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SIZE EFFECT ANALYSIS FOR SHEAR STRENGTH OF CONCRETE
BEAMS BASED ON FRACTURE MECHANICS
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Diagonal tension failure of concrete beams without web reinforcement is one of the most important
issues in concrete mechanics. The size effect in shear strength has been confirmed experimentally. In
the JSCE's standard specifications for the design and construction of concrete structures, a design
equation which takes into account the size effect is specified. However, with the increasing size of
modern concrete structures, the future will see huge concrete structures which exceed the range of
applicability of the specifications, and experimental verification will be substantially impossible. In
this paper, the size effect on the shear strength of concrete beams is predicted numerically by fracture
mechanics.
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1. INTRODUCTION

To predict the resistance to diagonal tension failure of reinforced concrete beams without web
reinforcement, numerous experimental investigations have been carried out around the world. Shear
failure is completely different from flexural failure, in which a ductile failure mode is exhibited.
Shear failure is characterized by a sudden and brittle failure immediately after the propagation of a
diagonal crack. This is the reason why it has caught the interest and concern of numerous researchers
and engineers. However, it still appears very difficult to deal with shear failure problems purely
theoretically.

In 1980, Okamura and Higai proposed the macroscopic shear strength equation [1], that is now
known as Okamura and Higai's equation. They proposed this equation based on a qualitative and
elaborate consideration of the shear resisting mechanism. Considering a free body of a reinforced
concrete beam with a diagonal crack, they divided the shear resisting mechanism just before the shear
failure into three components: (1) the aggregate interlocking along the diagonal crack; (2) the dowel
action of longitudinal bars; and (3) the direct shear resistance of concrete in the flexural compression
zone above the diagonal crack. The remarkable feature of this equation is that the size effect, that is
the nominal shear strength is decreasing with increasing beam size, is incorporated.

With demand for large concrete structures growing, Shioya et al. later carried out an experiment on 3-
meter-high reinforced concrete beams without web reinforcement and subjected to uniform loading
[2]. Furthermore, Yokozawa et al. did experiments on 2-meter-high reinforced concrete beams
without web reinforcement and subjected to concentrated loading [3]. Based on these new
experimental results, Okamura and Higai's equation was updated to incorporate the size effect more
directly [3]. This revised equation is the basis for the design equation stipulated in the current JSCE
Standard Specifications.

In the ACI Building Code Requirements (ACI 318), no attention is paid to the size effect in shear
strength even in the 1989 version [4]. On the other hand, the CEB-FIP Model Codes, both in 1978
and in 1990, consider the size effect in shear strength very clearly [5][6].

To what extent does the size affect the shear strength in the case of reinforced concrete beams higher
than 3 meters without web reinforcement? Does the size effect in shear strength still remain
unlimitedly? Can current design equations be extrapolated without problem? When we consider the
likely size of concrete structures in the future, itis virtually impossible to come up with answers to
these questions experimentally. It may be considered that any problems related to the size effect can
be covered by including safety factors at the design stage. However, if the size effect cannot be
evaluated correctly, the safety margin may prove inadequate as concrete structures go on increasing in
size.

An analytical approach, rather than an experimental method, is strongly desired. Among the several
possible approaches, fracture mechanics of concrete is considered to be the most promising way to
carry out size effect analysis. Based on the fictitious crack model, which was originally proposed by
Hillerborg [7], the authors have carried out size effect analysis for the shear strength of reinforced
concrete beams. In this analysis, nonlinear rod elements representing the concrete's fracture
properties are incorporated along the fictitious crack surface. According to the analytical results, it
has been found that the size effect in shear strength rapidly disappears in huge reinforced concrete
beams higher than 3 meters.



2. APPLICATION OF FRACTURE MECHANICS
2.1 Modeling the Crack

In usual finite element analysis to investigate the formation of cracks, cracking is normally judged
based on the strength criterion. However, as a result of detailed investigations of crack formation, it
has been demonstrated that the initiation of microcracks in the fracture process zone in front of a crack
tip and the process of growth into a macroscopic crack must be modeled adequately and incorporated
into the analysis. This means that the tension softening behavior and the fracture energy of concrete
should be considered in the analysis.

