacity after stirrup yielding is not taken
into account. In this sense, it can be considered a conservative prediction. However, the modified
truss analogy, which is based on yielding of the web reinforcement, cannot be directly applied to the
problem of shear in concrete beams reinforced with FRP rods, since FRP rods do not exhibit
yielding.

When conventional reinforcing bars are used as the web reinforcement, if the shear reinforcement
ratio is small, experimental results and qualitative evidence show that the shear carrying capacity is
considerably larger than the value calculated by the modified truss analogy. To quantitatively clarify
the increase in shear carrying capacity after stirrup yielding, a simulation is performed using Ohuchi’s
data (No. 5). In this simulation, all factors except the area of the web reinforcement (4,,) are
coincident with the original No. 5 data. The result is shown in Fig. 16. As this figure shows, the
predicted shear carrying capacity increases significantly more than given by the modified truss
analogy as the shear reinforcement ratio increases from 0 to 3.5 ¢m2 (corresponding to the shear
reinforcement ratio, r,, = 100 A,/ (b,, 5) =010 0.31 %).

In the specific case, the shear carrying capacity predicted by the lattice model is more than 10%
greater than that calculated by the modified truss analogy. In the JSCE Standard Specifications, 0.15
% is required as the minimum shear reinforcement ratio. According to Fig. 16, an almost 10%
increase over the modified truss analogy can be expected for r, = 0.15 %. This increase in shear
carrying capacity over that predicted by the modified truss analogy is not constant and varies
depending on the amount of shear reinforcement.

6. INSTABILITY OF LATTICE MODEL IN POST-PEAK REGION

To investigate the instability behavior of the lattice model around the peak point, an eigenvalue
analysis is carried out. Ohuchi's data (No. 6) was chosen as the subject. Figure 17 shows the shear
force-displacement relationship predicted by the lattice model. At point A in Fig. 17, just before the
peak, all eigenvalues of the tangential stiffness matrix of the lattice model are positive. However, at
point B, which corresponds to the peak, the minimum eigenvalue of the tangential stiffness matrix
turns negative for the first time. At point C, just after a sudden drop in shear resistance, several
negative eigenvalues are obtained.
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Figure 18 shows the displacement increment at points A, B, and C. The thick lines represent the
displacement increment obtained by the analysis. The thin lines are the original shape of the lattice
model. The shapes of displacement increments at points A and B are almost identical. Because the
predicted shear failure is controlled by softening of the arch member, the arch is compressed during
loading process toward the peak. Thus, a downward movement of the loading point due to softening
of the arch member can be observed. At point C, where several negative eigenvalues exist, a
displacement increment appears over the whole of the beam and significant deformation of the beam
can be observed.
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Figure 19 shows the eigenmode at points A, B, and C. The thick line represents the eigenmode
obtained by eigenvalue analysis. The first eigenmodes of points A and B are fairly different,
especially in the vicinity of the loading point, in spite of the fact that the displacement increments are
similar. This can be considered due to the drastic change of the eigenvalue. At point C, where
several negative eigenvalues exist, the change in eigenmode for the whole of the beam can be
observed in the second eigenmode. The change in eigenmode of the whole beam is quite similar to
the change in displacement increment at this point.

7. CONCLUSIONS

In the newly developed lattice model, a concrete beam subjected to shear force is converted into an
assembly of truss and arch members. Using this lattice model, a nonlinear incremental analysis is
performed. As well as the conventional truss members, a concrete arch member and diagonal tension
members are incorporated into the lattice model. Although this lattice model is a simplified analytical
method in which the total degree of freedom is fairly small compared with normal finite element
analysis, and despite assumptions in the calculation such as for the ratio of the width of the arch
member and the concrete diagonal member, a comparison with experimental data shows that
predictions of the shear resisting mechanism of concrete beams are quite adequate. For example, the
accuracy of the prediction of shear carrying capacity of a concrete beam without web reinforcement is
equivalent to the macroscopic shear strength equation. The shear force-displacement relationship of
concrete beams with web reinforcement can be predicted almost exactly by the lattice model.

In particular, since each member forming the shear resisting mechanism is made discrete from the
beginning, the lattice model can illustrate the contribution of each member to shear without adding any
intentional operation. It can also predict the change in shear carrying capacity with increasing shear
reinforcement ratio.

The conclusions reached in this research work are as follows:

(1) In the modified truss analogy, it is assumed that the contribution of concrete, V., will be
maintained after the initiation of diagonal cracking. This can be explained by considering the
compression of the arch in addition to the diagonal tension of the concrete. As the concrete beam
continues to deform after the initiation of diagonal cracking, the resistance of the diagonal tension
decreases rapidly. However, the compression of the arch compression compensates for the decrease
in the diagonal tension of the concrete. Therefore, the contribution of concrete to shear is almost
equivalent to V,. even after the diagonal cracking.

(2) The shear resisting action of the stirrups becomes significant after the initiation of diagonal
cracking. Their resistance may be estimated based on the 45-degree truss model. After the initiation
of stirrup yielding, the resistance of arch compression increases steadily. Finally, because of
softening of the arch member, the shear resisting mechanism reaches its peak.

(3) Depending on the shear reinforcement ratio, the shear carrying capacity may show a significantly

higher value than predicted by the modified truss analogy. The discrepancy may reach more than
10%. Although the neglect of this discrepancy is essentially conservative in practical design, it
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should be noted that the safety margin changes with the amount of shear reinforcement.

(4) According to an eigenvalue analysis, the peak point of the shear force-displacement curve
corresponds to the appearance of a negative eigenvalue in the tangential stiffness matrix of the lattice
model. After the appearance of several negative eigenvalues, it is possible that the shape of the
displacement increment may follow another eigenmode other than the first cigenmode.

The lattice model can be applied to concrete beams regardless of the kind of reinforcement. For
concrete beams reinforced with FRP rods that do not exhibit yield behavior, the shear carrying
capacity corresponding to stirrup yielding does not exist. Thus, application of the modified truss
analogy itself is a problem. It is hoped that a parametric study of the lattice model and experimental
verification over a wide range will provide useful information for the shear design of concrete beams
reinforced with FRP rods.
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