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1. INTRODUCTION

Thermal analysis is essential in the design of massive concrete structures these days. As the
scale of concrete structures becomes larger, cracks are induced by thermal stresses during
curing. Experimental and analytical studies of thermal stresses in mass concrete structures
have been carried out, and several procedures have been proposed for the analysis of heat
conduction and thermal stress. A study of cracking probability has also been made by the
committee on mass concrete thermal stresses at the Japan Concrete Institute[l], and this
method is practiced in the estimation of cracking during design. The JSCE’s Standard
Specifications[2] for concrete were substantially reviewed as regards mass concrete structures
in 1986, and an analytical method for the estimation of cracking was included. Using these
methods(3,4], the cracking probability can be obtained from the relationship between thermal
cracking index and cracking probability, and this relationship has been determined from the
latest field surveys of mass concrete structures. A study by Morimoto[5] has shown how to
carry out a more detailed evaluation of cracking, and the subcommittee for the revision of the
Standard Specifications is now accumulating new data on cracking in mass concrete structures
with the aim of improving the relationship between thermal cracking index and cracking
probability.

Predictions of thermal cracking begin with the determination of the temperature distribution in
a structure. Designs of pipe cooling systems to prevent initial cracking and pipe heating
systems for road de-icing require temperature distributions of the same type. Finite element
approaches to the analysis of such temperature distributions have become more widespread, as
the power of workstations and personal computer develops. The analytical results, however,
are considerably affected by the input data on material and environmental properties, and
precise results cannot be obtained without precise data. The main thermal properties of
concrete required in thermal analysis are the heat generation, thermal conductivity, heat
transfer coefficient, and specific heat. These specific properties all exhibit uncertain resulting
from variations in concrete materials, mix proportion, age, drying condition, atmospheric
temperature, and so on. Consequently, an appropriate analytical method is now required for
the analysis of temperature distribution that takes into account these uncertain physical
properties.

Pipe cooling[6] and pipe heating systems[7] are now relatively common in mass concrete
structures and roads in cold regions. The temperature of the heating or cooling medium in the
pipe is not always stable, and engineers working in the field need to analytically determine the
allowable scatter of temperature in the pipe.

Analytical results obtained in previous studies do not always agree well with experimental
results, and inverse analysis[8] is often employed to obtain the appropriate specific properties of
concrete. Ono[9] investigated the parameters influencing temperature rises in mass concrete.
Based on his study, the parameters affecting temperature rise can be evaluated by numerical
experiment. That is, the values affecting temperature rise are obtained from an analysis in
which the paramefers are varied by small amounts. Matsui et al[10]. presented analytical
results, including the scatter of specific properties and environmental conditions, obtained in a
Monte Carlo simulation. Sensitivity analysis[11] is often required in structural analysis,
where the specific structural properties are vary substantially.

This study proposes a sensitivity analysis method for the thermal stresses in structures and
obtains information on the influence of scatter in material and environment properties on the
temperature rise in concrete structures. The analysis is based on a transient heat conduction
analysis of the structure with probability parameters, and is a method which yields the mean
values and scatter of temperatures in a structure. It is based on sensitivity analysis and
Taylor’s expansion theory. A Monte Carlo simulation can also be used to determine mean and
scatter values, but enormous computational time is required for moderately precise results as
compared with the this method. In order to confirm the results obtained by this new
analytical method, its results are compared with those of a Monte Carlo simulation. The
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anélysis is also applied to thick wall and slab

concrete structures well as to structures
requiring a pipe cooling system. 5
2. ANALYTICAL THEORY g
w
2.1 FINITE ELEMENT PROCEDURE FOR g
TRANSIENT HEAT CONDUCTION £
=
Sensitivity[11,12] is expressed as % in Fig.1, E /\/ CrtenSesity)
i @]
where ¢(r) is a nodal temperature, and X, Z /
represents parameters such as the specific — -
thermal properties of the material.  This Specific thermal properties

sensitivity gives the influence of the parameter

on the nodal temperature. Fig.1 Sensitivity

The transient heat conduction equation discretized by the finite element method can be
expressed as below[13].

