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An analytical method to evaluate the diagonal shear failure strength of RC beams was developed,
in which the modified compression field theory was extended. The effects on shear strength of
effective depth, longitudinal reinforcement ratio, stiffness of longitudinal reinforcement, and
concrete strength were investigated analytically. Using a proposed tension softening relation, the
size effect on the shear strength can be evaluated satisfactorily by this analysis method.
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1. INTRODUCTION

The shear failure of reinforced concrete structures is a complicated phenomenon influenced by
many factors. It appears that a full understanding of the mechanism of shear failure is extremely
difficult. Given the difficulties, studies of shear have been aimed at obtaining load carrying
capacity, and many studies have been based on empirical methods using many experimental
results or based on limit analysis using a simple assumption of the failure mechanism.

Recently, concrete structures have become larger and more complex, and newly developed
materials such as fiber reinforced plastic(FRP) have been used in concrete structures. In
attempting to predict the shear strength of such structures, evaluations based on empirical methods
are not necessarily effective. For example, the shear strength of RC beams has been found to
gradually fall as the beam depth increases. However, it is difficult to accurately estimate the shear
strength of such large RC structures because of limitations for experimental conditions.
Furthermore, when new materials with material properties quite different from steel, such as FRP,
are applied, the effect of these different properties must be evaluated on the basis of numerous
experimental results. Thus the equation to account for them must be formulated again.

On the contrary, the study to evaluate the shear strength of RC beam analytically are recently
performed activity. One such study is the modified compression field theory proposed by Collins
et al.[1]. Their theory gives an analytical method for predicting the shear response of RC elements
satisfying conditions of compatibility and equilibrium, in which cracked concrete is treated as a
new material with its own stress-strain characteristics. The method is applicable to reinforced
concrete elements in plane stress conditions and under uniform deformation. Therefore, the
method does not apply to the analysis of RC beams subjected to shear, moment and axial loading.

The purpose of this paper is to analytically evaluate the shear strength of RC beam section
without stirrups using an analytical method in which the modified compression field theory is
extended to cover analysis of RC beams loaded with combined shear, moment and axial loading.
Firstly, the analytical method is verified by comparing with an empirical method. The effects on
shear strength of several factors are then investigated analytically. In particular, the effect of
stiffness of the longitudinal reinforcement and the size effect are evaluated analytically in this

paper.

2. ANALYTICAL METHOD BASED ON EXTENDED MODIFIED COMPRESSION FIELD
THEORY

The modified compression field theory is a new analytical method for reinforced concrete
elements subjected to shear developed by Vecchio and Collins[1]. The theory, however, is
applicable only to elements subjected to uniform shear, and cannot be applied directly to
reinforced concrete beams subjected to shear and moment loading.

In this paper, an analytical evaluation of the shear strength of RC beams is performed by
extending the modified compression field theory. This is achieved by considering the cross section
to be composed of a series of layers. The concept of this analytical method is similar to Collins’s
method[4]. However, the use of a fast computation algorithm and a tension softening curve well
suited the analysis of RC beams differentiate our approach.

(1) Modified Compression Field Theory

Consider a uniform cracked reinforced concrete element subjected to uniform shear and axial
loading as shown in Fig.-1. Then consider the following average strains: strain in the longitudinal
direction(ex), strain in the transverse direction(ey) and shear strain(yxy) or the principal
compressive strain(e2), principal tensile strain(e1) and the angle of inclination of principal
compressive strain(6). The compatibility conditions in terms of average strain in such an element
are written as follows from Mohr’s strain circle in Fig.-2.
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Assume that a shear stress(txy) and a longitudinal stress(ox) are acting on the concrete element

and that all of the shear stress is carried in the concrete. Then, the average stress relations are
represented as follows from Mohr’s stress circle in Fig.-3.
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in which ox is the longitudinal stress, Oy is the transverse stress, Txy is the shear stress, o1 is the
principal tensile stress and o2 is the principal compressive stress which has the inclination of 6’
The inclination of the principal compressive stress coincides with that of the principal compressive
strain, 0=0’, if we ignore shear transfer at the concrete crack surface.

