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The concrete models so far proposed have different criteria corresponding to different stress
states. In this paper, a unified plastic model for concrete, in which only one criterion is used to
describe the behavior of concrete under different stress states, is proposed. The proposed model
treats the major nonlinear phenomena exhibited by concrete, such as cracking, shear transfer
"degradation, tension stiffening, and compressive strength reduction. By use of this model, the
cumbersome considerations required in an analysis of concrete structures by other models can
be eliminated.
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1. INTRODUCTION

Finite element software has recently found widespread use in analyzing reinforced concrete
structures. However, to obtain reliable analytical results for structures made of materials with
strongly softening behavior, careful attention is needed in certain respects: the need for a special
numerical algorithm to deal with the phenomena of bifurcation and strain localization, and the
need for a reasonable model of the material. So far, however, no constitutive model which can
be used to describe the behavior of a material under various kinds of stress path with the same
criterion has been available, and it is clear that already existing models are good at describing
one aspect of the characteristics of a material but fail to describe the others.

Concrete, which is composite of aggregate and cement, differs from other materials and needs
a special failure criterion to describe its unique characteristics: its tendency to fail in a brittle
pattern or ductile pattern according to the stress state and the fact that its ductility can be
increased and decreased by altering the compressive stress in the transverse direction. The
Mohr-Coulomb and Drucker-Prager criterion are often used. However, there are some discrep-
ancies between the analytical results achieved using these criteria and experimental measure-
ments of concrete tensile behavior and tensile strength. To improve match, a tension-cutoff
limit is used or a different kind of model is adopted, but it still seems that it is not possible to
use a continuous function for the failure criterion.

Moreover, in the analysis of reinforced concrete structures, it is recognized that the major
nonlinear factors are tension stiffening effect due to bond-slip behavior between the concrete
and the reinforcement and concrete nonlinearities including compressive strength reduction due
to transverse tensile strain, and shear transfer at a crack surface. A large number of experiments
have been carried out, and the experimental observations have been used to develop different
models for numerical analysis use according to different nonlinear phenomenon. However, we
still lack a unified model that can deal with all these nonlinear factors in the same model.
Recently, using plastic failure theory, the authors have made some progress in simulating the
mechanism of stress transfer between cracks and some new results have been obtained. On the
basis of this new knowledge, we propose a unified plastic model in this paper. In this model,
the authors attempt to use a unified equation for the failure criterion of concrete. By adopting
the concept of accumulated damage, this model is able to describe hardening behavior as well
as softening behavior. This model eliminates the cumbersome considerations required in an
analysis of reinforced concrete structures using other models.

2. TANGENTIAL CONSTITUTIVE MATRIX BASED ON
THE ISOTROPIC HARDENING RULE

The present formulation essentially follows the basic outline of classical hardening plasticity
theory[2] for the sake of simplicity. The subsequent failure surface is assumed to change size
continuously depending on the damage accumulated in the concrete material, i.e., the failure
surface is a function of the damage w(W?)

f=floy,w(W?r)) =0 (1)

where w is the accumulated damage which is a function of W?, W7 denotes the plastic work
accumulated after the initial failure, and o;; denotes Cauchy’s stress tensor. :

Furthermore an independent function, i.e., the plastic potential function g is defined as

9= g(oij,w(W?)) =0 (2)
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Generally, the application of the classical plasticity theory implies that the total strain rate
comprises an elastic part and plastic part, as

€ =Exy +Epy (3)
From the plastic potential g, the plastic strain rate tensor is assumed to be
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(4)

where A is non-negative multiplier which can be determined from the consistency condition
during loading.

One the other hand, the elastic strain rate tensor €§; is assumed to be related to the stress rate

tensor via the elastmlty tensor Df;, as

s e e
ij = Dijuié (5)
The consistency condition f = 0 can be expressed as

af . af
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f= Wer =0 (6)

Ooyj
where WP can be written as

WP = 0i;é%; (7)
Substituting Eqs.(3),(4),(5), and (7) into Eq.(6) and solving for X yields
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with the definition

Furthermore, the tangential constitutive matrix can be obtained using Eq.(10)

e ijtua a 7skl .
Dijlcl: ikl — Tre (10)
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As in the classical theory of plasticity, the subsequent yield surface can be expressed with the
multiparameters &1, &, -+, &, - - -

f(o-ij7€1’€27"'7€i>'”):0 (11)

Here, this series of parameters is assumed to consist of unique functions of the damage parameter
w and are defined to characterize the shape and size of the yield surfaces. The initial loading
surface is assumed to coincide with the elastic limit surface. The subsequent yield surface
expands with the increase in inelastic strain during hardening. After the stress reaches the
ultimate condition named the initial failure surface, the subsequent yield surface begins fall
steadily in size until it reaches the final failure state, named the final failure surface.