Ko} +[Cléf={F} )

where [K ],{q)},[C],{d)}, and {F} are the heat conductivity matrix, temperature vector, heat
capacity matrix, vector for temperature slope with respect to time, and heat source vector,
respectively.

The first derivative of the temperature vector with respect to parameter X, is obtained by
differentiating Eq.(1), yielding the following equation:
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Rewriting Eq.(2),
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The 2nd derivative can be determined by differentiating both sides of Eq.(8) with respect to the
parameter X .
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Egs.(1), 3), and (4) are discretized w1th respect to space, and not with respect to time.
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Derivatives with respect to time, {q)} (j}d;} and 3)Q{3(£,’ are present in Eq.(4). Discretizing
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these variables by the Crank-Nicolson method, the temperature at time t+% and the

derivative of temperature can be expressed respectively as

{o{t+5)} - Mtatr 20 + ot} ®
{ d{t . g)} _ {oe+ a0} -{ol0)} ©
2 At

Substituting Eqs.(5) and (6) into Eq.(1), the following equation is obtained:
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The first and second sensitivities at time ? + % are expressed as
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Substituting Eqs.(8) and (9) into Eq.(3), yields the following:
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Similarly Eq.(4) can be written as
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3[C] a{d{t ’ %)} 3[C] a{d)(t +§)} 11

([{t + AZZ—) and ¢(z + —Azj—) on the right-hand side of Eq.(10) can be determined by taking values

4
t+— t+—
¢ 2

fes) g
from Eq.(7). X and e on the right-hand side of Eq.(11) are also

determined in the same manner from Egs.(11) and (10) by substituting the values obtained
from Eq.(10) into these equations.

2.2 APPROXIMATE THEORY BASED ON TAYLOR'S EXPANSION[14]

The nodal temperatures in a structure with scattered specific properties can be determined

using the sensitivities evaluated in the previous section. Since each nodal temperature in the

structure is a function of probability variables X, X, ,X,, it is given by
q):g(X.hXZ"":Xn) (12)

The following equation is obtained by Taylor’s expansion near to the expectation X ={X,Y2,
- fn}, as follows,

¢=g(z,x,---,z)+§["’—g)

1aa[ g - _
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where ( - )f implies derivatives with respect to (.Yl,)_(z,---,)—( )

n

Neglecting higher orders than the second order in Eq.(13), the expectation E[(b] and variance
Var|¢] are represented respectively by

E[¢] = g[ X, X, X, ] (14)

and

Var(o] = 3 i(:—;)_{%)_cm[)g,xj] 15)

= 73

Cov[Xi, X j] implies the second moment with respect to the expectation and is nominated as the
covariance. This procedure is called the first-order approximation.

Neglecting higher orders than the third order on the right-hand side of Eq.(18), the second-
order approximation can be obtained as
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Form(t=12mm) Table 1 The Properties for Analysis

(U=6.6kcal/m2hr°C) Specific Heat(Cc) 0.302 (1264)
L kealkg*°C (J/kg*C)
Adiabatic Boundary Thermal Conductivity(2 c) 2.424 (2.819)
g 3 keal/m +hr+°C_(W/m+°C)
A Heat-transfor Coefficient(h c) 12.0 (14.0)
| S kealim®*hr+°C_(W/m®+C)
§ 2 Density (20) 5300
. 7 5 & kg/m®
& N iV Initial Temperature 29.8
'g Newly Cast _g N oC
[N BN |
g Concrete g @ Ambient Temperature(Tous) 24.8
. BV . :
5 — Adiabatic Heat Generation
4= 3} T =K(1-e™ K =485C
& g3 =K ) a =1.426
g g§ v
— —
z 5
B g R
an o % Table 2 Values Based on the SI System
\© Specific Heat | 1kcallkg*°C = 4.186X 10°J/kg*°C
v~ Thermal 1kcal/mehr*°’C = 1.168W/m+°C
Bgf:ﬁal(gzxgac) Conductivity
e (mm) Heat-transfer | lkcal/m®+hr*°C = 1.163W/m**°C
1000 Coefficient