The modeling of cracks in fracture mechanics takes two major forms: the fictitious crack model and
the crack band model. In the fictitious crack model, the sequence of crack formation is represented by
a local and macroscopic fictitious crack. The location of the fictitious crack is predetermined in the
analysis. In the crack band model, the location of the crack does not need to be predetermined.
During the crack formation process, the tension softening behavior and the fracture energy of the
concrete are considered.

These two models have their own characteristics. The fictitious crack model treats the crack as a
single discontinuity surface. Although this concept is quite clear, pre-processing is required to
suitably determine the location of the fictitious crack. On the other hand, in the crack band model, the
crack is assumed to form uniformly within the element. In this model, the location of the crack does
not need to be predetermined, but the relationship between the localized volume of concrete in which
cracking takes place and the fracture energy of the concrete must be considered systematically
throughout the concrete structure in question.

In this research, the fictitious crack model was adopted. Although the fictitious crack model assumes
that the actual crack formation process is very simple, the concept is clear and can easily be
incorporated into the analysis.

2.2 Fictitious Crack Model

The fictitious crack model was originally proposed by Hillerborg [7]. The sequence of crack
formation from the initiation of microcracks in concrete under tension through growth to development
into major macroscopic cracks is modeled according to tension softening behavior. The tension
softening behavior means that, once the tensile stress reaches the tensile strength of the concrete, the
stress decreases as the fictitious crack increases in width. This behavior is represented by a tension
softening curve. The area enclosed by the tension softening curve corresponds to the fracture energy
of the concrete (Fig. 1). The fracture energy is defined as the energy required to create a fully cracked
unit surface of concrete across which the tensile stress cannot be transferred (Eq. (1)).
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2.3 Use of Nonlinear Rod Element

In applying the fictitious crack model, the relationship between stress and crack width is generally
utilized. For example, in the analytical method described by JCI research committee on fracture
mechanics [8], two nodes are provided along the location of the fictitious crack and secant stiffness



[ : tensile strength of concrete

W ,: crack width over which stress
cannot be transferred

Gr
Vo

0 Wo

ol
w
Fig. 1 Tension Softening Curve and Fracture Energy

1

Jr

&l

0 075G rF 5Gr w

wy ==t =L Wo=

fi fi
Fig. 2 One-Fourth Model

analysis is carried out using the location of the crack tip as the input data. However, a more general
formulation is convenient for normal incremental finite element analysis.

In this analysis, a nonlinear rod element representing the tension softening behavior and the fracture
energy of the concrete is inserted between two nodes placed at the location of the fictitious crack [9].
Using this rod element, it is possible to carry out normal incremental analysis. Furthermore, this
analytical method can be extended to the case where a flexural crack and a shear crack coexist.

The tension softening curve has been obtained experimentally by various methods [10]. There are
also various proposals for numerical models of the tension softening curve. In this analysis, the one-
fourth bilinear model (Fig. 2) is adopted because it is widely accepted as the standard tension
softening model.

Since the crack width w in the fictitious crack model can be converted into a strain (e=w/]) by means
of the length of the rod element /, the stress-crack width relationship can be transformed into a stress-
strain relationship as follows:
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The length [ of the rod element is assumed to be unity (/=1) in the analysis (Fig. 3). In the elastic

region before the tensile strength is exceeded (o <ft, € <€p), no crack is initiated. In this region, to
restrain elongation of the rod element (corresponding to the crack width), an extremely high stiffness
is deliberately set for the rod element (£ z =100 E . ; E ,. is the elastic modulus of the concrete).

°l

fi

A
“l

H —
Oep g £ P2

Fig. 3 Stress-Strain Relationship of a Rod Element
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(a) only rod elements perpendicular to the crack path
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Fig. 4 The Occurrence of Slip along the Fictitious Crack
Path and its Prevention

Numerical analysis is executed by incorporating the tangential stiffness of this rod element into the
total stiffness matrix.

2.4 Application of Orthogonal Rod Elements

A shear crack which causes diagonal tension failure is chosen as the subject of this research.
Although a shear crack is supposed to have Mode II fracture properties and to differ from a flexural
crack with Mode I fracture properties, it has been reported that shear cracks can be treated as Mode 1
cracks if the location is properly chosen [11]. This is because even shear cracks cannot slide relative
to each other without exhibiting any opening. Therefore, in this analysis the fracture properties of the
shear crack are assumed to be equal to those of a flexural crack.