For equilibrium in the longitudinal direction,

N = Asxfsx + Owah (7N
in which N is the applied axial force, Asx is the area of the longitudinal steel bar, fs is the stress
of the longitudinal steel bar, Bw is the width of the concrete element, and h is the height of the

concrete element.

The equilibrium condition in the transverse direction is as follows, assuming that the transverse
force does not act on the cross section.

Oy = _Awf.sy /B,S (®)
in which Aw is the area of the transverse steel bar, fsy is the stress of the transverse steel bar, and
S is the spacing between transverse steel bars. The stress of the transverse steel bar vanishes when
a cross section without stirrups is considered.
The equilibrium condition in shear is

Ty =V / B,h )

where V is the shear force acting on the cross section.
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Fig.-1 Reinforced Concrete Element Fig.-2 Mohr’s Strain Circle Fig.-3 Mohr’s Stress Circle



The stress and strain satisfying the strain compatibility condition and the equilibrium of stresses is
obtained when constitutive relations for the concrete in the principal direction and for the
longitudinal and transverse steel bars are assumed, and the stresses obtained from the equilibrium
condition are identical to the stresses obtained from the assumed constitutive relations. This
me:thodé1 however, requires a trial and error solution technique, since a direct solution cannot be
obtained.

(2) Application of Modified Compression Field Theory to RC Beam Sections subjected to Axial,
Moment and Shear Forces

An outline of the new analytical method is given here. The stress-strain relationship for the
concrete and steel bars, then, is already available from the mechanical properties of the materials.
@ Subdivide the cross section into m layers and give geometrical conditions for each
layer(Fig.-4(b)).

Give the axial force(N) and shear force(V) acting on the cross section. Here, it is assumed that
the shear stress(txy) is distributed the uniformly in the cross section(Fig.-4(d)).
® Assume a longitudinal strain. The strain in each of the layers is fixed by defining the
curvature and top strain(ec) in the section, assuming the distribution of longitudinal strain is
linear(Fig.-4(c)).

Eyi =(h"yci)¢+£c (10)

This assumption of longitudinal strain and shear stress distribution is somewhat simplified. Thus, a
more detailed investigation will be needed in future.
@ Satisfy the condition of compatibility and equilibrium for the known Txy and exi in each layer.
The following procedure is performed in each layer:
(a) Assume the principal tensile strain(e1).
(b) Calculate the principal tensile stress(01) corresponding to €1 using the concrete stress-strain
relationship.
(c) Calculate 6 from the equilibrium in the transverse direction.
From the transverse equilibrium, the stress of a transverse steel bar is

fip =—ByS /| 4,(0, ~,, tan6) (11)

On the other hand, the stress of a transverse steel bar obtained from the compatibility
condition and stress-strain relationship of transverse steel is

£l = Egle —(e —2,)tan® 0] (12)

Considering the condition fsy=Fsy using Eq(11) and Eq(12), we obtain a quadratic equation in
tan® before the steel bar yields or a linear equation after yielding. From the algebraic
equations of tan, we can identify 8 positively.

(d) Calculate the principal compressive strain(e2), the transverse strain(ey), and the shear strain
(yxy) from the Mohr’s strain circle.

(e) Calculate the longitudinal stress(ox), transverse stress(Oy), and the principal compressive
stress (02) from Mohr’s stress circle.

(f) Calculate 0’2 from €2 using the B, Ty
concrete stress-strain relationship. y 7 =
(2) If o2 does not equal 0”2, return ¢ o
to step (a) and try another value of "
el. h o
® Repeat (a) to (g) until the Yei
equilibrium and compatibility conditions e o
are satisfied for all layers. . . (a) cross section (b) concrete layer (c) distribution of (d) distribution
® Calculate_ the stress of longitudinal longitudinal of shear
steel bar(fsxi) from the longitudinal ) _ )
strain of the steel bar. Fig.-4 Beam Section using Layered Model
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@ Calculate the resultant of the longitudinal stresses. Also check the equilibrium of applied axial
force. If the equilibrium conditions are not satisfied, it is necessary to readjust the assumed ec and
repeat the analysis until equilibrium is satisfied.