Fig.2 Finite Elemt Mesh and Boundary Conditions
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The mean and expectation values can be determined by substituting the sensitivities obtained
from Eqgs.(1) and (11) into Eqs.(14) and (15) or Egs.(16) and (17).

3. NUMERICAL EXAMPLES OF SENSITIVITY ANALYSIS

Analytical temperature results cannot be determined to great accuracy without the exact
values of specific properties, yet these specific properties are presumably scattered in the case of
concrete. The specific properties of concrete needed in thermal analysis are heat generation,
thermal conduction, heat transfer coefficient, and specific heat, and these have uncertainties
relating to age, mix proportion, drying conditions, and temperature. The other causes of
scatter are the environment surrounding the concrete, and differences in testing methods. In
this chapter, we indicate how to evaluate the factors influencing concrete temperature from the
sensitivity analysis.
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3.1 TEMPERATURE ANALYSIS

3.1.1 Analytical Model and Analytical conditions
The wall structure described in reference [1] is used as an example in thls analysis. The

specific heat properties which influence temperature in concrete may be regarded as the
coefficients of adiabatic heat generation (X ,a), the specific heat (C.), the concrete density (p,),
the thermal conductivity (A,), the heat transfer coefficient (%), the coefficient of overall heat
transmission of form (U), and the ambient temperature (7,,). Their influence on nodal

{M {0} MM %M %M
oK’

do. ~ aC, " ap,  an

temperature can be determined by evaluating the sensitivities

olo} oo} . ole}

oh, U’ aT

c out
Table 1 gives data for the analysis of the wall structure. The adiabatic heat generation in this
analysis is assumed to be

<

Figure 2 illustrates the finite element mesh and boundary conditions.

T,=K(1-e)= K(l - e'ﬁ") 18)

where T, is rise in temperature at age t (C), K and o are coefficients, and # and ¢’ are ages
of concrete in day and hour, respectively. Differentiating Eq.(18) with respect to #'gives the
adiabatic rise in temperature, as follows.

dr(t) _Ka o
i 19
' 24 -

Consequently, the heat generated per unit time and unit volume is represented by

; Ko -2
0=pC. o e 20)
which is equivalent to the internal heat generated in an element of the concrete shown in Fig.2.
We evaluate sensitivity at six nodes at intervals of one hour.

3.1.2 Results of Sensitivity Analysis
The temperature histories for the six nodes in the structure marked in Fig.2 are illustrated in

Fig.3. The sensitivities of coefficients K and o, thermal conductivity, heat transmission rate,
and atmospheric temperatures are also illustrated in Figs.4 to 9, respectively. The ordinate in
these figures represents sensitivity, which reflects nodal temperature change due to a unit
change in each specific property from the standard value given in Table 1. The temperature
rises with increasing sensitivity, and falls as it decreases. The unit of the ordinate is
temperature divided by the unit of the specific coefficient. Values based on the SI system are
also given in the table. Figure 4 points out that sensitivity varies with location and time.
The values of sensitivity are larger for newly cast concrete, and the peak value is reached after
approximately one day. On the other hand, the sensitivity values are fairly small for existing
concrete, which implies that the heat generated in newly cast concrete influences sensitivity.
Figure 5 shows that the coefficient o influences the temperature more at an early stage
compared with the other coefficients. According to Fig.6, the temperature is sensitive to
thermal conductivity in both the positive and negative directions, depending on whether the
concrete is newly cast or old. The sensitivity to heat transfer coefficient, as shown in Fig.7,
decreases with passing time. Since the difference between atmospheric temperature and the
temperature in a concrete structure is small, the coefficient does not affect nodal temperatures
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Fig.8 The Temperature Histories