The function 0f/0W? can be elaborated, then, as

df  [0f 04 Of 0, df 8¢ dw _
aWp—< = =+ +———+--->6W,p (12)

%aw—}-@_ﬁzaw N 0¢; Ow
For more details of the hardening and softening of the failure surface, see references [3] and [4].

In the past, different theories were used in the concrete model according to the stress situation.
Although a few[9] have attempted to adopt a unified criterion based on plastic theory, none can
be correctly applied with respect to an arbitrary stress path. Therefore, different equations are
generally used to describe the hardening and softening behavior separately, and application is
complicated because of the need to deal with many parameters to describe the nonlinearity. In
this research, a unified theory for different stress paths is achieved by defining, for convenience,
a damage parameter which represents the accumulated damage due to progressive growth of
the micro cracks etc., in the form

w=2 /dWT’ (13)

where, o is the effective stress defined later by Eq.(29), /8 is a material constant, and ¢, is a
constant fixed at &y = 0.002.

3. MODIFIED DRUCKER-PRAGER FAILURE SURFACE

In previous work [3][4] , we used a Drucker-Prager failure surface to express concrete behavior
under compressive loads. However, experience showed this still does not correctly express
the tensile behavior as well as compressive behavior with the same values of characteristic
parameters 8 and m. In particular, certain difficulties arose in calculating nonproportional
tensile and compression stress paths. Hence, in this study, a modified Drucker-Prager Failure
Surface as the expressed by Eq.(14) is adopted.

f:Jz—(kf—af11)2+(/€f—af77)2=0 (14)
Further, a similar expression for the plastic potential function is assumed:

g=Jy—(k,—a,L)* + (k, —a,n)?=0 (15)
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Figure 1: Proposed Failure Surface

where [; = oy and J, = %s,-jsij are the first invariant of stress tensor o;;, and the second in-
variant of deviatoric stress tensor s;;, respectively, and ay, ky, oy, and k, are material constants
defined by later equations.

The failure surface of Eq.(14) is shown in Fig.1. It is recognizable as having the Drucker-Prager
surface as its asymptotic surface.

This Drucker-Prager failure surface is modified such that, when I; < 0, it gradually approaches
the Drucker-Prager surface; on the other hand, when I; > 0, the failure surface on the meridian
plane is a gradually changing curve, as shown by Fig.1(a). When I; increases, the tension
meridian decreases faster than the compression meridian, so the failure surface gradually takes
on the form of the Mohr-Coulomb failure surface. Figure 1 shows that the proposed failure
surface has the general properties required, convexity, and the property required for concrete,
that is, the failure surface on the deviatoric plane changes from a shape similar to a triangle (.
in tensile stress states) to a shape similar to a circle (in compression stress states).

Similar is the situation for the potential function.

According to the cohesion ¢, the internal friction angle ¢, ay, and ks are defined as

. 6ccos ¢ ‘
b= V3(3 +ysin ) (16)
. 2sin ¢ ,
I V3(3 + ysin ¢;) (7

where ¢, is constant, ¢; = 14°, and the function y is defined as
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y = y/a(cos 3¢ + 1.00) + 0.01 — 1.10 (18)

where ¢ = 1r? + 2.1r 4+ 2.2, and

3.14 (L <F)
r=1{ 2.93cos (:}w) 1607 (<L <f) (19)
9.0 ‘ (L > f)

3
where c0s30 = 3v/3J3/2J2, and J3 = Ls,:8:.5;; is the third invariant of the stress tensor 5.
2 3717 J

Equation (18) is so determined that numerical simulations of two-dimension stress states are
in good agreement with the experimental results by Kupfer. When 8 = 0°,60°, y equals 1 + r
and —1, respectively. Also, to describe the special characteristics of the concrete, a small value
is used for the tensile meridian and big value for the compressive meridian; when I; decreases,
the failure surface on the meridian plane changes gradually from a triangle to a circle. Figure
1(b) shows the deviatoric plane determined by Eqs (14) to (19), and this deviatoric plane is in
agreement with experimental results.