Calculate the moment acting on the section from the distribution of longitudinal stresses.

Using the above procedure, the moment acting on the section is calculated for the applied axial
and shear force. To obtain the equilibrium condition for the moment, a convergence calculation of
curvature is needed. The solution algorithm used by Collins et al. involves the convergence
process of e2 and 6 for each layer, and that of the longitudinal strain distribution for the cross
section. On the other hand, procedure described here has only one convergence process for €1 in
each layer and ec for the cross section. Therefore, computational analysis is fast using few
unknowns to reach convergence.

The ultimate states are defined in the analysis by the following two cases when curvature is
increased under the condition of constant axial and shear force.

(1) The maximum compressive strain in the cross section is reached at the strain corresponding to
the strength of the concrete(-0.002).

(2) No solution satisfying the equilibrium for the given ex and txy 1s obtained in at least one layer,
even if the equilibrium condition for axial force is satisfied.

Therefore, the ultimate loading capacity is obtained from the moment corresponding to each cases.
The failure modes are thus distinguished between flexural failure for case(1) and shear failure for
case(2). Using the above definition, it is possible to define the ultimate loading capacity
depending on the different failure mode in the analysis.

(3) Material Modeling
a) Concrete

The stress-strain relationship for the concrete used is shown in Fig.-5. In the zone of compression,
the relationship is represented by a second degree parabola up to the maximum compressive
stress. The maximum compressive stress decreases depending on the principal tensile strain &
using an equation proposed by Collins et al.[3]. However, Miyahara et al.[5] reported that the
maximum compressive stress becomes constant value for higher tensile strains in cracked
concrete. Thus, it is assumed in the analysis that the maximum compressive stress becomes
constant when the principal tensile strain exceeds 40 times the crack strain. The stress-strain
relationship beyond the compressive strength is not considered since the object of this analysis is
shear failure.

In the tension zone, the stress increases linearly with a constant proportionality of 2fc/eco up to
the tensile strength(ft). After that, it is evaluated by the following equation which modifies the
equation proposed by Collins et al.[3].
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This equation modifies the stress reduction by introducing the coefficient a into the Collins
equation. The concept of coefficient o and the equation is based on the following discussion.
Equation(13) is the relation between average tensile stress to average tensile strain in a cracked
reinforced concrete element. The Collins equation, however, was formulated from experimental
result for RC membrane elements arranged with a reinforcement mesh having equi-grid spacing.
Thus, we predicted that it is not applicable to RC beams with the reinforcement arranged
concentrically to the lower part of the cross section. Moreover, it is guessed that the bonding
effect between concrete and steel which dominates this relation operates over a specific area
around the steel bar. However, it must be assumed that the effect influences all tensile area of the
cross section in the analysis, because the area has not been clarified at present. The correction to
the area influenced by the bonding effect is accomplished by coefficient a. This is the feature in
this study that the stress-strain relationship in tensile, that is tension softening curve, is varied by
coefficient .

b) Reinforcement

The stress-strain relationship for the reinforcement is shown in Fig.-6. It is assumed that the stress
is proportional to the strain with the initial stiffness up to the yielding point, and that the yield
stress remains constant after that in both tension and compression zones.

3. INVESTIGATION OF APPLICABILITY OF EXTENDED MODIFIED COMPRESSION
FIELD THEORY

(1) Effect of Tension Softening Behavior

As mentioned above, it seems that analysis using the tension softening curve proposed by Collins
et al. overestimates the shear strength of RC beams. We therefore estimate the value of a so as to
define a tension softening curve suitable for RC beams.