OE)\ 0 8 Node 1
g} 0 6 Node 2
R I R sttt
o 0.4 Node 3
2
s 0.2 Node 4
P} 5
han 0E Yode 5
2 Node §
B 02— 1 e
Curing time (day)

Fig.4 The Sensitivity Histories of K
15
1<
=
)
o
=
2
o
2]
=
[0}
w

Curing time (day)

Fig.5 The Sensitivity Histories of «

at an early stage. As time advances, sensitivity
to the coefficient becomes greater due to the large
difference in temperature. Negative values
imply a heat transfer from the concrete to the
atmosphere. The sensitivity to atmospheric
temperature becomes greater as time advances,
asymptotically approaching a constant value of
unity, as indicated in Fig.8.

3.1.3 Factors Influencing Nodal Temperature
In order to obtain information on the degree of

influence of specific heat properties and
environmental properties on the temperature, the
change in temperature at node 6 are shown in
Fig.9 for the case where each parameter varies by
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Table 3 The Properties for the Analysis

135000

Concrete Rock
6000 1500, 2000, 3000 Specific Heat 0.21 0.38
keal/kg*°C(J/kg*°C) (871) (1591)
i—leat—transfer Boundary Thermal Conductivity 1.9 1.1
2 S =1 keal/m *hr*°C(W/m*°C) (2.21) (1.28)
) Concrete 5 Heat-transfer Boundary ‘9‘0 Heat-transfer Coefficient 10.0 10.0
RNNAS e T =17 keal/m®shr*°C(W/m’+°C) | (11.63) (11.63)
of 1el5 Density ke/m’® 2300 1800
E =] 3 Initial Temperature °C 20.0 20.0
g ¥ 3 g o 8 Ambient Temperature °C 20.0
9 lel &= Adiabatic Heat K =40.0°C
By S Generation a =0.755
S 3| 8
< | KRS Node |
i Node 2
g
N

_ Thermal Fixed Boundary .

Fig.10 Finite Element Mesh
and Boundary Conditions

Nodal temperature (°C)

Curing time (day)

10% from the standard value. Since 10% of
atmospheric temperature is meaningless (It would
be 2°C at 20°C and 0°C at 0°C), the parameter for
the environment is varied by 1°C.

Fig.11 The Temperature histories

Figure 9 illustrates that the specific adiabatic rise in
temperature, K, and the specific heat affect the
temperature in the concrete. Parameter o has an
influence at an early stage. The influence due to
heat transfer coefficient is small within the first five
days because of the forms, which are removed at the
5th day. A sudden change in sensitivity to heat
transfer coefficient occurs at the 5th day for the
same reason. The computation results indicate that the influence of atmospheric temperature
is not insignificant and a difference in the atmospheric temperature between that assumed in
the analysis and that of the actual curing period may affect the concrete temperature
considerably. Assuming that these various sensitivities do not correlate, the temperature in
structures with various different properties can be easily determined by superimposition of the
sensitivities in Fig.9 multiplied by the differences in the parameters.

Change in temperature (°C)

Curing time (day)
Fig.12 The change in temperature at node 4

3.2 THERMAL ANATLYSIS OF CIRCULAR SLABS

3.2.1 Analytical Model and Properties
The second analytical example is a circular slab 6m in diameter and 2m in thickness cast on

rock. An axis-symmetric finite element model is employed in the analysis, as shown in Fig.10.
Table 3 provides the properties for the analysis.

3.2.2 Factors Affecting Nodal Temperature
Figure 11 shows the temperature histories of the six nodes marked in Fig.10. Figure 12 shows

the temperature differences at node 4 for a 10% change in each parameter.
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Fig.13 Finite Element Mesh

and Boundary Conditions

A similar tendency to that in the wall structure is
seen, where are parameter, K, and the specific
heat influence the change in nodal temperature for
equal variations in specific heat properties. The
coefficient o influences the initial nodal
temperature during adiabatic temperature rise.
The specific heat properties of the rock base do not
influence nodal temperatures. This study
demonstrates that fairly precise data for X and o
are required in order to obtain accurate analytical
results.