According to analytical results with only perpendicular rod elements along the predetermined crack
path, slip occurs along the assumed shear crack path from the very beginning of loading (Fig. 4(a)).
The deformation shape shown in Fig. 4 corresponds to the first loading increment in the analysis and
the applied shear force is less than 10% of the ultimate shear capacity. To make the situation clearer,
the nodal displacements in Fig. 4 are intentionally amplified.

Because shear stiffness along the crack surface is completely neglected, slip along the crack path
occurs as shown in Fig. 4(a). To prevent slip occurring as soon as the loading begins, the stiffness
must be provided parallel to the crack direction as well as in the perpendicular direction.

This stiffness parallel to the crack direction should reflect the fracture property of concrete
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Fig. 5 Schematic Diagram of Orthogonal Rod
Elements along the Fictitious Crack Surface

corresponding to the slip. At present, however, experimental information regarding slip failure is
quite insufficient. In this analysis, therefore, another rod element parallel to the crack direction is
placed in addition to the perpendicular rod element. The stiffness of this parallel rod element is
assumed to be equal to the elastic shear modulus of the concrete before crack opening and is assumed
to become completely zero after crack opening. The aim here is to model the stiffness as simply as
possible. When experimental knowledge on Mode II cracking has been accumulated and the behavior
is fully formulated, this simple analytical model can be replaced by a more accurate one.

After all, along the assumed shear crack path, perpendicular and also parallel rod elements are placed
(Fig. 5). By making use of these orthogonal rod elements along the shear crack path, slip along the
crack path in the early stages of loading can be completely prevented (Fig. 4(b)).

3. OUTLINE OF NUMERICAL CALCULATION

3.1 Analytical Procedure

The reinforced concrete beams chosen as the subject of this analysis have no shear reinforcement. In
the analysis, the beams are assumed to be simply supported and subjected to two-point concentrated
loading. Taking advantage of symmetry with respect to the center line, only half of the beam is
analyzed. In the finite element analysis, all concrete elements except rod elements on the crack
surface are assumed to be linear elastic and are modeled by a three-node triangular element.
Longitudinal reinforcing bars are assumed to be elasto-plastic and are represented by a two-node truss
element. Concrete nonlinearity is considered only in the rod elements. Incremental analysis using
enforced displacement at the loading point as an input is executed. The Newton-Raphson method is
used to update the tangential stiffness for the rod elements at every iteration.

3.2 Unloading and Reloading Paths in the Softening Curve

In reinforced concrete beams which exhibit diagonal tension failure when subjected to shear force,
one large diagonal crack is observed at failure. Actually, in addition to this large diagonal crack
which causes shear failure, a number of flexural cracks also occur in the beam. Therefore, to make
the analysis more realistic, we have to consider an analytical model in which a shear crack and
flexural cracks coexist.
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Although it is not impossible to place multiple fictitious cracks in the analytical model, the opening
and closing behavior of the cracks has to be represented analytically. For example, the analysis has to
model a situation where, although the opening of a flexural crack precedes the shear crack, the width
of the flexural crack decreases with opening and propagation of the shear crack. To represent such
opening and closing behavior of cracks, unloading and reloading paths must be formulated in the
softening model of the concrete. Figure 6 shows the unloading and reloading paths adopted in this
analysis. The tangential stiffness for unloading and reloading is assumed to be equal to the elastic

stiffness of the concrete. Therefore, if the stress and strain at the unloading point are o; and &;,
respectively, the stress-strain relationship in the unloading and reloading paths can be written as
follows:
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4. NUMERICAIL. ANALYSIS FOR SHEAR STRENGTH
4.1 Basic Procedure

The most important point in applying the fictitious crack model is to determine the location of the
crack adequately. The location of actual cracks varies remarkably depending on various factors such
as loading conditions (distributed load or concentrated load), support conditions, bond characteristics
of the longitudinal bars, degree of anchorage, concrete strength, and so on. Ultimately, a non-
reproducible crack will cause experimental scatter in the shear strength. Although it is very hard to
predict the location of cracks accurately, it is not very difficult to roughly evaluate a range for the
location, the inclination angle, and the crack shape if experimental results are used for reference.