The model used in this analysis is a cross section of 20 X 20cm and a beam depth of 16cm as
shown in Fig.-7. The material properties are that compressive strength of concrete is 280kgf/cm *
tensile strength of concrete is 28kgf/cm ? | the yielding stress of the reinforcement is 3780
kgf/em ° and the initial stiffness of the reinforcement is 1.7 X 10 ° kgf/em ° . The cross section
is subdivided into 20 layers and the applied axial force is zero in the analysis.

The relationships between shear strength and shear span ratio(a/d) are illustrated in Fig.-8, in
which o takes the values 1,3, and 5. The analytical results for o=1 are shown with mark " @ ",
that of o=3 are shown with mark" /A " and that of o=5 are shown with mark " Il ". The marks in
the figure are obtained according to the definition of failure mentioned above. Then, the values of
a/d are calculated supposing a=M/V for two-point loading and a simply supported beam. As a
result, the failure section in the beam is defined in the
maximum moment section. In the figure, the broken line

P . . . : 20cm ,
indicates the moment capacity curve and the solid line
indicates the shear strength curve obtained from the ) ¢§
equation proposed by Niwa et al.(Eq(14))[6]. The hd DI & =
applicability of the analysis of shear strength is § g
investigated by comparison with Niwa’s equation, S ©
supposing that this equation gives the correct solution for D19

diagonal tension failure strength since it was formulated ° ° o |- '
from many experimental data and its reliability is already )

proven. It should be noted that the following analysis is

restricted to RC rectangular sections. Fig.-7 Analytical Model



v =0.947"2(1008,)V3(d 1100)V*(0.75 +1.4d /) B, d (14)

in which f’c is the compressive strength of concrete, Pw is the longitudinal reinforcement ratio, d
is the effective depth of the cross section, a/d is the shear span ratio and Bw is the width of the

Cross section.

As shown in Fig.-8, the results for a=1, which the Collins equation is used, overestimate the shear
strength and results with a=5 underestimate it. On the other hand, results with o=3 show good
agreement with Eq.(14) in the range of diagonal tension failure a/d>3.

o o 7
L 1+3,/200(¢; — ¢,,) 15)

Analytical results are in good agreement with the moment capacity curve in the range of a/d>6.
They are also in good agreement with the shear failure curve in the range of 3<a/d<6. It is
therefore clear that this analysis can calculate both shear and flexure failure strength when the
shear span ratio is varied, as long as the tension softening curve in Eq.(15) is applied. Further, the
analytical results for both ranges correspond to the definition of the failure mode as mentioned
above. However, the strength is underestimated when a/d is less than 3. This is the reason for the
shear strength increasing as a/d becomes smaller by the effect of support and loading point; that
is, the effect of compressive stress in the transverse direction. However the analysis does not
consider this effect. Consequently, this analysis can evaluate the flexure and diagonal tension
failure strength, but it will be necessary for the shear compression failure strength to be
investigated in more detail.

Many tension softening curves have been proposed. The curve proposed here is similar to that
proposed by Okamura and Maekawa[7] for deformed steel bars, as shown in Fig.-9. Therefore, it
is guessed that the proposed curve is adequate for RC beams. However, further modification of
the curve for effective depth is investigated in next section, since the averaging bonding effect
between concrete and reinforcement is influenced by the effective depth.
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Figure-10 shows the analytical results of the distribution of strain, stress, and angle of inclination
of principal compressive strain just before failure(N=0tf, V"SOOOtf M=2.08 X 10 ° tf m). The
principal tensile strain and shear strain increase rapidly near the lower part of the cross section,
and the longitudinal stress becomes compression due to the effect of the bi-axial stress field in the
lower part.

(2) Effect of Subdivided Layer Number

It is predicted that the results of analysis will be influenced by the number of subdivided layers.
Thus, the effect of subdivided layer number is investigated here. The analysis is performed for
four cases, in which the cross section shown in Fig.-7 is subdivided into 40, 20, 10 and 5 layers.
Figure-11 shows the relationships between shear force and moment obtained in this analysis. The
results for 5, 10, 20 and 40 layers are marked with " O ", " A", "[J" and " X ", respectively. It
is clear that the results converge when number of layers is more than 20 layers. Therefore, we
adopt 20 layers in the following analysis.