The symbols ¢ and c are two strength parameters in the Mohr-Coulomb criterion, namely
the so-called mobilized friction angle and mobilized cohesion. They are not constant, but
depend on the plastic strain history through the damage parameter w. In spite of the paucity
of experimental data to support a definition of the damage parameter w, we are able to say
something about the dependence of ¢ and ¢ on w. In general, as the external force increases, a
crack occurs and develops gradually in the concrete, and the concrete changes from its initial
continuum state, to a granular state to which the resistance imposed by friction increases and
that provided by cohesion decreases. Thus the value of ¢ should generally be an ascending
function of w, while ¢ may be expected to be a descending function of w. Possible relations for
the hardening and softening model are suggested as follows (Fig.2).

¢ = cpexp [-—(mw)z] (20)

ol w>1

where m is a material constant.

The symbols ¢, ¢o, and ¢y denote initial cohesion, initial internal friction angle, and final
internal friction angle of the concrete, respectively. These relations are shown in Fig.2.

In a similar manner, we define

6ccos

" VRt ) <22>
o = QSill'l,b (23)

VBB +ysing)
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Figure 2: Material Parameters ¢, ¢, and ¢ Affected by Damage w

?lbf w>1

T/)={ do + (Y5 — o) V2w — w? w<1 (24)

with a particular mobilized dilatancy angle 1. Note that for ¢ = v, we have f = ¢ and the
classical associated flow rule is recovered.

The symbol n in Eq.(14) and Eq.(15) is a tension behavior factor. As the accumulated damage
increases, tensile debonding occurs. This can be expressed as

n:%appg) (25)

in which b is a constant varying with the reinforcement ratio, for plain concrete, b = 0.06, and
no is the tensile strength on the hydrostatic axis, which is also close to the uniaxial tensile
strength.

By using a hyperbolic function for the failure surface, smooth tracing of the stress-strain 1elatlon
from tension to compression during nonplopmtlonal loading is possible.

4. THE ASSOCIATED FLOW RULE

4.1 Hardening and the Deviation of F%};p

The associated flow rule is commonly applied for practical reasons. In the associated flow rule,
it is interesting to note that the plastic work rate is

W = oy = oy (26)

The scalar function A can be obtained by squaring each of the terms in Eq.(4) and adding, as

EP L gl — )2 of of

i S ) i %; (27 )

The effective plastic strain rate is defined simply as
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Then, the effective stress is defined using the plastic work increment as

s p
W[) _ O-'L]Cl]

Cp Cp

According to the preceding discussion, 0f/0W? in Eq.(12) for the modified Drucker-Prager
criterion can be rewritten as

o (%, O 2 b

owr Oay Ow —~ Oky Ow ~ Ondw) OWP
OJa
=2 {(]1 —n)(ky — ap(L + U))a—wf+
Oky On| Ow
ay (I — ’7)% — oy (kg — O‘fﬁ)%} e
(30)
where,
% _ 2cos ¢ _(9;(5 (31)
dw V33 +ysing)ow
Ok —6esing  O¢ 12¢om?w —(mw)? )
—_— = - _ ,—(mw 32
ow V3(3 + ysin ¢1) Ow \/§(3 + ysin </>1)C cos ¢ (32)
and
on _ M ( 2)
o~ b P (33)
Moreover,

(1 —w)(¢s — do)
¥l ) w<l1
a—j = { V2w — w? (34)
0 w>1
ow .
W s (35)
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4.2 Loading Criterion

In the softening region, plastic loading and elastic unloading are considered to occur at the
same level. Thus, the commonly used loading criterion for work hardening is invalid in this
model. Certain modifications are needed and the modified loading criterion shown in Fig.3 is

defined as
Elastic unloading
of
91 pge >0 (36) !
507.,'
/f=0 Ao“l?j (Loading)
Plastic loading b= 0N
AGS (Unloading)
of . .
—— Aot <0 37 3
(90,'.,' 0;; < ( )
here
Figure 3: Loading Criterion

5. STUDIES OF INITIAL PARAMETERS AND MATERIAL CONSTANTS

5.1 Effects on the Model

First, we investigate the effect on concrete behavior of changing the initial parameters and the
material constants. From Eqs.(16),(17),(22), and (23), we can see that ¢,, ¢o, and gy have fixed
values. First, we let ¢ = 14°, ¢o = 5°, and €g = 0.002, which has no significant effect on the
behavier of the model, and study the effects on concrete behavior of changing the following six
initial parameters or material constants.

1.