We determine the location and inclination angle of the shear crack as follows. Within the roughly
evaluated range, the location and inclination angle are varied. The location and inclination angle at
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Fig. 7 The Mesh Discretization
of Finite Element Analysis

which the shear resistance is a minimum are selected. The shape of the shear crack is basically
assumed to be a single straight line. However, to simulate actual behavior more closely, i.e. the shear
crack becoming flatter when it approaches the loading point, a bilinear straight line model for the
shear crack is also examined. Furthermore, to make the analysis more realistic in the bilinear shear
crack model, a flexural crack is also taken into account according to 3.2. In this case, the location of
the flexural crack is assumed to be at the span center and the crack surface is considered to be
perpendicular to the beam axis. The shape of this flexural crack is fixed throughout the analysis.

4.2 Analytical Result using Single Straight Line Shear Crack

The finite element mesh discretization used in the analysis is shown in Fig. 7. The shear span -
effective depth ratio, a/d, is fixed at 3.0. The width of the beam is 10 cm, and the height and effective
depth of the beam are 12.5 ¢m and 10 cm, respectively. The reinforcement ratio is set to 2.0 %. The
tensile strength, Young's modulus, and fracture energy of the concrete are 3.0 MPa, 0.3 X105 MPa,
and 100 N/m, respectively. The yield strength and Young's modulus of the reinforcing bars are 400
MPa and 2.0X105 MPa, respectively. These values are not changed throughout the analysis. The
dimensions of the reinforced concrete beams, the diagonal crack parameters, and the results obtained
are shown in Table 1.

Table 1 Dimensions of Beams, Parameters of Diagonal Cracks,

and Analytical Results
0 =40 degrees x/d=1.0
shear strength shear strength
x/d Ve (MPa) 6 (degrees) Ve (MPa)
0.50 1.78 35 1.98
0.80 1.75 38 1.70
1.00 1.62 40 1.62
1.30 1.80 43 1.86
1.50 2.18 45 2.54

bw=10cm, h=12.5 cm, d=10 cm, fi= 3.0 MPa, Gr = 100 Nim
Ec =03x10°MPa, vc = 0.2, pw=2.0 %, £ = 400 MPa
Es =20 x10°MPa
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Fig. 8§ Change in Shear Strength with
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When modeling a diagonal crack by a single straight line, the parameters in the analysis are only the
location and inclination angle of the assumed diagonal crack. The location of the crack can be
represented by the distance from the support point to the point where the crack intersects the lower
surface of the beam. The ratio of this distance x to the effective depth d (x/d ) is varied from 0.5 to
1.5. As for the inclination angle of the assumed crack, the angle between the crack and the beam

axis, 6, is varied from 35 to 45 degrees.
The variation in beam shear strength obtained from this analysis is shown in Fig. 8 (a) and (b).

According to Fig. 8, it can be seen that the case of /4 = 1.0 and 6 =40 degrees gives the minimum
shear strength, v,.
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Figure 9 shows the relationship between applied shear stress (= the nominal shear stress = V/(by, d))
and displacement of the loading point for the case of x/d = 1.0 and 6 =40 degrees. In this case, it is
found that a stable softening path is followed in the post peak region because of the relatively small
effective depth; i.e. 10 cm.

The nominal shear stress corresponding to the ultimate flexural capacity of the beam selected for
parametric study is 2.28 MPa. The ultimate flexural capacity is obtained from a calculation based on
the assumption of an equivalent stress block. Thus, the failure mode of beams implied by this
analysis is shear failure prior to yielding of the longitudinal bars, except in the case of x/d = 1.0 and 6
= 45 degrees.

Although obtained shear strength for x/d = 1.0 and 6 = 40 degrees is 1.62 MPa, the value predicted
by the macroscopic shear strength equation (Eq. (11)) is 1.48 MPa. The numerical analysis thus
gives a slightly greater shear strength (= 1.09 times) than the macroscopic shear strength equation.
This is due to certain simplifications in the analysis, such as taking only the shear crack into account
and modeling it as a single straight line. However, itis worth pointing out that the result is not that
far from the prediction by the macroscopic equation. Although the analytical results presented here
are obtained from a simplified procedure in which material nonlinearity is taken into account only on
the assumed crack surface, this analytical procedure is applicable to predictions of diagonal tension
failure in which the initiation and propagation of one predominant diagonal crack control the failure of
the whole structure.