4. EFFECTS ON SHEAR FAILURE STRENGTH OF RC BEAM SECTION WITHOUT
STIRRUPS OF VARIABLE FACTORS

We investigate the effects of variable factors on shear strength in this section. The model used in
this analysis is the RC cross section shown in Fig.-7. The analytical results are verified by
comparison with Niwa’s equation, which was formulated on the basis of many experimental
results.

(1) Effects of Effective Depth

The analysis in which effective depth was varied was performed under the condition that the
longitudinal reinforcement ratio is constant(Pw=0.0269). The shear strength obtained from the
analysis for several effective depths is shown in Fig.-12, when M/(Vd)=3.0. The marks with " @ "
in the figure are the results obtained by using the tension softening curve of Eq.(15) and the solid
line is the value of Eq.(14). The analytical shear strength increases in proportion with effective
depth increase and the difference from Eq.(14) increases as the effective depth increases. In
general, the shear strength of RC beams is affected by size and Niwa’s equation also incorporates
this effect. On the contrary, this result shows that the analysis cannot evaluate the size effect.
Figure-13 shows the distribution of ox and 6 at failure when the effective depth is 16, 64 and
160cm. The distributions can be identified for every effective depths. This implies that the size
effect does not appear in the analysis. The reason is that the tension softening curve used is the
same(Eq.(15)) in spite of the different effective depth.
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Therefore, we try to estimate a tension softening curve involving the effect of size by varying the
value of o in Eq.(13). The value of o will be estimated in comparison with Eq.(14) for the cross
section in which effective depth is less than 160cm, because the applicability of Eq.(14) to the
size effect is already appreciated experimentally within the above effective depth. Note that the
tension softening curve represents the bonding effect averaged over all the cracked area.

Figure-14 shows the relationship between o and effective depth obtained in the analysis. The
analytical results are marked with " O", and the solid line is the following equation of
relationship of o versus effective depth obtained from an interpolation of the analytical results.
a=3d/16)"3 (16)
A tension softening curve involving the effect of effective depth is obtained by substituting
Eq.(16) into Eq.(13). The results using the Eq.(16) are shown by " A " in Fig-12. It is clear that
the size effect can be evaluated analytically using Eq.(16) in a similar to Eq.(14). Figure-15 shows
the analytical results for an effective depth of 112cm. The marks with " @ " are analytical results,
the broken line is the shear strength curve of Eq.(14), and the solid line is the moment capacity
curve. The analytical results are good agreement with Eq.(14) over a wide range.

The physical meaning of Eq.(16) is not clear since it was obtained only from an analytical
comparison with Eq.(14). Moreover, we must verify the applicability of the equation to very large
cross sections which is not possible experimentally. Thus the applicability to the large-scale cross
sections is investigated below using a energy consideration.

The shear strength(V1, V2) and the strain softening energy(W1, W2) obtained from analysis using
Eq.(16) and Eq.(15) for d=16, 64, 160 and 1600cm are shown in Table-1. The strain softening
energy is defined as the principal strain energy absorbed in the cracked concrete section up to

failure. That is,
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It is understood that the strain softening energy(W2) used Eq.(15) increases in proportion with
effective depth increase. The results mean that the size effect does not considered obviously based
on the consideration of energy in this case. On the other hand, energy(W1) used in Eq.(16) is
almost same although the effective depth is changed. That is, although energy(W1) increases
slightly with effective depth increase, the increment is about three times when the effective depth
varies from 16cm to 1600cm, and the effect of effective depth on energy is negligible. This result
implies that the analysis is applicable to very large cross sections on the assumption that the
energy absorption is constant and independent on size at the ultimate state. Figure-16 shows the
distribution of ox and 6 at failure for different effective depths. The distributions are different
from effective depth and the effect of size appear obviously.