The Effect of Changing co (Initial Cohesion)

In the Drucker-Prager failure criterion, the initial cohesion parameter ¢ is an important
influence on the behavior of the concrete. In this unified model, as shown by Fig.4, when
the co becomes bigger, the compressive strength increases but the corresponding change -
in compressive strain is insignificant. On the other hand, changing ¢y has little effect on
the tensile strength and the corresponding tensile strain. The reason for this is that the
rate of damage accumulation under tension is much bigger than under compression, since
under tension when the damage procedure begins, the cohesion ¢ becomes very small
soom.

. The Effect of Changing ¢; (Maximum Internal Friction Angle)

The internal friction angle is another important factor in the Drucker- Prager failure
criterion. In this unified model, as shown in Fig.5, when ¢; increases, the compressive
strength and the corresponding compressive strain become bigger. A comparison with
experimental results shows that a value of ¢; between 30° to 40° is suitable. Now, we
have two parameters, ¢; and ¢,, affecting the compressive behavior of the concrete, so
for simplicity, we should fix one and change the other alone. Since changing ¢; affects
concrete behavior less than ¢, in this research, ¢; is fixed at 35°. On the other hand,
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changing ¢; has little effect on the tensile strength and also the corresponding tensile

strain. This 1s because, under tension, even when the tensile stress reaches a maximum
value, the maximum internal friction angle is almost unchanged near ¢g.

. The Effect of Changing m (Material Constant)

m is the material constant in Eq.(20) and has effect on the softening behavior (descending
branch) of cohesion ¢. As shown in Fig.6, m has a significant effect on the compression
behavior of concrete; the bigger m is, the lower the compressive strength and the corre-
sponding compressive strain are. On the other hand, m has little effect on tensile strength
or the corresponding tensile strain. From simulation results, and in particular a compar-

ison with the shape of curve in the uniaxial compressive experiment, it seems suitable to
make m = 1.0.

The Effect of Changing f (Material Constant)

B is an important material constant in defining the damage parameter (Eq.(13)). In
terms of compressive behavior, changing f# has little effect on compressive strength but
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does affect the corresponding compressive strain. Under tension, it has an effect on the
softening branch but not on the tensile strength or the corresponding tensile strain. A
comparison with Kupfer’s experimental results indicates that # = 0.40 is a suitable choice.

5. The Effect of Changing no (Material Cons.tant)

7 is the tensile strength on the hydrostatic axis and ng is the initial value of n (Fig.1(a)). As
the concrete damage increases,  decreases from 7y gradually. The effect on compressive
strength and the corresponding strain of changing 7o is so small that it can be ignored.
But, as shown by Fig.7, 7o is an important factor affecting the tensile behavior of concrete.

6. The Effect of Changing b (Material Constant)

The effect of changing the material constant b on the compressive behavior of concrete is
so small that it can be ignored. However, it has a significant effect on the softening path,
though little effect on the tensile strength, as shown in Fig.8. For plain concrete, after
comparing with sufficient experiment data, b6 = 0.006 is considered an appropriate choice.
In the case of reinforced concrete (such as reinforced concrete panels), there is a type
of phenomenon called “Tension Stiffening”, due mainly to the bond-slipping behavior
between concrete and reinforcement. Although a large amount of research has been done,
no satisfactory conclusion has been reached. According to past experiments and research
results, reinforcement ratio has a large effect on the “Tension Stiffening” phenomenon, it
is possible that with this concrete model, a value of b should be identified to reflect this
phenomenon.

From this examination of each parameter and material constant, it can be concluded that this
unified concrete model is able to treat the compressive behavior (determined by the value of
¢,) and the tensile behavior (determined by the values of 5, and b) of concrete with one set of
parameters and material constants using only one failure criterion.

5.2 The Relationship Between f. ~ ¢o and f; ~ 1o

From the numerical simulation discussed in the Section 5.1, it can be concluded that the most
suitable values for ¢y, m, and 3 are ¢5 = 35°, m = 1.0, and 3 = 0.4, respectively. The factor
affecting the behavior of compressive strength is the initial parameter cq, while the factor
affecting the tensile strength is the material constant ng.

Figure 9 shows the relationship between ¢y and compressive strength, while Fig.10 shows no
and the tensile strength relation. For commonly used concrete, tensile strength seldom exceeds
4.0 MPa, so the value of 7, should be lower than 10.0 MPa. In practical use, we can determine
co and 7o from the compressive strength and the tensile strength using Figs. 9 and 10.