4.3 Analytical Result using Bilinear Diagonal Shear Crack along with Flexural Crack

As described, a slightly greater shear strength than predicted by the macroscopic equation is obtained
when a single straight line crack is assumed. It is also known that an actual shear crack becomes
curved and flatter as it propagates into the flexural compression zone of a beam. Thus, to make the
analytical procedure more realistic, a bilinear crack is now adopted as the assumed crack.
Furthermore, for the same reasons, a flexural crack at the span center is also added.
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Table 2 Parameters of Diagonal Cracks and Analytical Results

x/d=1.0, 6 =40 degrees
62 = 30 degrees y/d=0.7
yd she‘?: (sAt/Ir;;gﬂl 6) (egrecs) Shej: Z;r;;gth
0.5 1.43 20 1.40
0.6 1.40 25 1.38
0.7 1.37 30 1.37
0.8 1.39 35 1.38
0.9 1.41 40 1.39

As shown in Fig. 10, for the straight portion from the lower surface of the beam the assumption of
x/d = 1.0 and 6= 40 degrees is applied. However, for the flexural compression zone of the beam
above this straight portion, another straight line is adopted. The parameters for this second straight
line are the initiation point of the line ( as represented by the height y from the lower surface of the
beam ) and the inclination angle of the line ;. The initiation point of the second line, y, is varied
from 0.5 d t0 0.9 d. The inclination angle, 6,, is also varied from 20 to 40 degrees.

The results are shown in Table 2 and Fig. 11. These results show that an initiation point of 0.7 d
and an inclination angle of 30 degrees for the second straight line give the minimum shear strength.
The shear strength with these values is 1.37 MPa. The shear strength is 15 % lower in this analysis
than in the case of a single straight line crack and no flexural crack. Since the shear strength is now
almost 93 % of the value predicted by the macroscopic equation (1.48 MPa ), the result is closer to
the average of the macroscopic equation,

In conclusion, the accuracy of the shear strength prediction can be improved by adopting more
realistic assumptions for the location, inclination angle, and shape of the fictitious crack and by using
both a shear crack and a flexural crack. Figure 12 shows the opening and closing behavior of flexural
and shear cracks.
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The analytical nodal displacements are intentionally amplified in Fig. 12 to make crack opening and
closing behavior more visible. The applied shear force corresponds to about 50 % and 95 % of the
maximum shear capacity (i.e. the peak resistance obtained from analysis), respectively. Figure 12
also makes clear that, at the shear force corresponding to 50% of the peak resistance, only the flexural
crack opens and the shear crack is closed, while at the shear force corresponding to the peak
resistance, the shear crack develops and propagates but the flexural crack width becomes relatively
smaller.

5. SIZE EFFECT IN SHEAR STRENGTH

The numerical analysis carried out in Chapter 4 gives a rough means of determining the location,
inclination angle, and shape of a diagonal crack. Thus, based on this information about diagonal
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cracking, the size effect in shear strength is now evaluated numerically. The resulting size effect will
be compared with the shear strength equations stipulated in the JSCE Standard Specifications and
CEB-FIP Model Code 1990.

The shape and dimensions of the reinforced concrete beams chosen as the subject of this numerical
study are shown in Table 3 along with the calculated results. These beams are geometrically similar
in two dimensions. The size of the finite elements is also increased in a geometrically similar manner.
The height of the beam 4 is varied from 10 cm to 10 m. Figure 13 is a comparison of the analytical
results with the shear strength equations stipulated in the JSCE Standard Specifications (Eq. (11)) and
CEB-FIP Model Code 1990 (Eq. (12)).

vessce = 0.20 (100pw.fc')1/3 FRY an

ve czp = 0.15 (100py, )" (1 +¥0.27d) (12)

where, in these equations, the shear strength, v, and the compressive strength of concrete, ', are in
MPa units and the effective depth, d, is in m units. Since the compressive strength of concrete, fc' ,
is required in these equations, it is calculated from Eq. (13) using the tensile strength, f;.