3.3 THERMAL ANALYSIS OF PIPE COOLING

Pipe cooling systems are often adopted in mass
concrete structures. In such cased, the pipe size,
pipe spacing, flow rate, water temperature, flow

time, and so on must be known to suitable accuracy.

Accordingly, the factors influencing concrete
temperature are investigated by employing the
sensitivity analysis procedure on an existing
structure.

3.3.1 Analytical Model
Analysis is carried out on a concrete structure with

cooling pipes, part of which is shown in Fig.13,
under the conditions given in Table 4. A pipe
element is assumed to be a heat transfer boundary
with a temperature equal to that of the cooling
water. The heat transfer coefficient between the

Table 4 Analytical Conditions

Specific Heat 0.21
keal’kg*°C (J/kg*°C) (879)
Thermal Conductivity 2.00

keal/m*hr*°C (W/m*°C) (2.33)
Heat-transfer Coefficient 10.0
keal/m®*hr*°C (W/m?+°C) (11.63)
Density kg/m® 2300
Initial Temperature °C 30.0
Adiabatic Heat K =40.0°C
Generation a =(.889
Heat-transfer Coefficient of Pipe 233
keal/m’«hr+ C(W/m?«°C) (271)
Cooling Water Temperature °C 10.0
Pipe Diameter m 0.025

Sensitivity (°C.7°C) Nodal temperature (°C)

Change in temperature (°C)

Node 1

[=r]
=]

Node 2

W B Wl
oS o o
T

0 2 4 6 8
Curing time (day)
Fig.14 The Temperature Histories

Node 1

r Node 2

O DO
T

Curing time (day)
Fig.15 The Sensitivity Histories
of Cooling Water Temperature

0 2 4 6 gpipe dianeter
Curing time (day)
Fig.16 The Change in Temperature

cooling pipe and cooling water, at a velocity of 40cm/s, is determined using the equation
proposed by Tanabe[6]. The analysis cares eight days with an interval of 0.1 hour for first 10

hours and an interval of one hour thereafter.

3.3.2 Analytical Results
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Temperature histories for the four nodes shown in Fig.13 are obtained as exhibited in Fig.14.
Figure 15 indicates that the sensitivity to cooling water is higher as the temperature rises.
The sensitivity increases linearly after the 2nd day. This implies that the influence of cooling
by water exceeds that of the heat of hydration on the 2nd day. Figure 16 shows the mean
variance of the four node temperatures at for 10% change in all parameters, except cooling
water temperature, which changes by 1°C. The coefficients of adiabatic temperature rise, K
and a, also influence the nodal temperatures. The specific heat and heat conductivity have a
considerable influence on the temperature. The influence of heat transfer coefficient is almost
the same as that of pipe diameter, which implies that increasing the pipe diameter would have
an effect equal to that of reducing the heat transfer coefficient.

4. THERMAL ANALYSIS OF CONCRETE STRUCTURES WITH UNCERTAIN SPECIFIC
HEAT PROPERTIES

A thermal analysis was conducted to determine the scatter in temperature based on the
sensitivities and approximate Taylor expansion, when each specific heat property and
environmental property varies. The Monte Carlo simulation is well known in sensitivity
analysis, but the method requires numerous transient thermal analyses in order to obtain
accurate and reliable results. Here, we carryout a sensitivity analysis on a wall structure with
seven scattered parameters, and the results are compared with the results obtained by a Monte
Carlo simulation. Taking the eight stochastic variables used in a Monte Carlo simulation as
normal stochastic variables, transient thermal analysis was conducted for 5,000 cases of each
stochastic variable. The sampling method proposed in reference [15] is employed in
evaluating correlative stochastic variables. Table 1 provides the specific thermal properties
adopted as fundamental data. The analysis is conducted based on the data given in Table 1,
assuming that each specific property follows a normal distribution function. The expected
value and variance of nodal temperatures with the eight stochastic variables are determined -
from the following equations.