(2) Effects of Longitudinal Reinforcement Ratio

An analysis in which the longitudinal reinforcement ratio is varied was performed for the RC
cross section shown in Fig.-7. The ratio is given nine values from 0.5% to 5.0%. The relationships
between shear force and moment in the failure state are illustrated in Fig.-17. Moment increase in
proportion as the shear force decrease and maintain constant values(moment capacity) for smaller
shear force. The range in which the moment is constant and the shear force decreases rapidly
corresponds to the flexural failure region as defined in the analysis (maximum compressive strain
of -0.002). On the other hand, the range in which the shear force decreases gradually corresponds
to the shear failure region. As shown in the figure, the curves for each longitudinal reinforcement
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Table-1 Effect of Effective Depth

Effective | Analysis | Analysis Niwa | V/Vc | Strain Softening | Strain Softening
Depth Eq.(16) Eq.(15) et al. Energy Energy
d(cm) Vi) Va(th) Ve(tf) Wikgf/cm) Wakgf/cm)
16 4.85 4.85 5.26 0.92 0.878 0.878
(0.25) (0.26) 0.91) (0.44)
64 14.2 18.7 14.8 0.95 0.963 1.976
(1.0) (1.0) (1.0) (1.0)
160 29.2 46.0 29.5 0.98 1.319 4.157
(2.5) (2.46) (137) 2.1
1600 181.0 460.0 166.2 | 1.09 2.555 39.87
(25.0) (24.6) (2.65) (20.18)

Vi:Analytical result using Eq.(16)  V2:Analytical result using Eq.(15)
W1:Strain softening energy corresponding toV1

‘W2:Strain softening energy corresponding toV2

Values in parentheses are normalized to d=64cm
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ratio are parallel. This implies that the effect of longitudinal reinforcement ratio on shear strength
is independent of the moment and is a function of only the longitudinal reinforcement ratio.

Figure-18 shows the relationship between longitudinal reinforcement ratio and shear strength for
M/(Vd)=3. The marks " @ " indicate analytical values and the broken line represents Eq.(14). The
difference between the analytical values and Eq.(14) increases with increasing longitudinal
reinforcement ratio. The solid line in the figure represents the shear strength obtained from the
equation in which the longitudinal reinforcement ratio term in Eq.(14) is modified from (Pw) !”°
to (Pw) '”*. It is understood that the shear strength analyzed is proportional to Pw)
Although the analytical result has a tendency to be different from Eq.(14), the difference is
insignificant as regards applicability of the analysis, since the difference is less than 10% when
the longitudinal reinforcement ratio is in the range of practical use(0.3%<Pw<3.0%).

(3) Effects of Longitudinal Reinforcement Stiffness

The equations proposed for shear strength in the past do not consider the effects of longitudinal
reinforcement stiffness, since the use of steel bars is a premise in the reinforcement of concrete.
Recently, fiber reinforced plastic(FRP), whose stiffness is lower than that of steel bars, has been
developed as a substitute for steel bars in the reinforcement of concrete. It has been reported
experimentally that the shear strength of concrete beams reinforced with FRP is lower than that of
beams reinforced with steel bars. Thus, we investigate the effect of the stiffness of reinforcement.

An analysis is performed in which the stiffness of the reinforcement is varied from 0.25 X 10 °
to 2.0 X 10 ® kgf/em ° for the RC cross section shown in Fig.-7. The results of analysis are
shown in Fig.-19. It is understood that the stiffness of the reinforcement is a factor which
influences shear strength. The results indicate that the shear strength is proportional to the 1/4
power of reinforcement stiffness. That is, the effect of longitudinal reinforcement stiffness is
similar to the effect of longitudinal reinforcement ratio. '

V =V,(E; | E)"* (18)

Tsuji et al.[8] proposed a method of evaluating the shear strength of concrete beams reinforced
with FRP by the transformed area of steel bar(As(Ei/Es)) considering the difference in stiffness.
The results of analysis prove that this method is adequate. However, the effects of stiffness as
proposed by Tsuji et al. differ from this analysis. The effect of stiffness on shear strength is
represented by a 1/3 power, since Tsuji et al. use the JSCE equation.