Table 3 Dimensions of Beams and Analytical Results

Vv Vv,
S ) ) ) e e

10 | 9 | 27 [[1401] 1523 | 1.559
50 | 45 | 135 [ 0.940] 1.019 | 1.043
100 | 90 | 270 | 0.837] 0.857 | 0.921
300 | 270 | 810 | 0.788 | 0.651 | 0.796
500 | 450 | 1350 [ 0.761 | 0.573 | 0.758
1000 | 900 | 2700 || 0.725 | 0.482 | 0.719

bw=10 cm, f=3.0 MPa, Gr = 100 Nim, Ec = 0.3x10° MPa
f' =37 MPa, py=2.0 %, f, =400 MPa, Es= 2.0 x10° MPa
0 =40 degrees, 0, =30 degrees, ¥/d = 1.0, wd = 0.7
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Fig. 13 Size Effect in Shear Strength
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As shown in Fig. 13, the analytical results agree very well with the JSCE equation in the region of
effective depth d less than 1 m and agree with the CEB equation in the region where d is more than
1 m. In Eq. (11), the shear strength decreases monotonically with increasing effective depth. On the
other hand, in Eq. (12), the shear strength converges to a constant value. This is the major difference

between these two design equations.
Data to experimentally support the shear strength equation stipulated in the JSCE Standard

Specifications are limited to effective depths up to 3 m. Where the effective depth, d, is more than 3
m, there is no experimental support for the equation. As far as the analytical results obtained here are
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concerned, it can be concluded that the application of the JSCE's shear strength equation to huge
reinforced concrete beams with an effective depth of more than 3 m gives a conservative result and
the JSCE's shear strength equation virtually underestimates the actual shear strength.

Figure 14 shows the obtained stress distribution in perpendicular rod elements at peak resistance
along the assumed diagonal crack. To make the comparison easy, the location of the rod elements is
normalized by the height of the beam. According to Fig. 14, within the region of the effective depth
up to 1 m, the rod element in which the stress reaches the tensile strength of the concrete is located
from the third to the fifth layer above the lower surface of the beam, and rod elements below this rod
element are in the tension softening region. However, the stress distribution among perpendicular
rod elements in reinforced concrete beams with an effective depth greater than 3 m is almost similar;
when the stress in the lowest rod element reaches the tensile strength of the concrete, the beam
exhibits peak resistance. This suggests the disappearance of the size effect.

In the diagonal tension failure of reinforced concrete beams without web reinforcement, as well as in
the flexural failure of plain concrete beams, sudden and brittle failure occurs when the stored strain
energy in the beam at the peak exceeds the energy required to cause shear failure. In this case, the
decrease in shear strength due to the increase in beam size does not become significant.

6. CONCLUSIONS

In this research work, the size effect in the shear strength of reinforced concrete beams without web
reinforcement has been numerically evaluated using an approach based on fracture mechanics of
concrete. The conclusions reached can be summarized as follows:

(1) By providing rod elements parallel to the fictitious crack direction in addition to rod clements



perpendicular to the fictitious crack direction incorporating the fracture properties of the concrete, slip
along the fictitious crack can be prevented as loading begins.

(2) Changing the location and inclination angle of the diagonal crack allows an analytical model
corresponding to the minimum shear resistance to be determined. Furthermore, assuming the
coexistence of a flexural crack and a diagonal crack makes the analysis more realistic; in this case, the
diagonal crack is changed from a single straight line to a bilinear line.

(3) A parametric study confirms that the coexistence of a flexural crack and a diagonal crack and the
bilinear diagonal crack model give a more realistic analytical result.

(4) On the basis of this analytical model, a parametric analysis for geometrically similar beams for
size effect shows that when the height of the beam is less than 1 m, the obtained shear strength agrees
well with predictions by the design equation stipulated in the JSCE Standard Specifications.
However, for huge beams of height more than 3 m, the size effect predicted by the JSCE equation
disappears and the size effect is more like that predicted by the design equation in the CEB-FIP Model
Code.

(5) From an investigation of stress distribution in the perpendicular rod elements at peak resistance,
huge beams of height more than 3 m are observed to fail in shear before tension softening of concrete
along the diagonal crack occurs.

(6) Considering these findings, it can be concluded that the size effect in the shear strength of
reinforced concrete beams without web reinforcement gradually disappears as beam height increases.
Since the design equation stipulated in the JSCE Standard Specifications has sufficient experimental
backing, the accuracy of its predictions is good within the range of the experimental data. However,
the design equation may underestimate the shear strength when the height of a beam is outside the
range of existing experimental data.

In this research work, the problem investigated was restricted to reinforced concrete beams subjected
to concentrated loading. However, it is also possible to extend the analysis to more realistic
problems, such as reinforced concrete beams subjected to uniform loading or axial loading, by
changing the analytical boundary conditions. Extension of the analysis to such problems is planned
as future work.
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