E[4] - ¢(X,5,C..5., %, . U.T,,,) @1)
(Y (a_g)(a_) ......
Var(4] 3 )Var[K]+ K N\ e Cov[K,a]+
"""" +(a—g)(a—g)cov[nwlf]+( % ) Var|T,,,] 22)
a];ut aU aT;ul

where g(-), Var[X,], and Cov[X|] are functions for the evaluation of nodal temperature,

variance of a specific thermal property, and covariance of the mutual specific thermal
properties, respectively.

The variance and covariance of mutual specific thermal properties can be determined from the
following equations.

Var[ %] =(v, -E[X]) @4)
Cov[Xz.,X].]
i, = (25)
Hors Jar[ ] var|X,]

where, v, and p,. are the coefficients of variation of the specific thermal properties, X;, and

coefficients of correlation, respectively. The expected value and variance to a second-order
approximation can be evaluated from Eqs. (16) and (17), and the third-order moment is 0 and
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the fourth can be determined as a function of the S 0 gE.
second-order moment[14]. § )
4.1 VARIANCE OF NODAL TEMPERATURE R IS e —
Figure 17 shows the variance of mnodal Correlation Correlation
temperature obtained from the first-order Fig.20 The Accuracy of Analysis

approximation method, when the eight specific

thermal properties have a coefficient of variation

of 10%. Figure 18 shows the scattering history at nodes 5 and 6 evaluated using the Monte
Carlo simulation, the first-order approximation method, and second-order approximation
method. The period of the maximum scatter is the 2nd to 4th days, and is longer than the
time at the maximum temperature. This is due to the influence of properties with the later
maximum sensitivity shown in Figs.4 to 8. Figure 18 shows that the scatter in nodal
temperature evaluated by the first-order and second-order approximation methods are close to
those evaluated by the Monte Carlo simulation.

4.2 DIFFERENCE IN ANALYTICAL RESULTS BETWEEN THE NEW METHOD AND THE
MONTE CARLO METHOD

In order to investigate the applicability of the new method to sensitivity analysis, its results are
compared with those of a Monte Carlo simulation. The normalized ratio of these results to the
Monte Carlo results is employed for this purpose. This normalization is given as

(25)

where n, T, and 7, are the number of computations, the scatter in the results, and the scatter
in Monte Carlo results.
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Figure 19 depicts the normalized values for first-order and second-order approximations, when
the correlation is zero. In the case of the first-order approximation, it gradually decreases
with increasing coefficient of variation, whereas for the second-order approximation it increases
with increasing coefficient of variation. Since these normalized values are both fairly close to
unity, the first-order approximation method is sufficient for sensitivity analysis. Figure 20
shows the normalized value when each parameter has a correlation, which provides better
accuracy.

5. CONCLUSION

This study describes a procedure for obtaining the quantitative influence of specific thermal
properties and environmental properties on concrete temperature due to hydration heat, as
well as a procedure for determining the scatter of temperature in a concrete structure when
there is scatter in the specific thermal properties and environmental properties. The
analytical procedure was applied to wall and footing structure and a pipe cooling structure.
The following conclusions have been reached:

(1) This method of sensitivity analysis provides a quantitative measure of the influence of
random specific properties on concrete temperature.

(2) Results obtained with this analysis agree well with the results of a Monte Carlo simulation
within the range of a 35% coefficient of variation.

(3) Both first- and second-order approximation methods give similar results for the scatter,
implying that a first-order approximation method is adequate for determining the scatter.

(4) This new analysis method offers fairly accurate results for specific properties that correlate
with each other.
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