6. COMPARISON WITH EXPERIMENTAL RESULTS

6.1 Comparison with Kupfer’s Experiment

Kupfer has carried out experimental studies on the concrete specimens under various kinds of
proportional loading in two dimensions [5]. Here, we compare the numerical simulation results
obtained using this unified model with the Kupfer’s experimental results, as shown in Fig.11.
co and 7y are determined by the method stated in Section 5.2. From Fig.11, it can be seen that
this model gives good results in not only uniaxial but also biaxial numerical simulations.

6.2 Comparison with Petersson’s Experiment

A numerical simulation of uniaxial tension is also carried out for comparison with Petersson’s
experimental results [6], as shown in Fig.12. As discussed above, 1 and b are the two most
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important parameters affecting the tensile behavior of concrete. 7o is determined by the method
described in Section 6.2, while b = 0.06 is assumed for plain concrete. Figure 12 shows that
this model gives good results.

6.3 Strength Envelope under Biaxial Stress State

It is difficult to obtain a strength envelope which closely fits experiment results using existing
concrete models. Here, strength envelopes under biaxial stress, obtained by our unified concrete
model and from Kupfer’s experiments [5], are shown on Fig.13. In the compression-compression,
tension-tension regions the analysis curve is in agreement with the experiment results, but in
the tension-compression region there is some difference. This requires further investigation.

6.4 Strength Reduction by Transverse Tensile Strain

Many experiments have been carried out with regard to this problem (Petersson, P.E.[6], Cer-
venka, V.[7], and Vecchio, F.J. and Collins, M.P.[8]). The phenomenon is interpreted as a the
strength reduction under compressive loading in a stress state where transverse tensile stress
or strain is maintained.

To examine how this phenomenon is handled by the model, some numerical examples are
calculated. Concrete which has a uniaxial compressive strength of 26.5MPa and a uniaxial
tensile strength of 2.5MPa is examined. :

First, the concrete is subjected to uniaxial force to a extent of damage accumulated which
is indicated by a tensile strain given, and then, from this state at a certain level of damage,
compressive force is applied in the vertical direction until failure. Figure 14(b) shows the
compressive stress in the vertical direction and the corresponding compressive strain relations
with respect to various values of tensile strain in the horizontal direction. Figure 14(c) shows
the behavior of uniaxial tension when the parameters shown are used. As discussed before,
constant b is an important influence on the tension stiffening behavior of reinforced concrete,
and in this example it is assumed that the concrete has some amount of reinforcement in the
horizontal direction, so b = 0.1. For details of how this model deals with the tension stiffening
phenomenon, see reference [4]. The strength reduction in this case is plotted against the curves
proposed by Vecchio and Collins [8] and by Cervenka [7] in Fig.14(d). From Fig.(b) and (d),
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Figure 14: Comparison of Strength Reduction Ratios

it can be secen that as the tensile strain increases in the horizontal direction, the compressive
strength and the corresponding compressive strain decrease.

As the numerical simulations show, this model makes it possible to describe strength reduction
due to the transverse tensile strain phenomenon. Thus it is possible using this model to analysis
reinforced concrete structures with preexisting crack under the cyclic loading such as earthquake
forces.

Although, discussion in this paper is limited to the.two-dimensional case, application of this
model to three dimensions is also valid.

7. CONCLUSION

To describe the special characteristics of concrete, the authors have proposed a failure criterion
which is defined by several parameters related to the friction angle, cohesion, and accumulated
damage. In this model, using the three parameters c, ¢, and 7, tensile and compressive behavior
as well as the hardening and softening behavior can be described using only one equation (the
unified failure criterion). Moreover, the authors have developed a theory to describe the process
of damage as stress is transferred between discontinuous surfaces inside concrete by using the
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method described in this paper [1]. This model can treat the major nonlinear phenomena
occurring in concrete, such as cracking, shear transfer degradation, tension stiffening, and
compressive strength reduction. By using this model, the cumbersome considerations needed
in the analysis of concrete structures by other models can be eliminated.

The application of this model to more complicated stress paths will be reported in near future
publications. Regarding other problems such as strain localization and the size effect, more
research is needed. They can probably be solved by introducing such concepts as fracture
energy and virtual viscosity into the model. Problems such as the slight reduction in elastic
properties when the material undergoes unloading after some damage is accumulated, and the
description of dynamic properties when the material undergoes damage will be adopted as
research topics in the future.
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