The effect of stiffness is verified by a comparison with the experimental data presented by Tsuji et
al.. Figure-20 shows the ratio of estimated and experimental values of shear strength. The
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Table-2 Effect of Compressive Strength Table-3 Effect of Tensile Strength

£ | v | r./280 | visso . 1 v T r.a3 lvasso
(keflem ) | (kgD (kgflom *) | (gD

75 4150 | 0268 | 0.856 1 3000 o5 | ocs

150 4600 | 0536 | 0948 23 4850 10 10

280 | 4850 | 10 LO 42 | 6400 | 15 | 1319

450 4950 [ 161 | 1.021

estimated values are obtained from Eq.(14), the method of Tsuji et al., and Eq.(18). When the
effect of stiffness is evaluated by the 1/3 power longitudinal reinforcement stiffness as proposed
by Tsuji et al., the shear strength is underestimated. On the other hand, the effect of stiffness is
evaluated more accurately by Eq.(18) where the effect is represented by the 1/4 power of
longitudinal reinforcement stiffness.

(4) Effect of Concrete Strength

An analysis in which the compressive strength is varied was performed under the condition that
the tensile strength is fi=28kgf/cm > . The compressive strength was set to four values from 75 to
450 kgf/cm ° . The results of the analysis are shown in Table-2 when M/(Vd)=3. Although the
shear strength increases slightly with increasing f’c, the effect does not appear clear analytically.
The results imply that the compressive strength is not an important factor in shear strength. The
reason for compressive strength not having clear effect in the analysis is that initial value of
compressive strength is not analytically important, since the strength varies as a function of
principal tensile strain in the bi-axial stress field of the analysis.

The analysis of variations in tensile strength was performed under the condition of the
compressive strength of 280kgf/cm ®. Three values of tensile strength were used: 14, 28 and
42kgf/cm . The results of analysis are shown in Table-3 when M/(Vd)=3. The shear strength
increases in proportion to tensile strength and the results show that the tensile strength is a major
factor influencing shear strength. Moreover, it appears from the analysis that the shear strength
increases in proportion to approximately the 2/3 power of tensile strength.

The relationship between compressive and tensile strength is prescribed as the 1/2 power by the
ACI or the 2/3 power by the JSCE. Therefore, if the above relations are correct, the result
obtained from the analysis that the shear strength is proportional to the 2/3 power of the tensile
strength, imply that the shear strength is a function of (f¢) '”® in the ACI case or a function of

(fe) *”° in the JSCE case. We conclude that the effect of concrete strength obtained from the
analysis is almost the same as that given by Niwa’s equation.

5. CONCLUSIONS

(1) The load carrying capacity of an RC section was evaluated by analysis based on the extended
modified compression field theory. Using this analytical method, both shear and flexure failure
strength can be evaluated accurately.

(2) The solution algorithm adopted in this analytical method involves convergence of &1 for each
layer and of e for the cross section. This makes possible fast numerical analysis in comparison
with Collins’s algorithm, since the convergence parameters are few.

(3) A tension softening curve considering the effect of size was proposed. Using the proposed
tension softening relationship, the size effect on shear strength can be evaluated satisfactonly. It
was proven from a consideration of energy that the analysis is applicable to very large cross
sections for which experiments are not feasible.
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(4) The effects on the shear strength of RC beams without stirrups of effective depth, longitudinal
reinforcement ratio, longitudinal reinforcement stiffness, and concrete strength were investigated
analytically.

(5) The effect of longitudinal reinforcement stiffness can be represented similarly to the effect of
longitudinal reinforcement ratio. Analytical results indicate that the shear strength is proportional
to the 1/4 power of longitudinal reinforcement stiffness. Moreover, the shear strength of concrete
beams reinforced with FRP can evaluated accurately by considering the effect of the 1/4 power of
stiffness.

(6) It appears from the analysis that the shear strength increases in proportion to the 2/3 power of
tensile strength and is not influenced by the compressive strength.
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